754
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Manufactured Nanomaterials: The Connection Between Environmental Fate and Toxicity

&
Pages 2581-2616 | Published online: 29 Oct 2013

REFERENCES

  • Morris , J. and Willis , J. 2007 . Nanotechnology white paper , Washington, DC : U.S. Environmental Protection Agency .
  • Klaine , S. J. , Alvarez , P. J. J. , Batley , G. E. , Fernandes , T. F. , Handy , R. D. , Lyon , D. Y. , Mahendra , S. , McLaughlin , M. J. and Lead , J. R. 2008 . Nanomaterials in the environment: Behavior, fate, bioavailabililty, and effects . Environ. Toxicol. Chem. , 27 : 1825 – 1851 .
  • Maynard , A. D. 2006 . Nanotechnology: A research strategy for addressing risk , Washington, DC : Woodrow Wilson International Center for Scholars .
  • Wise , J. P. , Goodale , B. C. , Wise , S. S. , Craig , G. A. , Pongan , A. F. , Walter , R. B. , Thompson , W. D. , Ng , A. , Aboueissa , A. , Mitani , H. , Spalding , M. J. and Mason , D. M. 2010 . Silver nanospheres are cytotoxic and genotoxic to fish cells . Aquat. Toxicol. , : 34 – 41 .
  • Ghosh , M. , Bandyopadhyay , M. and Mukherjee , A. 2010 . Genotoxicity of titanium dioxide (TiO2) nanoparticles at two levels: Plant and human lymphocytes . Chemosphere , 81 : 1253 – 1262 .
  • Shi , J. , Abid , A. D. , Kennedy , I. M. , Hristova , K. R. and Silk , W. K. 2011 . To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution . Environ. Pollut. , 159 : 1277 – 1282 .
  • Teodoro , J. S. , Simoes , A. M. , Duarte , F. V. , Rolo , A. P. , Murdoch , R. C. , Hussain , S. M. and Palmeira , C. M. 2011 . Assessment of the toxicity of silver nanoparticles in vitro: A mitochonrial perspective . Toxicol. In Vitro , 25 : 664 – 670 .
  • Kumari , M. , Mukherjee , A. and Chandrasekaran , N. 2009 . Genotoxicity of silver nanoparticles in Allium cepa . Sci. Total Environ. , 407 : 5243 – 5246 .
  • Farkas , J. , Christian , P. , Urrea , J. A. G. , Roos , N. , Hassellov , M. , Tollefsen , K. E. and Thomas , K. V. 2010 . Effect of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes . Aquat. Toxicol. , 96 : 44 – 52 .
  • Sabo-Attwood , T. , Unrine , J. M. , Stone , J. W. , Murphy , C. J. , Ghoshroy , S. , Blom , D. , Bertsch , P. M. and Newman , L. A. 2012 . Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings . Nanotoxicology , 6 : 353 – 360 .
  • Wang , J. , Zhou , G. , Chen , C. , Yu , H. , Wang , T. , Ma , Y. , Jia , G. , Gao , Y. , Li , B. , Sun , J. , Li , Y. , Jiao , F. , Zhao , Y. and Chai , Z. 2007 . Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration . Toxicol. Lett. , 168 : 176 – 185 .
  • Bhatt , I. and Tripathi , B. N. 2011 . Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment . Chemosphere , 82 : 308 – 317 .
  • Yang , L. and Watts , D. J. 2005 . Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles . Toxicol. Lett. , 158 : 122 – 132 .
  • Wang , J. , Zhu , X. , Zhang , X. , Zhao , Z. , Liu , H. , George , R. , Wilson-Rawls , J. , Chang , Y. and Chen , Y. 2011 . Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles . Chemosphere , 83 : 461 – 467 .
  • The Royal Society & The Royal Academy of Engineering . 2004 . Nanoscience and nanotechnologies: opportunities and uncertainties , Cardiff , , Wales : Clyvedon Press .
  • Som , C. , Berges , M. , Chaudhry , Q. , Dusinska , M. , Fernandes , T. F. , Olsen , S. I. and Nowack , B. 2010 . The importance of life cycle concepts for the development of safe nanoproducts . Toxicology , 269 : 160 – 169 .
  • American Society for Testing and Materials . 2006 . Standard terminology relating to nanotechnology. E 2456-06 , West Conshohocken , , USA : ASTM International .
  • Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) . 2007 . Opinion on the Scientific Aspects of the Existing and Proposed Definitions Relating to Products of Nanoscience and Nanotechnologies. The 21st Plenary of SCENIHR, European Commission
  • Pal , S. , Tak , Y. K. and Song , J. M. 2007 . Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of gram-negative Bacterium Escherichia coli . Appl. Environ. Microbiol. , 73 : 1712 – 1720 .
  • Nowack , B. and Bucheli , T. D. 2007 . Occurrence, behavior and effects of nanoparticles in the environment . Environ. Pollut. , 150 : 5 – 22 .
  • Pan , B. and Xing , B. 2010 . Manufactured nanoparticles and their sorption of organic chemicals . Adv. Agron. , 108 : 138 – 173 .
  • Kummerer , K. , Menz , J. , Schubert , T. and Thielemans , W. 2010 . Biodegradability of organic nanoparticles in the aqueous environment . Chemosphere , 82 : 1387 – 1392 .
  • Ju-Nam , Y. and Lead , J. R. 2008 . Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications . Sci. Total Environ. , 400 : 396 – 414 .
  • Peralta-Videa , J. R. , Zhao , L. , Lopez-Moreno , M. L. , De la Rosa , G. , Hong , J. and Gardea-Torresdey , J. L. 2011 . Nanomaterials and the environment: A review for the biennium 2008–2010 . J. Hazard. Mater. , 186 : 1 – 15 .
  • Mauter , M. S. and Elimelech , M. 2008 . Environmental application of carbon-based nanomaterials . Environ. Sci. Technol. , 42 : 5843 – 5859 .
  • Iijima , S. 1991 . Helical microtubules of graphitic carbon . Nature , 354 : 56 – 58 .
  • Yang , Y. , Ma , J. , Qin , Q. and Zhai , X. 2007 . Degradation of nitrobenzene by nano-TiO2 . J. Mol. Catal. A , 267 : 41 – 48 .
  • Shan , G. , Yang , S. , Tyagi , R. D. , Surampalli , R. Y. and Zhang , T. C. 2009 . Applications of nanomaterials in environmental science and engineering: Review . Pract. Periodical of Haz., Toxic, and Redioactive Waste Mgmt. , 13 : 110 – 119 .
  • Unrine , J. M. , Bertsch , P. M. and Hunyadi , S. 2008 . Bioavailability, trophic transfer, and toxicity of manufactured metal and metal oxide nanoparticles in terrestrial environments . Nanosci. Nanotechnol. , 14 : 345 – 366 .
  • Shahverdi , A. R. , Kakhimi , A. , Shahverdi , H. D. and Minaian , S. 2007 . Synthesis and effects of silver nanoparticles on the antibacterial activity of different antibiotics against Staphyloccus aureus and Escherichia coli . Nanomed. Nanotechnol. Biol. Med. , 3 : 168 – 171 .
  • Benn , T. M. and Westerhoff , P. 2008 . Nanoparticle silver released into water from commercially available sock fabrics . Environ. Sci. Technol. , 42 : 4133 – 4139 .
  • Torkzaban , S. , Kim , Y. , Mulvihill , M. , Wan , J. and Tokunaga , T. K. 2010 . Transport and deposition of functionalized CdTe nanoparticles in saturated porous media . J. Contam. Hydrol. , 118 : 208 – 217 .
  • Wang , L. , Zheng , H. , Long , Y. , Gao , M. , Hao , J. , Du , J. , Mao , X. and Zhou , D. 2010 . Rapid determination of the toxicity of quantum dots with luminous bacteria . J. Hazard. Mater. , 177 : 1134 – 1137 .
  • Consumer Products Inventory. www.nanotechproject.org
  • Kaegi , R. , Ulrich , A. , Soinnet , B. , Vonbank , R. , Wichser , A. , Zuleeg , S. , Simmler , H. , Brunner , S. , Vonmont , H. , Burkhardt , M. and Boller , M. 2008 . Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment . Environ. Pollut. , 156 : 233 – 239 .
  • Karn , B. , Kuiken , T. and Otto , M. 2009 . Nanotechnology and in situ remediation: A review of the benefits and potential risks . Environ. Health Persp. , 117 : 1823 – 1831 .
  • Khot , L. R. , Sankaran , S. , Maja , J. M. , Ehsani , R. and Schuster , E. W. 2012 . Applications of nanomaterials in agricultural production and crop protection: A review . Crop. Prot. , 35 : 64 – 70 .
  • Unrine , J. M. , Hunyadi , S. , Judy , J. D. and Bertsch , P. M. 2010 . Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles . J. Environ. Qual. , 39 : 1942 – 1953 .
  • Limbach , L. , Bereiter , R. , Uller , E. , Krebs , R. , Galli , R. and Stark , W. J. 2008 . Removal of oxide nanoparticles in a model wastewater treatment plant: Influence of agglomeration and surfactants on clearing efficiency . Environ. Sci. Technol. , 42 : 5828 – 5833 .
  • Kiser , M. A. , Westerhoff , P. , Benn , T. M. , Wang , Y. , Perez-Rivera , J. and Hristovski , K. 2009 . Titanium nanomaterial removal and release from wastewater treatment plants . Environ. Sci. Technol. , 43 : 6757 – 6763 .
  • Kim , B. , Park , C. , Murayama , M. and Hochella , M. F. 2010 . Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products . Environ. Sci. Technol. , 44 : 7509 – 7514 .
  • Kaegi , R. , Voegelin , A. , Sinnet , B. , Zuleeg , S. , Hagendorfer , H. , Burkhardt , M. and Siegrist , H. 2011 . Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant . Environ. Sci. Technol. , 45 : 3902 – 3908 .
  • Zheng , X. , Wu , R. and Chen , Y. 2011 . Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal . Environ. Sci. Technol. , 45 : 2826 – 2832 .
  • Gottschalk , F. , Sonderer , T. , Scholz , R. and Nowack , B. 2009 . Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions . Environ. Sci. Technol. , 43 : 9216 – 9222 .
  • Moore , M. N. 2006 . Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? . Environ. Intern. , 32 : 967 – 976 .
  • Spohn , P. , Hirsch , C. , Hasler , F. , Bruinink , A. , Krug , H. F. and Wick , P. 2009 . C60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays . Environ. Pollut. , 157 : 1134 – 1139 .
  • Kahru , A. and Dubourguier , H. 2010 . From ecotoxicology to nanoecotoxicology . Toxicology , 269 : 105 – 119 .
  • Dastjerdi , R. and Montazer , M. A. 2010 . A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties . Colloids Surf., B , 79 : 5 – 18 .
  • Navarro , E. , Baun , A. , Behra , R. , Hartmann , N. B. , Filser , J. , Miao , A. , Quigg , A. , Santschi , P. H. and Sigg , L. 2008 . Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi . Ecotoxicology , 17 : 372 – 386 .
  • Li , M. , Zhu , L. and Lin , D. 2011 . Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components . Environ. Sci. Technol. , 45 : 1977 – 1983 .
  • Song , W. , Zhang , J. , Guo , J. , Zhang , J. , Ding , F. , Li , L. and Sun , Z. 2010 . Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles . Toxicol. Lett. , 199 : 389 – 397 .
  • Kasemets , K. , Ivask , A. , Dubourguier , H. and Kahru , A. 2009 . Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae . Toxicol. In Vitro , 23 : 1116 – 1121 .
  • Gordon , T. , Perlstein , B. , Houbara , O. , Felner , I. , Banin , E. and Margel , S. 2011 . Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties . Colloids Surf., A , 374 : 1 – 8 .
  • Mortimer , M. , Kasemets , K. and Kahru , A. 2010 . Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila . Toxicology , 269 : 182 – 189 .
  • Zhu , X. , Chang , Y. and Chen , Y. 2010 . Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna . Chemosphere , 78 : 209 – 215 .
  • Chen , Z. , Meng , H. , Xing , G. , Chen , C. , Zhao , Y. , Jia , G. , Wang , T. , Yuan , H. , Ye , C. , Zhao , F. , Chai , Z. , Zhu , C. , Fang , X. , Ma , B. and Wan , L. 2006 . Acute toxicological effects of copper nanoparticles in vivo . Toxicol. Lett. , 163 : 109 – 120 .
  • Limbach , L. , Wick , P. , Manser , P. , Grass , R. N. , Bruninink , A. and Stark , W. J. 2007 . Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress . Environ. Sci. Technol. , 41 : 4158 – 4163 .
  • Dimpka , C. O. , Calder , A. , Gajjar , P. , Merugu , S. , Huang , W. , Britt , D. W. , Mclean , J. E. , Johnson , W. P. and Anderson , A. J. 2011 . Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis . J. Hazard. Mater. , 118 : 428 – 435 .
  • Dimpka , C. O. , Calder , A. , Britt , D. W. , Mclean , J. E. and Anderson , A. J. 2011 . Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions . Environ. Pollut. , 159 : 1749 – 1756 .
  • Kumar , A. , Pandey , A. H. , Singh , S. S. , Shanker , R. and Dhawan , A. 2011 . Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells . Chemosphere , 83 : 1124 – 1132 .
  • Di Sotto , A. , Chiaretti , M. , Carru , G. A. , Bellucci , S. , Carru , S. and Mazzanti , G. 2009 . Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay . Toxicol. Lett. , 184 : 192 – 197 .
  • Ge , Y. , Schimel , J. P. and Holden , P. A. 2011 . Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities . Environ. Sci. Technol. , 45 : 1659 – 1664 .
  • Wang , J. , Zhang , X. , Chen , Y. , Sommerfeld , M. and Hu , Q. 2008 . Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii . Chemosphere , 73 : 1121 – 1128 .
  • Metzler , D. M. , Li , M. , Erdem , A. and Huang , C. P. 2011 . Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effects of particle size . Chem. Eng. J. , 170 : 538 – 546 .
  • Gong , N. , Shao , K. , Feng , W. , Lin , Z. , Liang , C. and Sun , Y. 2011 . Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris . Chemosphere , 83 : 510 – 516 .
  • Schwab , F. , Bucheli , T. D. , Lukhele , L. P. , Magrez , A. , Nowack , B. , Sigg , L. and Knauer , K. 2011 . Are carbon nanotube effects on green algae caused by shading and agglomeration? . Environ. Sci. Technol. , 45 : 6136 – 6144 .
  • Gubbins , E. J. , Batty , L. C. and Lead , J. R. 2011 . Phytotoxicity of silver nanoparticles to Lemna minor L . Environ. Pollut. , 159 : 1551 – 1559 .
  • Lin , D. and Xing , B. 2007 . Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth . Environ. Pollut. , 150 : 243 – 250 .
  • Lopez-Moreno , M. L. , De la Rosa , G. , Hernandez-Viezcas , J. A. , Perlat-Videa , J. R. and Gardea-Torresdey , J. L. 2010 . X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species . J. Agr. Food Chem. , 58 : 3689 – 3693 .
  • Lee , J. , Ji , K. , Kim , J. , Park , C. , Lim , K. H. , Yoon , T. H. and Choi , K. 2009 . Acute toxicity of two CdSe/ZnSe quantum dots with different surface coating in Daphnia magna under various light conditions . Environ. Toxicol. , 25 : 1 – 8 .
  • Asli , S. and Neumann , M. 2009 . Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport . Plant Cell Environ. , 32 : 577 – 584 .
  • Calabrese , E. J. and Baldwin , L. A. 2000 . Chemical hormesis: Its historical foundations as a biological hypothesis . Hum. Exp. Toxicol. , 19 : 2 – 31 .
  • Calabrese , E. J. 2010 . Hormesis is central to toxicology, pharmacology and risk assessment . Hum. Exp. Toxicol. , 29 : 249 – 261 .
  • Barrena , R. , Casals , E. , Colon , J. , Font , X. , Sanchez , A. and Puntes , V. 2009 . Evaluation of the ecotoxicity of model nanoparticles . Chemosphere , 75 : 850 – 857 .
  • Li , M. , Czymmek , K. J. and Huang , C. P. 2011 . Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: A dynamic nano-toxicity assessment of energy budget distribution . J. Hazard. Mater. , 187 : 502 – 508 .
  • Wang , D. , Hu , J. , Forthaus , B. E. and Wang , J. 2011 . Synergistic toxic effect of nano-Al2O3 and As (V) on Ceriodahnia dubia . Environ. Pollut. , 159 : 3003 – 3008 .
  • Tao , X. , Fortner , J. D. , Zhang , B. , He , Y. , Chen , Y. and Hughes , J. B. 2009 . Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: Evaluation of sub-lathal reproductive response and accumulation . Chemosphere , 77 : 1482 – 1487 .
  • Mouchet , F. , Landois , P. , Sarremejean , E. , Bernard , G. , Puech , P. , Pinelli , E. , Flahaut , E. and Gauthier , L. 2008 . Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis . Aquat. Toxicol. , 87 : 127 – 137 .
  • Bacchetta , R. , Santo , N. , Fascio , U. , Moschini , E. , Freddi , S. , Chirico , G. , Camatini , M. and Mantecca , P. 2012 . Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development . Nanotoxicology , 6 : 381 – 398 .
  • Nations , S. , Wages , M. , Canas , J. , Maul , J. D. , Theodorakis , C. and Cobb , G. P. 2011 . Effects of ZnO nanomaterials on Xenopus laevis growth and development . Ecotox. Environ. Safe. , 74 : 203 – 210 .
  • Chae , Y. J. , Pham , C. H. , Lee , J. , Bae , E. , Yi , J. and Gu , M. B. 2009 . Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes) . Aquat. Toxicol. , 94 : 320 – 327 .
  • Bilberg , K. , Doving , K. B. , Beedholm , K. and Baatrup , E. 2011 . Silver nanoparticles disrupt olfactionin Cruciancarp (Carassius carassius) and Eurasian perch (Perca fluviatilis) . Aquat. Toxicol. , 104 : 145 – 152 .
  • Wang , B. , Feng , W. Y. , Wang , M. , Wang , T. , Gu , Y. , Zhu , M. , Ouyang , H. , Shi , J. , Zhang , F. , Zhao , Y. , Chai , Z. , Wang , H. and Wang , J. 2008 . Acute toxicological impact of nano and submicro-scaled zinc oxide powder on healthy adult mice . J. Nanopart. Res. , 10 : 263 – 276 .
  • Srinivas , A. , Raoa , P. J. , Selvam , G. , Murthy , P. B. and Reddy , P. N. 2011 . Acute inhalation toxicity of cerium oxide nanoparticles in rats . Toxicol. Lett. , 205 : 105 – 115 .
  • Becker , H. , Herzberg , F. , Schulte , A. and Kolossa-Gehring , M. 2011 . The carcinogenic potential of nanomaterials, their release from products an options for regulating them . Int. J. Hyg. Envir. Heal. , 124 : 231 – 238 .
  • Adams , L. K. , Lyon , D. Y. and Alvarez , P. J. J. 2006 . Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions . Water Res. , 40 : 3527 – 3532 .
  • Aruoja , V. , Dubourguier , H. C. , Kasemets , K. and Kahru , A. 2009 . Toxicity of nanoparticles of CuO, ZnO, and TiO2 to microalgae Pseudokirchneriella subcapitata . Sci. Total Environ. , 407 : 1461 – 1468 .
  • Galloway , T. , Lewis , C. , Dolciotti , I. , Johnston , B. D. , Moger , J. and Regoli , F. 2010 . Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete . Environ. Pollut. , 158 : 1748 – 1755 .
  • Nations , S. , Wages , M. , Canas , J. E. , Maul , J. , Theodorakis , C. and Cobb , G. P. 2011 . Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis . Chemosphere , 83 : 1053 – 1061 .
  • Unrine , J. M. , Hunyadi , S. E. , Tsyusko , O. V. , Rao , W. , Shoults-Wilson , W. A. and Bertsch , P. M. 2010 . Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida) . Environ. Sci. Technol. , 44 : 8308 – 8313 .
  • Shoults-Wilson , W. A. , Reinsch , B. C. , Tsyusko , O. V. , Bertsch , P. M. , Lowry , G. V. and Unrine , J. M. 2011 . Effects of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida) . Nanotoxicology , 5 : 432 – 444 .
  • Hu , C. W. , Li , M. , Cui , Y. B. , Li , D. S. , Chen , J. and Yang , L. Y. 2010 . Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida . Soil Biol. Biochem. , 42 : 586 – 591 .
  • Domingos , R. F. , Simon , D. F. , Hauser , C. and Wilkinson , K. J. 2011 . Bioaccumulation and effects of CdTe/CdS quantum dots on chlamydomonas reinhardtii: Nanoparticles or the free ions? . Environ. Sci. Technol. , 45 : 7664 – 7669 .
  • Li , D. , Fortner , J. D. , Johnson , D. R. , Chen , C. , Li , Q. and Alvarez , P. J. J. 2010 . Bioaccumulation of 14C60 by earthworms Eisenia fetida . Environ. Sci. Technol. , 44 : 9170 – 9175 .
  • Lin , D. and Xing , B. 2009 . Root uptake and phytotoxicity of ZnO nanoparticles . Environ. Sci. Technol. , 42 : 5580 – 5585 .
  • Coutris , C. , Hertel-Aas , T. , Lapied , E. and Joner , E. J. 2011 . Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida . Nanotoxicology , 6 : 186 – 195 .
  • Pipan-Tkalec , Z. , Drobne , D. , Jemec , A. , Romih , T. , Zidar , P. and Bele , M. 2010 . Zinc biaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution . Toxicology , 269 : 198 – 203 .
  • Zhu , X. , Wang , J. , Zhang , X. , Chang , Y. and Chen , Y. 2010 . Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain . Chemosphere , 79 : 928 – 933 .
  • Petersen , E. J. , Pinto , R. A. , Zhang , L. , Huang , Q. , Landrum , P. F. and Weber , W. J. 2011 . Effects of polyethyleneimine-mediated functionalization of multi walled carbon nanotubes on earthworm bioaccumulation and sorption by soils . Environ. Sci. Technol. , 45 : 3090 – 3095 .
  • Khan , S. S. , Srivatsan , P. , Vaishnavi , N. , Mukherjee , A. and Chandrasekaran , N. 2011 . Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics . J. Hazard. Mater. , 192 : 299 – 306 .
  • Judy , J. D. , Unrine , J. M. and Bertsch , P. M. 2011 . Evidence for biomagnification of gold nanoparticles within a terrestial food chain . Environ. Sci. Technol. , 45 : 776 – 781 .
  • Holbrook , R. D. , Murphy , K. E. , Morrow , J. B. and Cole , K. D. 2008 . Trophic transfer of nanoparticles in a simplified invertebrate food web . Nat. Nanotechnol. , 3 : 352 – 355 .
  • Roberts , A. P. , Mount , A. S. , Seda , B. , Shouther , J. , Qiao , R. , Lin , S. , Ke , P. C. , Rao , A. M. and Klaine , S. J. 2007 . In vivo biomodification of lipid-coated carbon nanotubes by Dapnia magna . Environ. Sci. Technol. , 41 : 3025 – 3029 .
  • Yang , K. , Zhu , L. and Xing , B. 2006 . Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials . Environ. Sci. Technol. , 2006 : 1855 – 1861 .
  • Shoults-Wilson , W. A. , Reinsch , B. C. , Tsyusko , O. V. , Bertsch , P. M. , Lowry , G. V. and Unrine , J. M. 2011 . Role of particle size and soil type in toxicity of silver nanoparticles to earthworms . Soil Sci. Soc. Am. J. , 75 : 365 – 377 .
  • Morones , J. R. , Elechiguerra , J. L. , Camacho , A. , Holt , K. , Kouri , J. B. , Ramirez , J. T. and Yacaman , M. J. 2005 . The bactericidal effect of silver nanoparticles . Nanotechnology , 16 : 615 – 621 .
  • Hsiao , I. and Huang , Y. 2011 . Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells . Sci. Total Environ. , 409 : 1219 – 1228 .
  • Peng , X. , Palma , S. , Fisher , N. S. and Wong , S. S. 2011 . Effect of morphology of ZnO nanostructures on their toxicity to marine algae . Aquat. Toxicol. , 102 : 186 – 196 .
  • Hotze , E. M. , Phenrat , T. and Lowry , G. V. 2010 . Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment . J. Environ. Qual. , 39 : 1909 – 1924 .
  • Ren , X. , Chen , C. , Nagatsu , M. and Wang , X. 2011 . Carbon nanotubes as adsorbents in environmental pollution management: A review . Chem. Eng. J. , 170 : 395 – 410 .
  • Saleh , N. B. , Pfefferle , L. D. and Elimelech , M. 2008 . Aggregation kinetics of multiwalled carbon nanotubes in aquantic systems: Measurements and environmental implications . Environ. Sci. Technol. , 42 : 7963 – 7969 .
  • Saleh , N. B. , Pfefferle , L. D. and Elimelech , M. 2010 . Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes . Environ. Sci. Technol. , 44 : 2412 – 2418 .
  • Petosa , A. R. , Jaisi , D. P. , Quevedo , I. R. , Elimelech , M. and Tufenkji , N. 2010 . Aggregation and deposition of engineered nanomaterials in aquantic environments: Role of physicochemical interactions . Environ. Sci. Technol. , 144 : 6532 – 6549 .
  • Li , Z. , Greden , K. , Alvarez , P. J. J. , Gregory , K. B. and Lowry , G. V. 2010 . Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zero valent iron to E. coli . Environ. Sci. Technol. , 44 : 3462 – 3467 .
  • Chen , K. L. and Elimelech , M. 2006 . Aggregation and deposition kinetics of fullerene (C60) nanoparticles . Langmuir , 22 : 10994 – 11001 .
  • Chen , J. , Xiu , Z. , Lowry , G. V. and Alvarez , P. J. J. 2011 . Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron . Water Res. , 45 : 1995 – 2001 .
  • Van Hoecke , K. , De Schamphelaere , K. A. C. , Van der Meeren , P. , Smagghe , G. and Janssen , C. R. 2011 . Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength . Environ. Pollut. , 159 : 970 – 976 .
  • Edgington , A. J. , Roberts , A. P. , Taylor , L. M. , Alloy , M. M. , Reppert , J. , Rao , A. M. , Mao , J. and Klaine , S. J. 2010 . The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes . Environ. Toxicol. Chem. , 29 : 2511 – 2518 .
  • He , F. , Zhao , D. Y. , Liu , J. C. and Roberts , C. B. 2007 . Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater . Ind. Eng. Chem. Res. , 27 : 29 – 34 .
  • Grieger , K. D. , Fjordboge , A. , Hartmann , N. B. , Eriksson , E. , Bjerg , P. L. and Baun , A. 2010 . Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? . J. Contam. Hydrol. , 118 : 165 – 183 .
  • Wang , X. , Liu , Y. , Tao , S. and Xing , B. 2010 . Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes . Carbon , 48 : 3721 – 3728 .
  • Chen , G. , Shan , X. , Zhou , Y. , Shen , X. , Huang , H. and Khan , S. U. 2009 . Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes . J. Hazard. Mater. , 169 : 912 – 918 .
  • Chen , W. , Duan , L. and Zhu , D. 2007 . Adsorption of polar and nonpolar organic chemicals to carbon nanotubes . Environ. Sci. Technol. , 41 : 8295 – 8300 .
  • Tkachenko , A. G. , Xie , H. , Coleman , D. , Glomm , W. , Ryan , J. , Anderson , M. F. , Franzen , S. and Feldheim , D. L. 2003 . Multifunctional gold nanoparticle-peptide complexes for nuclear targeting . J. Am. Chem. Soc. , 125 : 4700 – 4701 .
  • Wei , L. , Thakkar , M. , Chen , Y. , Ntim , S. A. , Mitra , S. and Zhang , X. 2010 . Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta . Aquat. Toxicol. , 100 : 194 – 201 .
  • Xiu , Z. , Gregory , K. B. , Lowry , G. V. and Alvarez , P. J. J. 2010 . Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp . Environ. Sci. Technol. , 44 : 7647 – 7651 .
  • Van Hoecke , K. , De Schamphelaere , K. A. C. , Ramirez-Garcia , S. , Van der Meeren , P. , Smagghe , G. and Janssen , C. R. 2011 . Influence of alumina coating on characteristic and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents . Environ. Int. , 37 : 1118 – 1125 .
  • Panessa-Warren , B. , Maye , M. M. , Warren , J. B. and Crosson , K. M. 2009 . Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure . Environ. Pollut. , 157 : 1140 – 1151 .
  • Oleszczuk , P. , Jośko , I. and Xing , B. 2011 . The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes . J. Hazard. Mater. , 186 : 436 – 442 .
  • Chung , H. , Son , Y. , Yoon , T. K. , Kim , S. and Kim , W. 2011 . The effect of multi-walled carbon nanotubes on soil microbal activity . Ecotox. Environ. Safe. , 74 : 569 – 575 .
  • Pan , B. and Xing , B. 2008 . Adsorption mechanisms of organic chemicals on carbon nanotubes . Environ. Sci. Technol. , 42 : 9005 – 9013 .
  • Gong , J. , Wang , B. , Zheng , G. , Yang , C. , Niu , C. , Niu , Q. , Zhou , W. and Liang , Y. 2009 . Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent . J. Hazard. Mater. , 164 : 1517 – 1522 .
  • Gotovac , S. , Yang , C. , Hattori , Y. , Takahashi , K. , Kanoh , H. and Kaneko , K. 2007 . Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters . J. Colloid Interface Sci. , 314 : 18 – 24 .
  • Chappell , M. A. , George , A. J. , Dontsova , K. M. , Porter , B. E. , Price , C. L. , Zhou , P. , Morikawa , E. , Kennedy , A. J. and Steevens , J. A. 2009 . Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances . Environ. Pollut. , 157 : 1081 – 1087 .
  • Oleszczuk , P. , Pan , B. and Xing , B. 2009 . Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes . Environ. Sci. Technol. , 43 : 9167 – 9173 .
  • Oleszczuk , P. 2007 . Biodostępność i bioakumulacja hydrofobowych zanieczyszczeń organicznych-Część II. Sorpcja TZO oraz czynniki wpływające na ten proces . Biotechnologia , 76 : 26 – 39 .
  • Park , J. W. , Henry , T. B. , Ard , S. , Menn , F. M. , Compton , R. N. and Sayler , G. S. 2011 . The association between nC(60) and 17 -ethinylestradiol (EE2) decreases EE2 bioavailability in zebrafish and alters nanoaggregate characteristic . Nanotoxicology , 5 : 406 – 416 .
  • Baun , A. , Sorensen , S. N. , Rasmussen , R. F. , Hartmann , N. B. and Koch , C. B. 2008 . Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60 . Aquat. Toxicol. , 86 : 387 – 395 .
  • Brausch , K. A. , Anderson , T. A. , Smith , P. N. and Maul , J. D. 2010 . Effects of functionalized fullerenes on bifenthrin and tribufos toxicity to Daphnia magna: survival, reproduction and growth . Environ. Toxicol. Chem. , 29 : 2600 – 2606 .
  • Zhang , R. , Niu , Y. , Li , Y. , Zhao , C. , Song , B. , Li , Y. and Zhou , Y. 2010 . Acute toxicity of the interaction between titanium dioxide nanoparticles and lead acetate in mice . Environ. Toxicol. Pharm. , 30 : 52 – 60 .
  • Wang , D. , Hu , J. , Irons , D. R. and Wang , J. 2011 . Synergistic toxic effect of nano-TiO2 and As (V) on Ceriodaphnia dubia . Sci. Total Environ. , 409 : 1351 – 1356 .
  • Kim , K. T. , Klaine , S. J. , Lin , S. , Ke , P. C. and Kim , S. 2010 . Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna . Environ. Sci. Technol. , 29 : 122 – 126 .
  • Wang , Z. , Zhao , J. , Song , L. , Mashayekhi , H. , Chefetz , B. and Xing , B. 2011 . Adsorption and desorption of phenanthrene on carbon nanotubes in simulated gastrointestinal fluids . Environ. Sci. Technol. , 45 : 6018 – 6024 .
  • Wild , E. and Jones , K. C. 2009 . Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants . Environ. Sci. Technol. , 43 : 5290 – 5294 .
  • Battin , T. J. , Kammer , F. , Weilhartner , A. , Ottofuelling , S. and Hofmann , T. 2009 . Nanostructured TiO2: Transport behavior and effects on aquatic microbial communities under environmental conditions . Environ. Sci. Technol. , 43 : 8098 – 8104 .
  • Tong , Z. , Bischoff , M. , Nies , L. , Applegate , B. and Turco , R. F. 2007 . Impact of fullerene (C60) on a soil microbial community . Environ. Sci. Technol. , 41 : 2985 – 2991 .
  • Van der Ploeg , M. J. C. , Baveco , J. M. , Van der Hout , A. , Bakker , R. , Rietjens , M. C. M. and Van der Brink , N. W. 2011 . Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics . Environ. Pollut. , 159 : 198 – 203 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.