5,810
Views
377
CrossRef citations to date
0
Altmetric
Reviews

Cycling of mercury in the environment: Sources, fate, and human health implications: A review

&
Pages 693-794 | Published online: 05 Jul 2017

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments. New York: Springer-Verlag.
  • Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C., and Obrist, D. (2016). New Constraints on Terrestrial Surface−Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database. Environ. Sci. Technol. 50:507–524.
  • [AMAP and UNEP] Arctic Monitoring and Assessment Programme and United Nations Environment Programme. (2013). Technical Background Report for the Global Mercury Assessment 2013. AMAP and UNEP, Oslo and Geneva.
  • Amde, M., Yin, Y., Zhang, D., and Liu, J. (2016). Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: a review. Chem. Spec. Bioavail. 28:51–65.
  • Andersson, A. (1970). Some facts about the geochemistry of mercury. Grundförbättring 23:31–40.
  • Anglen, J., Gruninger, S. E., Chou, H. N., Weuve, J., Turyk, M. E., Freels, S., and Stayner, L. T. (2015). Occupational mercury exposure in association with prevalence of multiple sclerosis and tremor among US dentists. J. Am. Dent. Assoc. 146:659–668.
  • [ASTM] American Society for Testing and Materials. (1998). Annual Book of ASTM Standards: Volume 11.05. Philadelphia: ASTM.
  • [ATSDR] Agency for Toxic Substances and Disease Registry. (1999). Toxicological Profile for Mercury. Atlanta: ATSDR.
  • ATSDR. (2012). Chemical-Specific Health Consultation for Joint EPA/ATSDR National Mercury Cleanup Policy Workgroup. Action Levels for Elemental Mercury Spills. Atlanta: ATSDR.
  • Avramescu, M. L., Yumvihoze, E., Hintelmann, H., Ridal, J., Fortin, D., and Lean, D. R. S. (2011). Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada. Sci. Total Environ. 409:968–978.
  • Bailey, E. A., Gray, J. E., and Theodorakos, P. M. (2002). Mercury in vegetation and soils at abandoned mercury mines in southwestern Alaska, USA. Geochem. Explor. Environ. Anal. 2:275–285.
  • Baker, A. J. M. (1981). Accumulators and excluders - strategies in the response of plants to heavy metals. J. Plant Nutr. 3:643–654.
  • Bakir, F., Damluji, S. F., Amin-Zaki, L., Murtadha, M., Khalidi, A., Al-Rawi, N. Y., Tikriti, S., Dhahir, H. I., Clarkson, T. W., Smith, J. C., and Doherty, R. A. (1973). Methylmercury Poisoning in Iraq. Science 181:230–241.
  • Bargagli, R. (2016). Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 572:216–231.
  • Barkay, T., and Wagner-Döbler, I.. (2005). Microbial transformations of mercury: Potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 57:1–52.
  • Barringer, J. L., Szabo, Z., Kauffman, L. J., Barringer, T. H., Stackelberg, P. E., Ivahnenko, T., Rajagopalan, S., and Krabbenhoft, D. P. (2005). Mercury concentrations in water from an unconfined aquifer system, New Jersey coastal plain. Sci. Total Environ. 346:169–183.
  • Barrow, N. J., and Cox, V. C. (1992). The effects of pH and chloride concentration on mercury sorption. II. By a soil. J. Soil Sci. 43:305–312.
  • Basu, N., Scheuhammer, A. M., Rouvinen-Watt, K., Grochowina, N., Klenavic, K., Evans, R. D., and Chan, H. M. (2006). Methylmercury impairs components of the cholinergic system in captive mink (Mustela vison). Toxicol. Sci. 91:202–209.
  • Baughman, T. A. (2006). Elemental mercury spills. Environ. Health Persp. 114:147–152.
  • Beasley, D. M. G., Schep, L. J., Slaughter, R. J., Temple, W. A., and Michel, J. M. (2014). Full recovery from a potentially lethal dose of mercuric chloride. J. Med. Toxicol. 10:40–44.
  • Beauford, W., Barber, J., and Barringer, A. R. (1977). Uptake and distribution of mercury within higher plants. Physiol. Plant. 39:261–265.
  • Beckert, W. F., Moghissi, A. A., Au, F. H. F., Bretthauer, E. W., and McFarlane, J. C.. (1974). Formation of methylmercury in a terrestrial environment. Nature 249:674–675.
  • Bennett, R. S., French, Jr, J. B., Rossmann, R., and Haebler, R. (2009). Dietary toxicity and tissue accumulation of methylmercury in American kestrels. Arch. Environ. Contam. Tox. 56:149–156.
  • Berglund, M., Lind, B., Björnberg, K. A., Palm, B., Einarsson, Ö., and Vahter, M. (2005). Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment. Environ. Health-Glob. 4:20.
  • Bernhoft, R. A. (2012). Mercury toxicity and treatment: A review of the literature. J. Environ. Public Health 460508, doi:10.1155/2012/460508.
  • Berzas Nevado, J. J., Rodríguez, Martín-Doimeadios, R. C., Mateo, R., Rodríguez Fariñas, N., Rodríguez-Estival, J., and Patiño Ropero, M. J. (2012). Mercury exposure and mechanism of response in large game using the Almadén mercury mining area (Spain) as a case study. Environ. Res. 112:58–66.
  • Biela, A., Grote, K., Otto, B., Hoth, S., Hedrich, R., and Kaldenhoff, R. (1999). The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J. 18:565–570.
  • Biester, H., Müller, G., and Schöler, H. F. (2002). Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci. Total Environ. 284:191–203.
  • Bigazzi, G., Bonadonna, F. P., Ghezzo, C., Giuliani, O., Radicati, di Brozolo, F., and Rita, F. (1981). Geochronological study of the Monte Amiata Lavas (Central Italy). Bull. Volcanol. 44:455–465.
  • Bilandžić, N., Sedak, M., Đokić, M., and Šimić, B. (2010). Wild boar tissue levels of cadmium, lead and mercury in seven regions of continental Croatia. Bull. Environ. Contam. Tox. 84:738–743.
  • Bishop, K. H., Lee, Y. H., Munthe, J., and Dambrine, E. (1998). Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry 40:101–113.
  • Bizily, S. P., Rugh, C. L., Summers, A. O., and Meagher, R. B. (1999). Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc. Natl. Acad. Sci. USA 96:6808–6813.
  • Björnberg, K. A., Vahter, M., and Sandborgh-Englund, G. (2006). Methylmercury, Amalgams, and Children's Health: Björnberg et al. Respond. Environ. Health Persp. 114:A149–A150.
  • Black, F. J., Poulin, B. A., and Flegal, A. R. (2012). Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochim. Cosmochim. Acta 84:492–507.
  • Bloom, N. S., Preus, E., Katon, J., and Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal. Chim. Acta 479:233–248.
  • Blum, J. D., Popp, B. N., Drazen, J. C., Choy, C. A., and Johnson, M. W. (2013). Methylmercury production below the mixed layer in the North Pacific Ocean. Nat. Geosci. 6:879–884.
  • Böhme, F., Rinklebe, J., Stärk, H. J., Wennrich, R., Mothes, S., and H.-Neue, U. (2005). A simple field method to determine mercury volatilization from soils. Environ. Sci. Pollut. R 12:133–135.
  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., and Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J. Hazard. Mater. 266:141–166.
  • Borghgraef, R. R. M., and Pitts, R. F. (1956). The distribution of Chlormerodrin (Neohydrin®) in tissues of the rat and dog. J. Clin. Invest. 35:31–37.
  • Bornmann, G., Henke, G., Alfes, H., and Möllmann, H. (1970). Über die enterale Resorption von metallischem Quecksilber. Arch. Toxicol. 26:203–209.
  • Bose-O'Reilly, S., Lettmeier, B., Matteucci Gothe, R., Beinhoff, C., Siebert, U., and Drasch, G. (2008). Mercury as a serious health hazard for children in gold mining areas. Environ. Res. 107:89–97.
  • Boszke, L., Kowalski, A., Astel, A., Barański, A., Gworek, B., and Siepak, J. (2008). Mercury mobility and bioavailability in soil from contaminated area. Environ. Geol. 55:1075–1087.
  • Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H., and Swarr, G. (2015). Mercury in the North Atlantic Ocean: The U. S. GEOTRACES zonal and meridional sections. Deep-Sea Res. Pt II 116:251–261.
  • Broder, T., Blodau, C., Biester, H., and Knorr, K. H. (2012). Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9:1479–1491.
  • Brombach, C. C., Manorut, P., Kolambage, P. P.P.-Dona, Ezzeldin, M. F., Chen, B., Corns, W. T., Feldmann, J., and Krupp, E. M. (2017). Methylmercury varies more than one order of magnitude in commercial European rice. Food Chem. 214:360–365.
  • Browne, C. L., and Fang, S. C. (1978). Uptake of mercury vapor by wheat: An assimilation model. Plant Physiol. 61:430–433.
  • Browne, C. L., and Fang, S. C. (1983). Differential uptake of mercury vapor by gramineous C3 and C4 plants. Plant Physiol. 72:1040–1042.
  • Cai, Y., Jaffé, R., and Jones, R. (1997). Ethylmercury in the soils and sediments of the Florida everglades. Environ. Sci. Technol. 31:302–305.
  • Cain, A., Disch, S., Twaroski, C., Reindl, J., and Case, C. R. (2007). Substance flow analysis of mercury intentionally used in products in the United States. J. Ind. Ecol. 11:61–75.
  • Caravati, E. M., Erdman, A. R., Christianson, G., Nelson, L. S., Woolf, A. D., Booze, L. L., Cobaugh, D. J., Chyka, P. A., Scharman, E. J., Manoguerra, A. S., and Troutman, W. G. (2008). Elemental mercury exposure: an evidence-based consensus guideline for out-of-hospital management. Clin. Toxicol. 46:1–21.
  • Carpi, A., and Lindberg, S. E. (1997). Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge. Environ. Sci. Technol. 31:2085–2091.
  • Carrasco-Gil, S., Álvarez-Fernández, A., Sobrino-Plata, J., Millán, R., Carpena-Ruiz, R. O., Leduc, D. L., Andrews, J. C., Abadía, J., and Hernández, L. E. (2011). Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ. 34:778–791.
  • Carrasco-Gil, S., Estebaranz-Yubero, M., Medel-Cuesta, D., Millán, R., and Hernández, L. E. (2012). Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil. Environ. Exp. Bot. 75:16–24.
  • Castro-González, M. I., and Méndez-Armenta, M.. (2008). Heavy metals: Implications associated to fish consumption. Environ. Toxicol. Phar. 26:263–271.
  • [CCCF] Codex Committee on Contaminants in Foods. (2016). Tenth Session: Rotterdam, The Netherlands, 4–8 April 2016: Discussion Paper on Maximum Levels for Methylmercury in Fish. Rotterdam: CCCF.
  • Ceccatelli, S., Daré, E., and Moors, M. (2010). Methylmercury-induced neurotoxicity and apoptosis. Chem. Biol. Interact. 188:301–308.
  • Čelechovská, O., Malota, L., and Zima, S. (2008). Entry of heavy metals into food chains: a 20-year comparison study in Northern Moravia (Czech Republic). Acta Vet. Brno. 77:645–652.
  • Celo, V., Lean, D. R. S., and Scott, S. L. (2006). Abiotic methylation of mercury in the aquatic environment. Sci. Total Environ. 368:126–137.
  • Cernichiari, E., Brewer, R., Myers, G. J., Marsh, D. O., Lapham, L. W., Cox, C., Shamlaye, C. F., Berlin, M., Davidson, P. W., and Clarkson, T. W. (1995). Monitoring methylmercury during pregnancy: maternal hair predicts fetal brain exposure. NeuroToxicology 16:705–710.
  • Cerveny, D., Roje, S., Turek, J., and Randak, T. (2016). Fish fin-clips as a non-lethal approach for biomonitoring of mercury contamination in aquatic environments and human health risk assessment. Chemosphere 163:290–295.
  • Chadwick, S. P., Babiarz, C. L., Hurley, J. P., and Armstrong, D. E. (2013). Importance of hypolimnetic cycling in aging of “new” mercury in a northern temperate lake. Sci. Total Environ. 448:176–188.
  • Charlet, L., Bosbach, D., and Peretyashko, T. (2002). Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study. Chem. Geol. 190:303–319.
  • Chen, B., Wu, Y., Guo, X., He, M., and Hu, B. (2015). Speciation of mercury in various samples from the micro-ecosystem of East Lake by hollow fiber-liquid-liquid-liquid microextraction-HPLC-ICP-MS. J. Anal. Atom. Spectrom. 30:875–881.
  • Chen, C. Y., Dionne, M., Mayes, B. M., Ward, D. M., Sturup, S., and Jackson, B. P. (2009). Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of maine. Environ. Sci. Technol. 43:1804–1810.
  • Cheng, C. M., Chang, Y. N., Sistani, K. R., Wang, Y. W., Lu, W. C., Lin, C. W., Dong, J. H., Hu, C. C., and W.-Pan, P. (2012). Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials. J. Air Waste. Manage. 62:139–150.
  • Chiasson-Gould, S. A., Blais, J. M., and Poulain, A. J. (2014). Dissolved organic matter kinetically controls mercury bioavailability to bacteria. Environ. Sci. Technol. 48:3153–3161.
  • Cizdziel, J. (2004). Mercury concentrations in groundwater collected from wells on and near the Nevada Test Site, USA. Bull. Environ. Contam. Tox. 72:202–210.
  • Clarkson, T. W. (1997). The toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34:369–403.
  • Clarkson, T. W. (2002). The three modern faces of mercury. Environ Health Persp 110:11–23.
  • Clarkson, T. W., Vyas, J. B., and Ballatori, N. (2007). Mechanisms of mercury disposition in the body. Am. J. Ind. Med. 50:757–764.
  • Clayden, M. G., Kidd, K. A., Chételat, J., Hall, B. D., and Garcia, E. (2014). Environmental, geographic and trophic influences on methylmercury concentrations in macroinvertebrates from lakes and wetlands across Ca (Ed.), Trace elements in soils. Chichester: Wiley.
  • Clifton II, J. C. (2007). Mercury exposure and public health. Pediatr. Clin. North Am. 54:237–269.
  • Coburn, S., Dix, B., Edgerton, E., Holmes, C. D., Kinnison, D., Liang, Q., ter Schure, A., Wang, S., and Volkamer, R. (2016). Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US. Atmos. Chem. Phys. 16:3743–3760.
  • Compeau, G. C., and Bartha, R. (1984). Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. Appl. Environ. Microb. 48:1203–1207.
  • Compeau, G. C., and Bartha, R. (1985). Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl. Environ. Microb. 50:498–502.
  • Compeau, G. C., and Bartha, R. (1987). Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments. Appl. Environ. Microb. 53:261–265.
  • Cosio, C., Flück, R., Regier, N., and Slaveykova, V. I. (2014). Effects of macrophytes on the fate of mercury in aquatic systems. Environ. Toxicol. Chem. 33:1225–1237.
  • Cossa, D., Cotté-Krief, M. H., Mason, R. P., and Bretaudeau-Sanjuan, J. (2004). Total mercury in the water column near the shelf edge of the European continental margin. Mar. Chem. 90:21–29.
  • Cotton, F. A., and Wilkinson, G. (1988). Advanced inorganic chemistry. Chichester: Wiley.
  • Covelli, S., Emili, A., Acquavita, A., Koron, N., and Faganeli, J. (2011). Benthic biogeochemical cycling of mercury in two contaminated northern Adriatic coastal lagoons. Cont. Shelf Res. 31:1777–1789.
  • Crea, F., De Stefano, C., Foti, C., Milea, D., and Sammartano, S. (2014). Chelating agents for the sequestration of Mercury(II) and Monomethyl Mercury(II). Curr. Med. Chem. 21:3819–3836.
  • Cristol, D. A., Brasso, R. L., Condon, A. M., Fovargue, R. E., Friedman, S. L., Hallinger, K. K., Monroe, A. P., and White, A. E. (2008). The movement of aquatic mercury through terrestrial food webs. Science 320:335.
  • Crump, K. L., and Trudeau, V. L. (2009). Mercury-induced reproductive impairment in fish. Environ. Toxicol. Chem. 28:895–907.
  • Cruz-Guzmán, M., Celis, R., Hermosín, M. C., Leone, P., Nègre, M., and Cornejo, J. (2003). Sorption-desorption of Lead (II) and Mercury (II) by model associations of soil colloids. Soil Sci. Soc. Am. J. 67:1378–1387.
  • Cui, L., Feng, X., Lin, C. J., Wang, X., Meng, B., Wang, X., and Wang, H. (2014). Accumulation and translocation of 198Hg in four crop species. Environ. Toxicol. Chem. 33:334–340.
  • Curren, M. S., Davis, K., Liang, C. L., Adlard, B., Foster, W. G., Donaldson, S. G., Kandola, K., Brewster, J., Potyrala, M., and Van Oostdam, J.. (2014). Comparing plasma concentrations of persistent organic pollutants and metals in primiparous women from northern and southern Canada. Sci. Total Environ. 479–480:306–318.
  • Dago, À., González, I., Ariño, C., Martínez-Coronado, A., Higueras, P., Díaz-Cruz, J. M., and Esteban, M. (2014). Evaluation of mercury stress in plants from the almadén mining district by analysis of phytochelatins and their Hg complexes. Environ. Sci. Technol. 48:6256–6263.
  • Davidson, P. W., Myers, G. J., Cox, C., Axtell, C., Shamlaye, C., Sloane-Reeves, J., Cernichiari, E., Needham, L., Choi, A., Wang, Y., Berlin, M., and Clarkson, T. W. (1998). Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: Outcomes at 66 months of age in the Seychelles child development study. JAMA 280:701–707.
  • De Oliveira, D. C. M., Silva Correia, R. R., Marinho, C. C., and Guimarães, J. R. D. (2015). Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere 127:214–221.
  • Depew, D. C., Basu, N., Burgess, N. M., Campbell, L. M., Devlin, E. W., Drevnick, P. E., Hammerschmidt, C. R., Murphy, C. A., Sandheinrich, M. B., and Wiener, J. G. (2012a). Toxicity of dietary methylmercury to fish: derivation of ecologically meaningful threshold concentrations. Environ. Toxicol. Chem. 31:1536–1547.
  • Depew, D. C., Basu, N., Burgess, N. M., Campbell, L. M., Evers, D. C., Grasman, K. A., and Scheuhammer, A. M. (2012b). Derivation of screening benchmarks for dietary methylmercury exposure for the common loon (Gavia immer): rationale for use in ecological risk assessment. Environ. Toxicol. Chem. 31:2399–2407.
  • Depew, D. C., Burgess, N. M., Anderson, M. R., Baker, R., Bhavsar, S. P., Bodaly, R. A., Eckley, C. S., Evans, M. S., Gantner, N., Graydon, J. A., Jacobs, K., LeBlanc, J. E., St. Louis, V. L., and Campbell, L. M. (2013). An overview of mercury concentrations in freshwater fish species: a national fish mercury dataset for Canada. Can. J. Fish. Aquat. Sci. 70:436–451.
  • De Simone, F., Gencarelli, C. N., Hedgecock, I. M., and Pirrone, N. (2016). A modeling comparison of mercury deposition from current anthropogenic mercury emission inventories. Environ. Sci. Technol. 50:5154–5162.
  • Devai, I., Patrick, Jr, W. H., Neue, H. U., DeLaune, R. D., Kongchum, M., and Rinklebe, J. (2005). Methyl mercury and heavy metal content in soils of rivers saale and elbe (Germany). Anal. Lett. 38:1037–1048.
  • Dias, G. M., and Edwards, G. C. (2003). Differentiating natural and anthropogenic sources of metals to the environment. Hum. Ecol. Risk Assess. 9:699–721.
  • Dickenson, C. A., Woodruff, T. J., Stotland, N. E., Dobraca, D., and Das, R. (2013). Elevated mercury levels in pregnant woman linked to skin cream from Mexico. Am. J. Obstet. Gynecol. 209:e4–e5.
  • Dietz, R., Sonne, C., Basu, N., Braune, B., O'Hara, T., Letcher, R. J., Scheuhammer, T., Andersen, M., Andreasen, C., Andriashek, D., Asmund, G., Aubail, A., Baagøe, H., Born, E. W., Chan, H. M., Derocher, A. E., Grandjean, P., Knott, K., Kirkegaard, M., Krey, A., Lunn, N., Messier, F., Obbard, M., Olsen, M. T., Ostertag, S., Peacock, E., Renzoni, A., Rigét, F. F., Skaare, J. U., Stern, G., Stirling, I., Taylor, M., Wiig, Ø., Wilson, S., and Aars, J. (2013). What are the toxicological effects of mercury in Arctic biota? Sci. Total Environ. 443:775–790.
  • Dreher, G. B., and Follmer, L. R. (2004). Mercury content of illinois soils. Water Air Soil Pollut. 156:299–315.
  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N. (2013). Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47:4967–4983.
  • Dryżałowska, A., and Falandysz, J. (2014). Bioconcentration of mercury by mushroom Xerocomus chrysenteron from the spatially distinct locations: levels, possible intake and safety. Ecotox. Environ. Saf. 107:97–102.
  • Du, S. H., and Fang, S. C. (1982). Uptake of elemental mercury vapor by C3 and C4 species. Environ. Exp. Bot. 22:437–443.
  • Dunn, C. E. (1991). Biogeochemistry in mineral exploration. In Exploration Geochemistry Workshop. Ottawa: Geological Survey of Canada Open File 2390. Geological Survey of Canada.
  • During, A., Rinklebe, J., Böhme, F., Wennrich, R., Stärk, H. J., Mothes, S., Du Laing, G., Schulz, E., and H.-Neue, U. (2009). Mercury volatilization from three floodplain soils at the Central Elbe River, Germany. Soil Sedim. Contam. 18:429–444.
  • Dutton, J., and Fisher, N. S. (2011). Salinity effects on the bioavailability of aqueous metals for the estuarine killifish Fundulus heteroclitus. Environ. Toxicol. Chem. 30:2107–2114.
  • Dutton, J., and Fisher, N. S. (2014). Modeling metal bioaccumulation and tissue distribution in killifish (Fundulus heteroclitus) in three contaminated estuaries. Environ. Toxicol. Chem. 33:89–101.
  • Eckley, C. S., Blanchard, P., McLennan, D., Mintz, R., and Sekela, M. (2015). Soil-air mercury flux near a large industrial emission source before and after closure (Flin Flon, Manitoba, Canada). Environ. Sci. Technol. 49:9750–9757.
  • [EFSA] European Food Safety Authority. (2004). Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to mercury and methylmercury in food. EFSA J. 2:34, doi:10.2903/j.efsa.2004.34.
  • Eisler, R. (2006). Mercury hazards to living organisms. Boca Raton: CRC Press.
  • Engle, M. A., Gustin, M. S., Lindberg, S. E., Gertler, A. W., and Ariya, P. A. (2005). The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates. Atmos. Environ. 39:7506–7517.
  • Environment Canada. (1995). Toxicity testing of National Contaminated Sites Remediation Program priority substances for the development of soil quality criteria for contaminated sites. Environmental Conservation Service, Evaluation and Interpretation Branch, Guidelines DivisionOttawa. Unpublished
  • Ericksen, J. A., Gustin, M. S., Schorran, D. E., Johnson, D. W., Lindberg, S. E., Coleman, J. S. (2003). Accumulation of atmospheric mercury in forest foliage. Atmos. Environ. 37:1613–1622.
  • Ericksen, J. A., Gustin, M. S., Xin, M., Weisberg, P. J., and Fernandez, G. C. J. (2006). Air-soil exchange of mercury from background soils in the United States. Sci. Total Environ. 366:851–863.
  • Eto, K. (1997). Review article: Pathology of minamata disease. Toxicol. Pathol. 25:614–623.
  • Eto, K., Takizawa, Y., Akagi, H., Haraguchi, K., Asano, S., Takahata, N., and Tokunaga, H. (1999). Differential diagnosis between organic and inorganic mercury poisoning in human cases—the pathologic point of view. Toxicol. Pathol. 27:664–671.
  • Eto, K., Tokunaga, H., Nagashima, K., and Takeuchi, T. (2002). An autopsy case of minamata disease (methylmercury poisoning)—Pathological viewpoints of peripheral nerves. Toxicol. Pathol. 30:714–722.
  • Eto, K., Marumoto, M., and Takeya, M. (2010). The pathology of methylmercury poisoning (Minamata disease): The 50th Anniversary of Japanese Society of Neuropathology. Neuropathology 30:471–479.
  • Euro Chlor. (2017). The mercury cell process. Available at http://www.eurochlor.org/the-chlorine-universe/how-is-chlorine-produced/the-mercury-cell-process.aspx. Accessed 2017 March 11.
  • Evans, R. D., Addison, E. M., Villeneuve, J. Y., MacDonald, K. S., and Joachim, D. G. (2000). Distribution of inorganic and methylmercury among tissues in mink (Mustela vison) and otter (Lutra canadensis). Environ. Res. Sec. A 84:133–139.
  • Falandysz, J., and Bielawski, L. (2007). Mercury and its bioconcentration factors in Brown Birch Scaber Stalk (Leccinum scabrum) from various sites in Poland. Food Chem. 105:635–640.
  • Falandysz, J., Zhang, J., Wang, Y., Krasińska, G., Kojta, A., Saba, M., Shen, T., Li, T., and Liu, H. (2015). Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: Accumulation, distribution and probable dietary intake. Sci. Total Environ. 537:470–478.
  • Falandysz, J. (2017). Mercury accumulation of three Lactarius mushroom species. Food Chem. 214:96–101.
  • Fang, S. C. (1978). Sorption and transformation of mercury vapor by dry soil. Environ. Sci. Technol. 12:285–288.
  • Fay, L., and Gustin, M. S. (2007). Investigation of mercury accumulation in cattails growing in constructed wetland mesocosms. Wetlands 27:1056–1065.
  • Feng, X., Dai, Q., Qiu, G., Li, G., He, L., and Wang, D. (2006). Gold mining related mercury contamination in Tongguan, Shaanxi Province, PR China. Appl. Geochem. 21:1955–1968.
  • Feng, X., Li, P., Qiu, G., Wang, S., Li, G., Shang, L., Meng, B., Jiang, H., Bai, W., Li, Z., and Fu, X. (2008). Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China. Environ. Sci. Technol. 42:326–332.
  • Fernández-Gómez, C., Drott, A., Björn, E., Díez, S., Bayona, J. M., Tesfalidet, S., Lindfors, A., and Skyllberg, U. (2013). Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a Boreal lake-wetland gradient. Environ. Sci. Technol. 47:6279–6287.
  • Fernández-Martínez, R., and Rucandio, I. (2013). Assessment of a sequential extraction method to evaluate mercury mobility and geochemistry in solid environmental samples. Ecotox. Environ. Saf. 97:196–203.
  • Ferrara, R., Maserti, B. E., and Breder, R. (1991). Mercury in abiotic and biotic compartments of an area affected by a geochemical anomaly (Mt. Amiata, Italy). Water Air Soil Pollut. 56:219–233.
  • Feyte, S., Gobeil, C., Tessier, A., and Cossa, D. (2012). Mercury dynamics in lake sediments. Geochim. Cosmochim. Acta 82:92–112.
  • Fitzgerald, W. F., Lamborg, C. H., and Hammerschmidt, C. R. (2007). Marine biogeochemical cycling of mercury. Chem. Rev. 107:641–662.
  • Fleming, E. J., Mack, E. E., Green, P. G., and Nelson, D. C. (2006). Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl. Environ. Microb. 72:457–464.
  • Fortmann, L., Gay, D., and Wirtz, K. (1978). Ethylmercury: Formation in plant tissues and relation to methylmercury formation. Washington, DC: U. S. EPA.
  • Frescholtz, T. F., Gustin, M. S., Schorran, D. E., and Fernandez, G. C. J. (2003). Assessing the source of mercury in foliar tissue of quaking aspen. Environ. Toxicol. Chem. 22:2114–2119.
  • Frey, B., and Rieder, S. R. (2013). Response of forest soil bacterial communities to mercury chloride application. Soil Biol. Biochem. 65:329–337.
  • Fritsche, J., Obrist, D., and Alewell, C. (2008). Evidence of microbial control of Hg0 emissions from uncontaminated terrestrial soils. J. Plant Nutr. Soil Sci. 171:200–209.
  • Frohne, T., Rinklebe, J., Langer, U., Du Laing, G., Mothes, S., and Wennrich, R. (2012). Biogeochemical factors affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences 9:493–507.
  • Frohne, T., and Rinklebe, J. (2013). Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air Soil Pollut. 224:1591, doi:10.1007/s11270-013-1591-4.
  • Frøslie, A., Norheim, G., Rambæk, J. P., and Steinnes, E. (1984). Levels of trace elements in liver from Norwegian moose, reindeer and red deer in relation to atmospheric deposition. Acta Vet Scand. 25:333–345.
  • Gabriel, M. C., and Williamson, D. G. (2004). Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ. Geochem. Health 26:421–434.
  • Gallego, J. R., Rodríguez-Valdés, E., Esquinas, N., Fernández-Braña, A., and Afif, E. (2016). Insights into a 20-ha multi-contaminated brownfield megasite: An environmental forensics approach. Sci. Total Environ. 563–564:683–692.
  • Garcia Bravo, A., Cosio, C., Amouroux, D., Zopfi, J., Chevalley, P. A., Spangenberg, J. E., Ungureanu, V. G., Dominik, J. (2014). Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Res. 49:391–405.
  • García-Sánchez, A., Murciego, A., Álvarez-Ayuso, E., Santa Regina, I., and Rodríguez-González, M. A.. (2009). Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain). J. Hazard Mater. 168:1319–1324.
  • Gavis, J., and Ferguson, J. F. (1972). The cycling of mercury through the environment. Water Res. 6:989–1008.
  • Gemici, Ü., Tarcan, G., Melis Somay, A., and Akar, T. (2009). Factors controlling the element distribution in farming soils and water around the abandoned Halıköy mercury mine (Beydağ, Turkey). Appl. Geochem. 24:1908–1917.
  • Gilmour, C. C., Henry, E. A., and Mitchell, R. (1992). Sulfate stimulation of mercury methylation in freshwater sediments. Environ. Sci. Technol. 26:2281–2287.
  • Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., Johs, A., Hurt, R. A., Jr., Bailey, K. L., and Elias, D. A. (2013). Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 47:11810–11820.
  • Gnamuš, A., Byrne, A. R., and Horvat, M. (2000). Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ. Sci. Technol. 34:3337–3345.
  • Gontia-Mishra, I., Sapre, S., Sharma, A., and Tiwari, S. (2016). Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J. Plant Growth Regul. 35:1000–1012.
  • Gosar, M., Šajn, R., and Biester, H. (2006). Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Sci. Total Environ. 369:150–162.
  • Graham, A. M., Aiken, G. R., and Gilmour, C. C. (2012). Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ. Sci. Technol. 46:2715–2723.
  • Grandjean, P., Weihe, P., White, R. F., Debes, F., Araki, S., Yokoyama, K., Murata, K., Sørensen, N., Dahl, R., and Jørgensen, P. J. (1997). Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol. Teratol. 19:417–428.
  • Grandjean, P., Satoh, H., Murata, K., and Eto, K. (2010). Adverse effects of methylmercury: environmental health research implications. Environ. Health Persp. 118:1137–1145.
  • Grandjean, P., and Herz, K. T. (2015). Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic. J. Trace Elem. Med. Biol. 31:130–134.
  • Gratz, L. E., Ambrose, J. L., Jaffe, D. A., Shah, V., Jaeglé, L., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Selin, N. E., Song, S., Zhou, X., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Flocke, F. M., Campos, T. L., Apel, E., Hornbrook, R., Blake, N. J., Hall, S., Tyndall, G. S., Reeves, M., Stechman, D., and Stell, M. (2015). Oxidation of mercury by bromine in the subtropical Pacific free troposphere. Geophys. Res. Lett. 42:10,494–510,502.
  • Gray, J. E., Crock, J. G., and Fey, D. L. (2002). Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Appl. Geochem. 17:1069–1079.
  • Gray, J. E., Theodorakos, P. M., Fey, D. L., and Krabbenhoft, P. (2015). Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ. Geochem. Health 37:35–48.
  • Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W. M., Kelly, C. A., Hall, B. D., and Mowat, L. D. (2008). Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environ. Sci. Technol. 42:8345–8351.
  • Graydon, J. A., St. Louis, V. L., Lindberg, S. E., Sandilands, K. A., Rudd, J. W. M., Kelly, C. A., Harris, R., Tate, M. T., Krabbenhoft, D. P., Emmerton, C. A., Asmath, H., and Richardson, M. (2012). The role of terrestrial vegetation in atmospheric Hg deposition: Pools and fluxes of spike and ambient Hg from the METAALICUS experiment. Global Biogeochem. Cycles 26:GB1022, doi:10.1029/2011GB004031.
  • Grigal, D. F. (2003). Mercury sequestration in forests and peatlands: A review. J. Environ. Qual. 32:393–405.
  • Grimaldi, C., Grimaldi, M., and Guedron, S. (2008). Mercury distribution in tropical soil profiles related to origin of mercury and soil processes. Sci. Total Environ. 401:121–129.
  • Gruba, P., Błońska, E., and Lasota, J. (2014). Predicting the concentration of total mercury in mineral horizons of forest soils varying in organic matter and mineral fine fraction content. Water Air Soil Pollut. 225:1924, doi:10.1007/s11270-014-1924-y.
  • Gu, B., Bian, Y., Miller, C. L., Dong, W., Jiang, X., and Liang, L. (2011). Mercury reduction and complexation by natural organic matter in anoxic environments. Proc. Natl. Acad. Sci. USA 108:1479–1483.
  • Gudbrandsen, M., Sverdrup, L. E., Aamodt, S., and Stenersen, J. (2007). Short-term pre-exposure increases earthworm tolerance to mercury. Eur. J. Soil Biol. 43:S261–S267.
  • Guédron, S., Grangeon, S., Jouravel, G., Charlet, L., and Sarret, G. (2013). Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble, France): contribution of canopy uptake. Sci. Total Environ. 445–446:356–364.
  • Gustin, M. S. (2003). Are mercury emissions from geologic sources significant? A status report. Sci. Total Environ. 304:153–167.
  • Gustin, M. S., Biester, H., and Kim, C. S. (2002). Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmos. Environ. 36:3241–3254.
  • Gustin, M. S., and Stamenkovic, J. (2005). Effect of watering and soil moisture on mercury emissions from soils. Biogeochemistry 76:215–232.
  • Gustin, M. S., Lindberg, S. E., and Weisberg, P. J. (2008). An update on the natural sources and sinks of atmospheric mercury. Appl. Geochem. 23:482–493.
  • Gustin, M. S. (2012). Chapter 13: Exchange of mercury between the atmosphere and terrestrial ecosystems. In Liu, G., Cai, Y., and O'Driscoll, N. (Eds.), Environmental chemistry and toxicology of mercury. Hoboken, NJ: Wiley.
  • Gworek, B., Bemowska-Kałabun, O., Kijeńska, M., and Wrzosek-Jakubowska, J.. (2016). Mercury in marine and oceanic waters—a review. Water Air Soil Pollut. 227:371, doi:10.1007/s11270-016-3060-3.
  • Hall, C. M., Higueras, P. L., Kesler, S. E., Lunar, R., Dong, H., and Halliday, A. N. (1997a). Dating of alteration episodes related to mercury mineralization in the Almadén district, Spain. Earth Planet Sci. Lett. 148:287–298.
  • Hall, B. D., Bodaly, R. A., Fudge, R. J. P., Rudd, J. W. M., and Rosenberg, D. M. (1997b). Food as the dominant pathway of methylmercury uptake by fish. Water Air Soil Pollut. 100:13–24.
  • Hamann, C. R., Boonchai, W., Wen, L., Nishijima Sakanashi, E., Chu, C. Y., Hamann, K., Hamann, C. P., Sinniah, K., and Hamann, D. (2014). Spectrometric analysis of mercury content in 549 skin-lightening products: is mercury toxicity a hidden global health hazard? J. Am. Acad. Dermatol. 70:281–287.
  • Hamelin, S., Amyot, M., Barkay, T., Wang, Y., and Planas, D. (2011). Methanogens: principal methylators of mercury in lake periphyton. Environ. Sci. Technol. 45:7693–7700.
  • Hammerschmidt, C. R., and Bowman, K. L. (2012). Vertical methylmercury distribution in the subtropical North Pacific Ocean. Mar. Chem. 132–133:77–82.
  • Han, F. X. (2007). Section II: Biogeochemistry of trace elements in arid environments. In Alloway, B. J., and Trevors, J. T., eds. Biogeochemistry of Trace Elements in Arid Environments. Dordrecht: Springer-Verlag.
  • Hang, X., Gan, F., Wang, J., Chen, X., Chen, Y., Wang, H., Zhou, J., and Du, C. (2016). Soil mercury accumulation and transference to different crop grains. Hum. Ecol. Risk Assess. 22:1242–1252.
  • Hansen, C. L., Zwolinski, G., Martin, D., and Williams, J. W. (1984). Bacterial removal of mercury from sewage. Biotechnol. Bioeng. 26:1330–1333.
  • [HDOH] Hawai'i Department of Health. (2012). Hawaiian Islands soil metal background evaluation report. Honolulu: HDOH.
  • Hazen, R. M., Golden, J., Downs, R. T., Hystad, G., Grew, E. S., Azzolini, D., and Sverjensky, D. A. (2012). Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am. Miner. 97:1013–1042.
  • Heinz, G. H., Hoffman, D. J., Klimstra, J. D., and Stebbins, K. R. (2010). Enhanced reproduction in mallards fed a low level of methylmercury: an apparent case of hormesis. Environ. Toxicol. Chem. 29:650–653.
  • Higueras, P., Oyarzun, R., Biester, H., Lillo, J., and Lorenzo, S. (2003). A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. J. Geochem. Explor. 80:95–104.
  • Higueras, P., Oyarzun, R., Lillo, J., Sánchez-Hernández, J. C., Molina, J. A., Esbrí, J. M., and Lorenzo, S. (2006). The Almadén district (Spain): anatomy of one of the world's largest Hg-contaminated sites. Sci. Tot. Environ. 356:112–124.
  • Higueras, P., Oyarzun, R., Kotnik, J., Esbrí, J. M., Martínez-Coronado, A., Horvat, M., López-Berdonces, M. A., Llanos, W., Vaselli, O., Nisi, B., Mashyanov, N., Ryzov, V., Spiric, Z., Panichev, N., McCrindle, R., Feng, X., Fu, X., Lillo, J., Loredo, J., García, M. E., Alfonso, P., Villegas, K., Palacios, S., Oyarzún, J., Maturana, H., Contreras, F., Adams, M., Ribeiro-Guevara, S., Niecenski, L. F., Giammanco, S., and Huremović, J. (2014). A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts. Environ. Geochem. Hlth. 36:713–734.
  • Higueras, P. L., Amorós, J.Á., Esbrí, J. M., Pérez, C.-de-los-Reyes, López-Berdonces, M. A., and García-Navarro, F. J.. (2015). Mercury transfer from soil to olive trees. A comparison of three different contaminated sites. Environ. Sci. Pollut. R., doi:10.1007/s11356-015-4357-2.
  • Hines, M. E., Poitras, E. N., Covelli, S., Faganeli, J., Emili, A., Žižek, S., and Horvat, M. (2012). Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado Lagoon, Italy). Estuar. Coast. Shelf S 113:85–95.
  • Hintelmann, H. (2010). Chapter 11: Organomercurials. Their formation and pathways in the environment. In Sigel, A., Sigel, H., and Sigel, R. K. O. eds. Metal Ions in Life Sciences: Volume 7: Organometallics in Environment and Toxicology. Cambridge: Royal Society of Chemistry.
  • Hodson, P. V., Norris, K., Berquist, M., Campbell, L. M., and Ridal, J. J. (2014). Mercury concentrations in amphipods and fish of the Saint Lawrence River (Canada) are unrelated to concentrations of legacy mercury in sediments. Sci. Tot. Environ. 494–495:218–228.
  • Hohl, H., and Varma, A. (2010). Chapter 1: Soil: The living matrix. In Sherameti, I., and Varma, A. eds. Soil Heavy Metals. Berlin: Springer-Verlag.
  • Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F. (2010). Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 10:12037–12057.
  • Horowitz, H. M., Jacob, D. J., Amos, H. M., Streets, D. G., and Sunderland, E. M. (2014). Historical mercury releases from commercial products: global environmental implications. Environ. Sci. Technol. 48:10242–10250.
  • Houston, M. C. (2011). Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J. Clin. Hypertens. 13:621–627.
  • Hrenchuk, L. E., Blanchfield, P. J., Paterson, M. J., and Hintelmann, H. (2012). Dietary and waterborne mercury accumulation by yellow perch: a field experiment. Environ. Sci. Technol. 46:509–516.
  • Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., and Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ. Sci. Technol. 47:2441–2456.
  • Huang, Z. Y., Qin, D. P., Zeng, X. C., Li, J., Cao, Y. L., and Cai, C. (2012). Species distribution and potential bioavailability of exogenous Hg (II) in vegetable-growing soil investigated with a modified Tessier scheme coupled with isotopic labeling technique. Geoderma 189–190:243–249.
  • Hursh, J. B., Clarkson, T. W., Cherian, M. G., Vostal, J. J., and Mallie, R. V. (1976). Clearance of mercury (Hg-197, Hg-203) vapor inhaled by human subjects. Arch. Environ. Health 31:302–309.
  • Hursh, J. B., Clarkson, T. W., Miles, E. F., and Goldsmith, L. A. (1989). Percutaneous absorption of mercury vapor by man. Arch. Environ. Health 44:120–127.
  • Hylander, L. D., and Meili, M. (2003). 500 years of mercury production: Global annual inventory by region until 2000 and associated emissions. Sci. Tot. Environ. 304:13–27.
  • [IMA] International Mineralogical Association. (2014). IMA Database of Mineral Properties. Available at http://rruff.info/ima/. Accessed 2014 April 18.
  • [ISO] International Organization for Standardization. (2008). Soil quality—Extraction of trace elements from soil using ammonium nitrate solution (ISO 19730:2008). Geneva: ISO.
  • Jackson, A. K., Evers, D. C., Etterson, M. A., Condon, A. M., Folsom, S. B., Detweiler, J., Schmerfeld, J., and Cristol, D. A. (2011). Mercury exposure affects the reproductive success of a free-living terrestrial songbird, the Carolina Wren (Thryothorus ludovicianus). Auk 128:759–769.
  • Jackson, T. A. (1998). Chapter 5: Mercury in aquatic ecosystems. In Langston, W. J., and Bebianno, M. J. eds. Metal Metabolism in Aquatic Environments. London: Chapman & Hall.
  • Jackson, T. A. (2013). Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from Lake Ontario as related to pollution history and biogeochemical processes. Chem. Geol. 355:88–102.
  • Jasinski, S. M. (1995). The materials flow of mercury in the United States. Resour. Conserv. Recyl. 15:145–179.
  • Javot, H., and Maurel, C. (2002). The role of aquaporins in root water uptake. Ann. Bot. London 90:301–313.
  • Jayasena, N., Frederick, P. C., and Larkin, I. L. V. (2011). Endocrine disruption in white ibises (Eudocimus albus) caused by exposure to environmentally relevant levels of methylmercury. Aquat. Toxicol. 105:321–327.
  • [JECFA] Joint FAO/WHO Expert Committee on Food Additives. (2003). Sixty-first meeting: Rome, 10–19 June 2003: Summary and Conclusions. Rome: JECFA.
  • JECFA. (2010). Seventy-second meeting: Rome, 16–25 February 2010: Summary and Conclusions. Rome: JECFA.
  • Jeremiason, J. D., Engstrom, D. R., Swain, E. B., Nater, E. A., Johnson, B. M., Almendinger, J. E., Monson, B. A., and Kolka, R. K. (2006). Sulfate addition increases methylmercury production in an experimental wetland. Environ. Sci. Technol. 40:3800–3806.
  • Jernelöv, A. (1972). Methylation by microorganisms in fish slime. In Hartung, R., and Dinman, B. D. eds. Environmental Mercury Contamination. Ann Arbor Science. Publishers Inc., Ann Arbor.
  • Jernelöv, A., and Wennergren, G. (1980). Studies of concentrations of methyl mercury in sediments from St. Clair system and rate of biological methylation in incubated samples of sediments. Stockholm: Swedish Water and Pollution Research Institute.
  • Jiménez-Moreno, M., Perrot, V., Epov, V. N., Monperrus, M., and Amouroux, D. (2013). Chemical kinetic isotope fractionation of mercury during abiotic methylation of Hg(II) by methylcobalamin in aqueous chloride media. Chem. Geol. 336:26–36.
  • Johnson, W. P., Swanson, N., Black, B., Rudd, A., Carling, G., Fernandez, D. P., Luft, J., Van Leeuwen, J., and Marvin-DiPasquale, M.. (2015). Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA. Sci. Tot. Environ. 511:489–500.
  • Jones, T. A., Chumchal, M. M., Drenner, R. W., Timmins, G. N., and Nowlin, W. H. (2013). Bottom-up nutrient and top-down fish impacts on insect-mediated mercury flux from aquatic ecosystems. Environ. Toxicol. Chem. 32:612–618.
  • Jonsson, S., Skyllberg, U., and Björn, E. (2010). Substantial emission of gaseous monomethylmercury from contaminated water−sediment microcosms. Environ. Sci. Technol. 44:278–283.
  • Jonsson, S., Mazrui, N. M., and Mason, R. P. (2016). Dimethylmercury formation mediated by inorganic and organic reduced sulfur surfaces. Sci. Rep. 6:27958, doi:10.1038/srep27958.
  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Boca Raton: CRC Press.
  • Kabata-Pendias, A., and Szteke, B. (2015). Trace elements in abiotic and biotic environments. Boca Raton: CRC Press.
  • Kaplan, D. I., Knox, A. S., and Myers, J. (2002). Mercury geochemistry in wetland and its implications for in situ remediation. J. Environ. Eng-ASCE 128:723–732.
  • Karagas, M. R., Choi, A. L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Grandjean, P., and Korrick, S. (2012). Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Persp. 120:799–806.
  • Karimi, R., Chen, C. Y., Pickhardt, P. C., Fisher, N. S., and Folt, C. L. (2007). Stoichiometric controls of mercury dilution by growth. Proc. Natl. Acad. Sci. USA 104:7477–7482.
  • Katsuma, A., Hinoshita, F., Masumoto, S., Hagiwara, A., and Kimura, A. (2014). Acute renal failure following exposure to metallic mercury. Clin. Nephrol. 82:73–76.
  • Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., and Mason, R. P. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Appl. Environ. Microb. 72:7919–7921.
  • Kerndorff, H., and Schnitzer, M. (1980). Sorption of metals on humic acid. Geochim. Cosmochim. Ac. 44:1701–1708.
  • Kidd, K., Clayden, M., and Jardine, T. (2012). Chapter 14: Bioaccumulation and biomagnification of mercury through food webs. In Liu, G., Cai, Y., and O'Driscoll, N. eds. Environmental Chemistry and Toxicology of Mercury. Hoboken: Wiley.
  • Kieber, R. J., Parler, N. E., Skrabal, S. A., and Willey, J. D. (2008). Speciation and photochemistry of mercury in rainwater. J. Atmos. Chem. 60:153–168.
  • Kim, K. H., Lindberg, S. E., and Meyers, T. P. (1995). Micrometeorological measurements of mercury vapor fluxes over background forest soils in eastern Tennessee. Atmos. Environ. 29:267–282.
  • King, J. K., Kostka, J. E., Frischer, M. E., and Saunders, F. M. (2000). Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl. Environ. Microb. 66:2430–2437.
  • Klinck, J., Dunbar, M., Brown, S., Nichols, J., Winter, A., Hughes, C., and Playle, R. C. (2005). Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 72:161–175.
  • Knipfer, T, Besse, M., Verdeil, J. L., and Fricke, W. (2011). Aquaporin-facilitated water uptake in barley (Hordeum vulgare L.) roots. J. Exp. Bot. 62:4115–4126.
  • Kocman, D., Horvat, M., and Kotnik, J. (2004). Mercury fractionation in contaminated soils from the Idrija mercury mine region. J. Environ. Monitor. 6:696–703.
  • Kodamatani, H., and Tomiyasu, T. (2013). Selective determination method for measurement of methylmercury and ethylmercury in soil/sediment samples using high-performance liquid chromatography-chemiluminescence detection coupled with simple extraction technique. J. Chromatogr. A 1288:155–159.
  • Koelsch, F. (1937). Gesundheitsschädigungen durch organische Quecksilberverbindungen. Arch. Gewerbepathol. Gewerbehyg. 8:113–116.
  • Kotnik, J., Horvat, M., Tessier, E., Ogrinc, N., Monperrus, M., Amouroux, D., Fajon, V., Gibičar, D., Žižek, S., Sprovieri, F., and Pirrone, N. (2007). Mercury speciation in surface and deep waters of the Mediterranean Sea. Mar. Chem. 107:13–30.
  • Krupp, E. M., Mestrot, A., Wielgus, J., Meharg, A. A., and Feldmann, J. (2009). The molecular form of mercury in biota: identification of novel mercury peptide complexes in plants. Chem. Commun. 28:4257–4259.
  • Küpper, H., and Andresen, E. (2016). Mechanisms of metal toxicity in plants. Metallomics 8:269–285.
  • Kwon, S. Y., Blum, J. D., Chirby, M. A., and Chesney, E. J. (2013). Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environ. Toxicol. Chem. 32:2322–2330.
  • Kyllönen, K., Hakola, H., Hellén, H., Korhonen, M., and Verta, M. (2012). Atmospheric mercury fluxes in a southern boreal forest and wetland. Water Air Soil Pollut. 223:1171–1182.
  • Lacerda, L. D. (1997). Contaminação por mercúrio no Brasil: fontes industriais vs garimpo de ouro. Quim Nova 20:196–199.
  • Lacerda, L. D., and Salomons, W. (1998). Mercury from gold and silver mining: A chemical time bomb? Berlin: Springer-Verlag.
  • Laird, B. D., Shade, C., Gantner, N., Chan, H. M., and Siciliano, S. D. (2009). Bioaccessibility of mercury from traditional northern country foods measured using an in vitro gastrointestinal model is independent of mercury concentration. Sci. Tot. Environ. 407:6003–6008.
  • Lamborg, C. H., Yiğiterhan, O., Fitzgerald, W. F., Balcom, P. H., Hammerschmidt, C. R., and Murray, J. (2008). Vertical distribution of mercury species at two sites in the Western Black Sea. Mar. Chem. 111:77–89.
  • Laurier, F. J. G., Mason, R. P., Gill, G. A., and Whalin, L. (2004). Mercury distributions in the North Pacific Ocean—20 years of observations. Mar. Chem. 90:3–19.
  • Lavoie, R. A., Hebert, C. E., Rail, J. F., Braune, B. M., Yumvihoze, E., Hill, L. G., and Lean, D. R. S. (2010). Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis. Sci. Tot. Environ. 408:5529–5539.
  • Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., and Campbell, L. M. (2013). Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ. Sci. Technol. 47:13385–13394.
  • Lazarus, M., Sekovanić, A., Reljić, S., Kusak, J., Kovačić, J., Orct, T., Jurasović, J., and Huber, Đ. (2014). Selenium in brown bears (Ursus arctos) from Croatia: Relation to cadmium and mercury. J. Environ. Sci. Health A 49:1392–1401.
  • Lech, T., and Goszcz, H. (2006). Poisoning from aspiration of elemental mercury. Clin. Toxicol. 44:333–336.
  • Lechler, P. J., Miller, J. R., Hsu, L. C., and Desilets, M. O. (1997). Mercury mobility at the Carson river superfund site, west-central Nevada, USA: Interpretation of mercury speciation data in mill tailings, soils, and sediments. J. Geochem. Explor. 58:259–267.
  • Lee, Y. H., and Iverfeldt, Å. (1991). Measurement of methylmercury and mercury in run-off, lake and rain waters. Water Air Soil Pollut. 56:309–321.
  • Lehnherr, I. (2014). Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environ. Rev. 22:229–243.
  • Leng, G., Chen, W., and Wang, Y. (2015). Speciation analysis of mercury in sediments using ionic-liquid-based vortex-assisted liquid-liquid microextraction combined with high-performance liquid chromatography and cold vapor atomic fluorescence spectrometry. J. Sep. Sci. 38:2684–2691.
  • Leopold, K., Foulkes, M., and Worsfold, P. (2010). Methods for the determination and speciation of mercury in natural waters—a review. Anal. Chim. Acta 663:127–138.
  • Li, G., Feng, X., Qiu, G., Bi, X., Li, Z., Zhang, C., Wang, D., Shang, L., and Guo, Y. (2008). Environmental mercury contamination of an artisanal zinc smelting area in Weining County, Guizhou, China. Environ. Pollut. 154:21–31.
  • Li, P., Feng, X., Qiu, G. L., Shang, L. H., and Li, Z. G. (2009). Mercury pollution in Asia: a review of the contaminated sites. J. Hazard. Mater. 168:591–601.
  • Li, P., Feng, X., Chan, H. M., Zhang, X., and Du, B. (2015). Human body burden and dietary methylmercury intake: The relationship in a rice-consuming population. Environ. Sci. Technol. 49:9682–9689.
  • Li, Y., Sun, H., Li, H., Yang, L., Ye, B., and Wang, W. (2013). Dynamic changes of rhizosphere properties and antioxidant enzyme responses of wheat plants (Triticum aestivum L.) grown in mercury-contaminated soils. Chemosphere 93:972–977.
  • Liang, P., Lam, C. L., Chen, Z., Wang, H. S., Shi, J. B., Wu, S. C., Wang, W. X., Zhang, J., Wang, H., and M.-Wong, H. (2013). Formation and distribution of methylmercury in sediments at a mariculture site: a mesocosm study. J. Soil Sediment 13:1301–1308.
  • Liao, L., Selim, H. M., and DeLaune, R. D.. (2009). Mercury adsorption-desorption and transport in soils. J. Environ. Qual. 38:1608–1616.
  • Lin, C. C., Yee, N., and Barkay, T.. (2012a. Chapter 5: Microbial transformations in the mercury cycle. In Liu, G., Cai, Y., and O'Driscoll, N. eds. Environmental Chemistry and Toxicology of Mercury. Hoboken: Wiley.
  • Lin, C. J., Gustin, M. S., Singhasuk, P., Eckley, C., and Miller, M. (2010). Empirical models for estimating mercury flux from soils. Environ. Sci. Technol. 44:8522–8528.
  • Lin, C. J., Singhasuk, P., and Pehkonen, S. O. (2012b. Chapter 4: Atmospheric chemistry of mercury. In Liu, G., Cai, Y., and O'Driscoll, N. eds. Environmental Chemistry and Toxicology of Mercury. Hoboken: Wiley.
  • Lin, J. L., and P.-Lim, S. (1993). Massive oral ingestion of elemental mercury. Clin. Toxicol. 31:487–492.
  • Lin, Y., Guo, M., and Gan, W. (1997). Mercury pollution from small gold mines in China. Water Air Soil Pollut. 97:233–239.
  • Lindberg, S. E., Kim, K. H., Meyers, T. P., and Owens, J. G. (1995). Micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor: Tests over contaminated soils. Environ. Sci. Technol. 29:126–135.
  • Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., and Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO 36:19–33.
  • Liu, D., Wang, X., Chen, Z., Xu, H., and Wang, Y. (2010). Influence of mercury on chlorophyll content in winter wheat and mercury bioaccumulation. Plant Soil Environ. 56:139–143.
  • Liu, G., Cabrera, J., Allen, M., and Cai, Y. (2006). Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Sci. Tot. Environ. 369:384–392.
  • Liu, P., Yin, L., Deng, X., Wang, S., Tanaka, K., and Zhang, S. (2014). Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J. Exp. Bot. 65:4747–4756.
  • Llop, S., Murica, M., Aguinagalde, X., Vioque, J., Rebagliato, M., Cases, A., Iñiguez, C., Lopez-Espinosa, M. J., Amurrio, A., Navarrete-Muñoz, E. M., and Ballester, F. (2014). Exposure to mercury among Spanish preschool children: trend from birth to age four. Environ. Res. 132:83–92.
  • Lock, K., and Janssen, C. R. (2001). Ecotoxicity of mercury to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Biol. Fert. Soils 34:219–221.
  • Lodenius, M. (2013). Use of plants for biomonitoring of airborne mercury in contaminated areas. Environ. Res. 125:113–123.
  • Lohren, H., Bornhorst, J., Fitkau, R., Pohl, G., Galla, H. J., and Schwerdtle, T. (2016). Effects on and transfer across the blood-brain barrier in vitro—Comparison of organic and inorganic mercury species. BMC Pharmacol. Toxicol. 17:63.
  • Lokken, J. A., Finstad, G. L., Dunlap, K. L., and Duffy, L. K. (2009). Mercury in lichens and reindeer hair from Alaska: 2005–2007 pilot survey. Polar Rec. 45:368–374.
  • Lomonte, C., Doronila, A., Gregory, D., Baker, A. J. M., and Kolev, S. D. (2011). Chelate-assisted phytoextraction of mercury in biosolids. Sci. Tot. Environ. 409:2685–2692.
  • Loredo, J., Ordóñez, A., Gallego, J. R., Baldo, C., and García-Iglesias, J.. (1999). Geochemical characterisation of mercury mining spoil heaps in the area of Mieres (Asturias, northern Spain). J. Geochem. Explor. 67:377–390.
  • Lovisolo, C., and Schubert, A. (2006). Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: evidence from a whole-plant approach. New Phytol. 172:469–478.
  • Lovley, D. R. (1993). Dissimilatory metal reduction. Ann. Rev. Microbiol. 47:263–290.
  • Ludwicki, J. K. (1990). In vitro methylation and demethylation of mercury compounds by the intestinal contents. B Environ. Contam. Toxicol. 44:357–362.
  • Lusilao-Makiese, J. G., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., Weiersbye, I., and Cukrowska, E. M. (2016). Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa. Environ. Monit. Assess. 188:47, doi:10.1007/s10661-015-5059-4.
  • Lyman, S. N., and Jaffe, D. A. (2012). Formation and fate of oxidized mercury in the upper troposphere and lower stratosphere. Nat. Geosci. 5:114–117.
  • Lynam, M. M., Dvonch, J. T., Hall, N. L., Morishita, M., and Barres, J. A. (2014). Spatial patterns in wet and dry deposition of atmospheric mercury and trace elements in central Illinois, USA. Environ. Sci. Pollut. R 21:4032–4043.
  • Madenjian, C. P., Blanchfield, P. J., Hrenchuk, L. E., and Van Walleghem, J. L. A.. (2014a). Mercury elimination rates for adult northern pike Esox lucius: Evidence for a sex effect. B Environ. Contam. Toxicol. 93:144–148.
  • Madenjian, C. P., Johnson, N. S., Siefkes, M. J., Dettmers, J. M., Blum, J. D., and Johnson, M. W. (2014b). Mercury accumulation in sea lamprey (Petromyzon marinus) from Lake Huron. Sci. Tot. Environ. 470–471:1313–1319.
  • Maggio, A., and Joly, R. J. (1995). Effects of mercuric chloride on the hydraulic conductivity of tomato root systems (Evidence for a Channel-Mediated Water Pathway). Plant Physiol. 109:331–335.
  • Manceau, A., Enescu, M., Simionovici, A., Lanson, M., Gonzalez-Rey, M., Rovezzi, M., Tucoulou, R., Glatzel, P., Nagy, K. L., and J.-Bourdineaud, P. (2016). Chemical forms of mercury in human hair reveal sources of exposure. Environ. Sci. Technol. 50:10721–10729.
  • Mao, Y., Yin, Y., Li, Y., Liu, G., Feng, X., Jiang, G., and Cai, Y. (2010). Occurrence of monoethylmercury in the Florida Everglades: Identification and verification. Environ. Pollut. 158:3378–3384.
  • Martinez-Finley, E. J., and Aschner, M. (2014). Recent advances in mercury research. Curr. Environ. Health Rpt 1:163–171.
  • Mason, R. P., and Fitzgerald, W. F. (1993). The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep-Sea Res Pt I 40:1897–1924.
  • Mason, R. P., Reinfelder, J. R., and Morel, F. M. M. (1996). Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol. 30:1835–1845.
  • Mason, R. P., Rolfhus, K. R., and Fitzgerald, W. F. (1998). Mercury in the North Atlantic. Mar. Chem. 61:37–53.
  • Mason, R. P., and Sullivan, K. A. (1999). The distribution and speciation of mercury in the South and equatorial Atlantic. Deep-Sea Res Pt II 46:937–956.
  • Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg, C. H., Soerensen, A. L., and Sunderland, E. M. (2012). Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 119:101–117.
  • Matsuyama, A., Liya, Q., Yasutake, A., Yamaguchi, M., Aramaki, R., Xiaojie, L., Pin, J., Li, L., Mei, L., Yumin, A., and Yasuda, Y. (2004). Distribution of methylmercury in an area polluted by mercury containing wastewater from an organic chemical factory in China. B Environ. Contam. Toxicol. 73:846–852.
  • Matsuyama, A., Yano, S., Hisano, A., Kindaichi, M., Sonoda, I., Tada, A., and Akagi, H. (2016). Distribution and characteristics of methylmercury in surface sediment in Minamata Bay. Mar. Pollut. Bull. 109:378–385.
  • Matthews, D. A., Babcock, D. B., Nolan, J. G., Prestigiacomo, A. R., Effler, S. W., Driscoll, C. T., Todorova, S. G., and Kuhr, K. M. (2013). Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY. Environ. Res. 125:52–60.
  • Maurel, C., Verdoucq, L., Luu, D. T., and Santoni, V. (2008). Plant aquaporins: Membrane channels with multiple integrated functions. Ann. Rev. Plant Biol. 59:595–624.
  • Mazer-Amirshahi, M., Bleecker, M. L., and Barrueto, F. Jr. (2013). Intraperitoneal elemental mercury exposure from a mercury-weighted bougie. J. Med. Toxicol. 9:270–273.
  • Mazur, M. E. E., Eckley, C. S., and Mitchell, C. P. J. (2015). Susceptibility of soil bound mercury to gaseous emission as a function of source depth: An enriched isotope tracer investigation. Environ. Sci. Technol. 49:9143–9149.
  • McGrew, A. K., Ballweber, L. R., Moses, S. K., Stricker, C. A., Beckmen, K. B., Salman, M. D., and O'Hara, T. M.. (2014). Mercury in gray wolves (Canis lupus) in Alaska: Increased exposure through consumption of marine prey. Sci. Tot. Environ. 468–469:609–613.
  • McKee, E. H., Noble, D. C., and Vidal, C. (1986). Timing of volcanic and hydrothermal activity, Huancavelica mercury district, Peru. Econ. Geol. 81:489–492.
  • Megaritis, A. G., Murphy, B. N., Racherla, P. N., Adams, P. J., and Pandis, S. N. (2014). Impact of climate change on mercury concentrations and deposition in the eastern United States. Sci. Tot. Environ. 487:299–312.
  • Meija, J., Yang, L., Sturgeon, R. E., and Mester, Z. (2010). Certification of natural isotopic abundance inorganic mercury reference material NIMS-1 for absolute isotopic composition and atomic weight. J. Anal. Atom Spectrom 25:384–389.
  • Meili, M. (1997). Chapter 2: Mercury in lakes and rivers. In Sigel, A., and Sigel, H. eds. Metal Ions in Biological Systems. Volume 34. Mercury and Its Effects on Environment and Biology. New York: Marcel Dekker, Inc..
  • Melgar, M. J., Alonso, J., García, M. A. (2009). Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Sci. Tot. Environ. 407:5328–5334.
  • Millhollen, A. G., Gustin, M. S., and Obrist, D.. (2006a). Foliar mercury accumulation and exchange for three tree species. Environ. Sci. Technol. 40:6001–6006.
  • Millhollen, A. G., Obrist, D., and Gustin, M. S. (2006b). Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil. Chemosphere 65:889–897.
  • Mitchell, C. P. J., and Gilmour, C. C. (2008). Methylmercury production in a Chesapeake Bay salt marsh. J. Geophys. Res. 113:G00C04, doi:10.1029/2008JG000765.
  • Mitkus, R. J., King, D. B., Walderhaug, M. O., and Forshee, R. A. (2014). A comparative pharmacokinetic estimate of mercury in U. S. Infants following yearly exposures to inactivated influenza vaccines containing thimerosal. Risk. Anal. 34:735–750.
  • Moingt, M., Lucotte, M., Paquet, S., and Ghaleb, B. (2014). Deciphering the impact of land-uses on terrestrial organic matter and mercury inputs to large boreal lakes of central Québec using lignin biomarkers. Appl. Geochem. 41:34–48.
  • Moore, C., and Carpi, A. (2005). Mechanisms of the emission of mercury from soil: Role of UV radiation. J. Geophys. Res. 110:D24302, doi:10.1029/2004JD005567.
  • Moore, C. W., Obrist, D., and Luria, M. (2013). Atmospheric mercury depletion events at the Dead Sea: Spatial and temporal aspects. Atmos. Environ. 69:231–239.
  • Morel, F. M. M., Kraepiel, A. M. L., Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Ann. Rev. Ecol. Syst. 29:543–566.
  • Motts, J. A., Shirley, D. L., Silbergeld, E. K., and Nyland, J. F. (2014). Novel biomarkers of mercury-induced autoimmune dysfunction: A cross-sectional study in Amazonian Brazil. Environ. Res. 132:12–18.
  • Munthe, J., Bodaly, R. A., Branfireun, B. A., Driscoll, C. T., Gilmour, C. C., Harris, R., Horvat, M., Lucotte, M., and Malm, O. (2007). Recovery of mercury-contaminated fisheries. AMBIO 36:33–44.
  • Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C. F., Palumbo, D., Cernichiari, E., Sloane-Reeves, J., Wilding, G. E., Kost, J., Huang, L. S., and Clarkson, T. W. (2003). Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet 361:1686–1692.
  • Nagase, H., Ose, Y., Sato, T., and Ishikawa, T. (1984). Mercury methylation by compounds in humic material. Sci. Tot. Environ. 32:147–156.
  • Nakamura, M., Hachiya, N., Murata, K., Nakanishi, I., Kondo, T., Yasutake, A., Miyamoto, K., Ser, P. H., Omi, S., Furusawa, H., Watanabe, C., Usuki, F., and Sakamoto, M. (2014). Methylmercury exposure and neurological outcomes in Taiji residents accustomed to consuming whale meat. Environ. Int. 68:25–32.
  • Nasr, M., and Arp, P. A. (2011). Hg concentrations and accumulations in fungal fruiting bodies, as influenced by forest soil substrates and moss carpets. Appl. Geochem. 26:1905–1917.
  • Nielsen Kudsk, F. (1965). Absorption of mercury vapour from the respiratory tract in man. Acta. Pharmacol. Toxicol. 23:250–262.
  • Nishizono, H., Kubota, K., Suzuki, S., and Ishii, F. (1989). Accumulation of heavy metals in cell walls of Polygonum cuspidatum roots from metalliferous habitats. Plant Cell Physiol. 30:595–598.
  • Niu, Z., Zhang, X., Wang, Z., and Ci, Z. (2011). Field controlled experiments of mercury accumulation in crops from air and soil. Environ. Pollut. 159:2684–2689.
  • Niu, Z., Zhang, X., Wang, S., Ci, Z., Kong, X., and Wang, Z. (2013). The linear accumulation of atmospheric mercury by vegetable and grass leaves: Potential biomonitors for atmospheric mercury pollution. Environ. Sci. Pollut. R 20:6337–6343.
  • Noble, D. C., McCormack, J. K., McKee, E. H., Silberman, M. L., and Wallace, A. B. (1988). Time of mineralization in the evolution of the McDermitt caldera complex, Nevada-Oregon, and the relation of middle Miocene mineralization in the northern Great Basin to coeval regional basaltic magmatic activity. Econ. Geol. 83:859–863.
  • Nordberg, G. F., and Skerfving, S. (1971). Chapter 4: Metabolism. In Friberg, L., and Vostal, J. eds. Mercury in the Environment – A Toxicological and Epidemiological Appraisal. Environmental Protection Agency, Research Triangle Park.
  • [NRC] National Research Council. (2000). Toxicological effects of methylmercury. Washington, DC: National Academy Press.
  • Nriagu, J., and Becker, C. (2003). Volcanic emissions of mercury to the atmosphere: Global and regional inventories. Sci. Tot. Environ. 304:3–12.
  • Obrist, D., Faïn, X., and Berger, C. (2010). Gaseous elemental mercury emissions and CO2 respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions. Sci. Tot. Environ. 408:1691–1700.
  • Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho, R., Battles, J. J., Dail, D. B., Edmonds, R. L., Monson, R. K., Ollinger, S. V., Pallardy, S. G., Pregitzer, K. S., and Todd, D. E. (2011). Mercury distribution across 14 Forests, U. S. Part I: spatial patterns of concentrations in biomass, litter, and soils. Environ. Sci. Technol. 45:3974–3981.
  • Obrist, D., Pokharel, A. K., and Moore, C. (2014). Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil. Environ. Sci. Technol. 48:2242–2252.
  • O'Driscoll, N. J., Canário, J., Crowell, N., Webster, T. (2011). Mercury speciation and distribution in coastal wetlands and tidal mudflats: relationships with sulphur speciation and organic carbon. Water Air Soil Pollut. 220:313–326.
  • O'Loughlin, E. J., Kelly, S. D., Kemner, K. M., Csencsits, R., and Cook, R. E. (2003). Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust. Chemosphere 53:437–446.
  • Overesch, M., Rinklebe, J., Broll, G., and H.-Neue, U. (2007). Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). Environ. Pollut. 145:800–812.
  • Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., and Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 40:4048–4063.
  • Palinkaš, L., Strmić, S., Spangenberg, J., Prochaska, W., and Herlec, U. (2004). Ore-forming fluids in the Grübler orebody, Idrija mercury deposit, Slovenia. Schweiz. Miner. Petrog. 84:173–188.
  • Panda, K. K., Lenka, M., and Panda, B. B. (1989). Allium micronucleus (MNC) assay to assess bioavailability, bioconcentration and genotoxicity of mercury from solid waste deposits of a chloralkali plant, and antagonism of ʟ-cysteine. Sci. Total Environ. 79:25–36.
  • Park, J. D., and Zheng, W. (2012). Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health 45:344–352.
  • Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt Jr., R. A., Smith, S. D., Tomanicek, S. J., Qian, Y., Brown, S. D., Brandt, C. C., Palumbo, A. V., Smith, J. C., Wall, J. D., Elias, D. A., and Liang, L. (2013). The genetic basis for bacterial mercury methylation. Science 339:1332–1335.
  • Patra, M., and Sharma, A. (2000). Mercury toxicity in plants. Bot. Rev. 66:379–422.
  • Patra, M., Bhowmik, N., Bandopadhyay, B., and Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot. 52:199–223.
  • Pedrero, Z., Bridou, R., Mounicou, S., Guyoneaud, R., Monperrus, M., and Amouroux, D. (2012). Transformation, localization, and biomolecular binding of Hg species at subcellular level in methylating and nonmethylating sulfate-reducing bacteria. Environ. Sci. Technol. 46:11744–11751.
  • Pereira, P., Raimundo, J., Araújo, O., Canário, J., Almeida, A., and Pacheco, M. (2014). Fish eyes and brain as primary targets for mercury accumulation — A new insight on environmental risk assessment. Sci. Total Environ. 494–495:290–298.
  • Perrot, V., Jiménez-Moreno, M., Berail, S., Epov, V. N., Monperrus, M., and Amouroux, D. (2013). Successive methylation and demethylation of methylated mercury species (MeHg and DMeHg) induce mass dependent fractionation of mercury isotopes. Chem. Geol. 355:153–162.
  • Pickhardt, P. C., Stepanova, M., and Fisher, N. S. (2006). Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus). Environ. Toxicol. Chem. 25:2132–2142.
  • Pickhardt, P. C., and Fisher, N. S. (2007). Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ. Sci. Technol. 41:125–131.
  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., and Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10:5951–5964.
  • Pogarev, S., Ryzhov, V., Mashyanov, N., Sholupov, S., and Zharskaya, V. (2002). Direct measurement of the mercury content of exhaled air: a new approach for determination of the mercury dose received. Anal. Bioanal. Chem. 374:1039–1044.
  • Poissant, L., Pilote, M., and Casmir, A. (1999). Mercury flux measurements in a naturally enriched area: Correlation with environmental conditions during the Nevada Study and Tests of the Release of Mercury From Soils (STORMS). J. Geophys. Res. 104:21845–21857.
  • Poissant, L., Pilote, M., Constant, P., Beauvais, C., Zhang, H. H., and Xu, X. (2004). Mercury gas exchanges over selected bare soil and flooded sites in the bay St. François wetlands (Québec, Canada). Atmos. Environ. 38:4205–4214.
  • Poulden, M. (2002). Mercury: Is it elemental my dear Watson? Emerg. Med. J. 19:82–83.
  • Pushie, M. J., Pickering, I. J., Korbas, M., Hackett, M. J., and George, G. N. (2014). Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem. Rev. 114:8499–8541.
  • Qiu, G., Feng, X., Wang, S., and Shang, L. (2005). Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Appl. Geochem. 20:627–638.
  • Qiu, G., Feng, X., Wang, S., and Shang, L.. (2006a). Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China. Environ. Pollut. 142:549–558.
  • Qiu, G., Feng, X., Wang, S., and Xiao, T.. (2006b). Mercury contaminations from historic mining to water, soil and vegetation in Lanmuchang, Guizhou, southwestern China. Sci. Total Environ. 368:56–68.
  • Qiu, G., Feng, X., Li, P., Wang, S., Li, G., Shang, L., and Fu, X. (2008). Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China. J. Agric. Food Chem. 56:2465–2468.
  • Rahman, G. M. M., Kingston, H. M. S., and Bhandari, S. (2003). Synthesis and characterization of isotopically enriched methylmercury (CH3201Hg+). Appl. Organomet. Chem. 17:913–920.
  • Ramasamy, E. V., Toms, A., Shylesh, C. M. S., Jayasooryan, K. K., and Mahesh, M. (2012). Mercury fractionation in the sediments of Vembanad wetland, west coast of India. Environ. Geochem. Health 34:575–586.
  • Randall, P. M., Yates, B. J., Lal, V., Darlington, R., and Fimmen, R. (2013). In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part II-evaluation of sorption materials. Environ. Res. 125:41–51.
  • Rasmussen, P. E. (1995). Temporal variation of mercury in vegetation. Water Air Soil Pollut. 80:1039–1042.
  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter—a review. Chemosphere 55:319–331.
  • Rea, L. D., Castellini, J. M., Correa, L., Fadely, B. S., and O'Hara, T. M.. (2013). Maternal Steller sea lion diets elevate fetal mercury concentrations in an area of population decline. Sci. Total Environ. 454–455:277–282.
  • Reimann, C., and De Caritat, P.. (1998). Chemical elements in the environment: Factsheets for the geochemist and environmental scientist. Berlin: Springer-Verlag.
  • Reis, A. T., Rodrigues, S. M., Araújo, C., Coelho, J. P., Pereira, E., and Duarte, A. C. (2009). Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Sci. Total Environ. 407:2689–2700.
  • Reis, A. T., Rodrigues, S. M., Davidson, C. M., Pereira, E., and Duarte, A. C. (2010). Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 81:1369–1377.
  • Reis, A. T., Lopes, C. B., Davidson, C. M., Duarte, A. C., and Pereira, E. (2014). Extraction of mercury water-soluble fraction from soils: An optimization study. Geoderma 213:255–260.
  • Richardson, J. B., Friedland, A. J., Engerbretson, T. R., Kaste, J. M., and Jackson, B. P. (2013). Spatial and vertical distribution of mercury in upland forest soils across the northeastern United States. Environ Pollut. 182:127–134.
  • Rimmer, C. C., Miller, E. K., McFarland, K. P., Taylor, R. J., and Faccio, S. D. (2010). Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology 19:697–709.
  • Rinklebe, J., During, A., Overesch, M., Wennrich, R., Stärk, H. J., Mothes, S., and H.-Neue, U. (2009). Optimization of a simple field method to determine mercury volatilization from soils—Examples of 13 sites in floodplain ecosystems at the Elbe River (Germany). Ecol. Eng. 35:319–328.
  • Rinklebe, J., During, A., Overesch, M., Du Laing, G., Wennrich, R., Stärk, H. J., and Mothes, S. (2010). Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas. Environ. Pollut. 158:308–318.
  • Rodgers, D. W., and Qadri, S. U. (1982). Growth and mercury accumulation in yearling yellow perch, Perca flavescens, in the Ottawa River, Ontario. Environ. Biol. Fish. 7:377–383.
  • Rodrigues, S. M., Henriques, B., Coimbra, J., Ferreira, E., da Silva, Pereira, M. E., and Duarte, A. C. (2010). Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils. Chemosphere 78:1301–1312.
  • Rodríguez-Farre, E., Testai, E., Bruzell, E., de Jong, W., Schmalz, G., Thomsen, M., and Hensten, A. (2016). The safety of dental amalgam and alternative dental restoration materials for patients and users. Regul. Toxicol. Pharm. 79:108–109.
  • Rogers, R. D. (1977). Abiological methylation of mercury in soil. J. Environ. Qual. 6:463–467.
  • Rogers, R. D., and McFarlane, J. C.. (1979). Factors influencing the volatilization of mercury from soil. J. Environ. Qual. 8:255–260.
  • Rooney, J. P. K. (2014). The retention time of inorganic mercury in the brain—a systematic review of the evidence. Toxicol. Appl. Pharm. 274:425–435.
  • Ross, S. M., Wood, M. D., Copplestone, D., Warriner, M., and Crook, P. (2007). UK Soil and Herbage Pollutant Survey: UKSHS Report No. 7. Bristol: Environment Agency.
  • Rothenberg, S. E., Feng, X., Dong, B., Shang, L., Yin, R., and Yuan, X. (2011). Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies. Environ. Pollut. 159:1283–1289.
  • Rothenberg, S. E., Feng, X., Zhou, W., Tu, M., Jin, B., and You, J. (2012). Environment and genotype controls on mercury accumulation in rice (Oryza sativa L.) cultivated along a contamination gradient in Guizhou, China. Sci. Total Environ. 426:272–280.
  • Rothstein, A., and Hayes, A. D.. (1960). The metabolism of mercury in the rat studied by isotope techniques. J. Pharmacol. Exp. Ther. 130:166–176.
  • Rowland, I. R., Robinson, R. D., and Doherty, R. A. (1984). Effects of diet on mercury metabolism and excretion in mice given methylmercury: Role of Gut Flora. Arch. Environ. Health 39:401–408.
  • Rowland, I. R., Mallett, A. K., Flynn, J., and Hargreaves, R. J. (1986). The effect of various dietary fibres on tissue concentration and chemical form of mercury after methylmercury exposure in mice. Arch. Toxicol. 59:94–98.
  • Rudd, J. W. M., Furutani, A., and Turner, M. A. (1980). Mercury methylation by fish intestinal contents. Appl. Environ. Microb. 40:777–782.
  • Rudnick, R. L., Gao, S. (2003). Chapter 3.01: Composition of the Continental Crust. In Holland, H. D., and Turekian, K. K. (Eds.), Treatise on geochemistry. Amsterdam: Elsevier.
  • Rugh, C. L., Dayton Wilde, H., Stack, N. M., Marin Thompson, D., Summers, A. O., and Meagher, R. B. (1996). Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. USA 93:3182–3187.
  • Rytuba, J. J. (2000). Mercury mine drainage and processes that control its environmental impact. Sci. Total Environ. 260:57–71.
  • Rzymski, P., Mleczek, M., Siwulski, M., Gᶏsecka, M., and Niedzielski, P. (2016). The risk of high mercury accumulation in edible mushrooms cultivated on contaminated substrates. J. Food Compos. Anal. 51:55–60.
  • Sadok, W., and Sinclair, T. R. (2010). Transpiration response of ‘slow-wilting’ and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors. J. Exp. Bot. 61:821–829.
  • Sandborgh-Englund, G., Elinder, C. G., Johanson, G., Lind, B., Skare, I., Ekstrand, J. (1998). The absorption, blood levels, and excretion of mercury after a single dose of mercury vapor in humans. Toxicol. Appl. Pharm. 150:146–153.
  • Sangvanich, T., Morry, J., Fox, C., Ngamcherdtrakul, W., Goodyear, S., Castro, D., Fryxell, G. E., Addleman, R. S., Summers, A. O., and Yantasee, W. (2014). Novel oral detoxification of mercury, cadmium, and lead with thiol-modified nanoporous silica. ACS Appl. Mater. Interfaces 6:5483–5493.
  • Sarkar, D., Essington, M. E., and Misra, K. C. (1999). Adsorption of Mercury(II) by variable charge surfaces of quartz and gibbsite. Soil Sci. Soc. Am. J. 63:1626–1636.
  • Satoh, H. (2013). Chapter 5: Mercury. In Weiss, B., editor. Aging and vulnerability to environmental chemicals. Cambridge: Royal Society of Chemistry.
  • Schaefer, J. K., Rocks, S. S., Zheng, W., Liang, L., Gu, B., and Morel, F. M. M. (2011). Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc. Natl. Acad. Sci. USA 108:8714–8719.
  • Scheepers, P. T. J., van Ballegooij-Gevers, M., and Jans, H. (2014). Biological monitoring involving children exposed to mercury from a barometer in a private residence. Toxicol. Lett. 231:365–373.
  • Scheid, D., Stubner, S., and Conrad, R. (2004). Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. FEMS Microbiol. Ecol. 50:101–110.
  • Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., and Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. AMBIO 36:12–19.
  • Scheuhammer, A., Braune, B., Chan, H. M., Frouin, H., Krey, A., Letcher, R., Loseto, L., Noël, M., Ostertag, S., Ross, P., and Wayland, M. (2015). Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci. Total Environ. 509–510:91–103.
  • Schlüter, K. (2000). Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ. Geol. 39:249–271.
  • Schroeder, W. H., and Munthe, J. (1998). Atmospheric mercury—An overview. Atmos. Environ. 32:809–822.
  • Schuster, E. (1991). The behavior of mercury in soil with special emphasis of complexation and adsorption processes—A review of the literature. Water Air Soil Pollut. 56:667–680.
  • Schuster, P. F., Striegl, R. G., Aiken, G. R., Krabbenhoft, D. P., Dewild, J. F., Butler, K., Kamark, B., and Dornblaser, M. (2011). Mercury export from the Yukon River Basin and potential response to a changing climate. Environ. Sci. Technol. 45:9262–9267.
  • Schwesig, D., Ilgen, G., and Matzner, E. (1999). Mercury and methylmercury in upland and wetland acid forest soils of a watershed in NE-Bavaria, Germany. Water Air Soil Pollut. 113:141–154.
  • Seabert, T. A., Pal, S., Pinet, B. M., Haman, F., Robidoux, M. A., Imbeault, P., Krümmel, E. M., Kimpe, L. E., and Blais, J. M. (2014). Elevated contaminants contrasted with potential benefits of ω-3 fatty acids in wild food consumers of two remote first nations communities in northern Ontario, Canada. PLoS ONE 9:e90351.
  • Selin, N. E., Jacob, D. J., Yantosca, R. M., Strode, S., Jaeglé, L., and Sunderland, E. M. (2008). Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochem. Cycles 22:GB2011, doi:10.1029/2007GB003040.
  • Sellers, P., Kelly, C. A., Rudd, J. W. M., MacHutchon, A. R. (1996). Photodegradation of methylmercury in lakes. Nature 380:694–697.
  • Semu, E., Singh, B. R., Selmer-Olsen, A. R., and Steenberg, K. (1985). Uptake of Hg from 203Hg-labeled mercury compounds by wheat and beans grown on an oxisol. Plant Soil 87:347–355.
  • Senesi, G. S., Baldassarre, G., Senesi, N., and Radina, B. (1999). Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39:343–377.
  • Sharma, C. M., Kang, S., Sillanpää, M., Li, Q., Zhang, Q., Huang, J., Tripathee, L., Sharma, S., and Paudyal, R. (2015). Mercury and selected trace elements from a remote (Gosainkunda) and an urban (Phewa) lake waters of Nepal. Water Air Soil Pollut. 226:6, doi:10.1007/s11270-014-2276-3.
  • Sheehan, M. C., Burke, T. A., Navas-Acien, A., Breysse, P. N., McGready, J., and Fox, M. A. (2014). Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ. 92:254–269.
  • Sherman, L. S., Blum, J. D., Franzblau, A., and Basu, N. (2013). New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. Environ. Sci. Technol. 47:3403–3409.
  • Shi, J. B., Liang, L. N., Jiang, G. B., and X.-Jin, L. (2005). The speciation and bioavailability of mercury in sediments of Haihe River, China. Environ. Int. 31:357–365.
  • Shimada, A., Yamamoto, E., Morita, T., Yoshida, M., Suzuki, J. S., Satoh, M., and Tohyama, C. (2004). Ultrastructural demonstration of mercury granules in the placenta of metallothionein-null pregnant mice after exposure to mercury vapor. Toxicol. Pathol. 32:519–526.
  • Siegel, S. M., Siegel, B. Z., Eshleman, A. M., and Bachmann, K. (1973). Geothermal sources and distribution of mercury in Hawaii. Environ. Biol. Med. 2:81–89.
  • Siegel, S. M., Siegel, B. Z., Barghigiani, C., Aratani, K., Penny, P., Penny, D. (1987). A contribution to the environmental biology of mercury accumulation in plants. Water Air Soil Pollut. 33:65–72.
  • Sierra, M. J., Rodríguez-Alonso, J., and Millán, R. (2012). Impact of the lavender rhizosphere on the mercury uptake in field conditions. Chemosphere 89:1457–1466.
  • Sigler, J. M., and Lee, X. (2006). Gaseous mercury in background forest soil in the northeastern United States. J. Geophys. Res. 111:G02007, doi:10.1029/2005JG000106.
  • Simoneau, M., Lucotte, M., Garceau, S., and Laliberté, D. (2005). Fish growth rates modulate mercury concentrations in walleye (Sander vitreus) from eastern Canadian lakes. Environ. Res. 98:73–82.
  • Skyllberg, U. (2010). Chapter 13: Mercury biogeochemistry in soils and sediments. Dev. Soil Sci. 34:379–410.
  • Skyllberg, U., Qian, J., Frech, W., Xia, K., and Bleam, W. F. (2003). Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry 64:53–76.
  • Skyllberg, U., Bloom, P. R., Qian, J., Lin, C. M., and Bleam, W. F. (2006). Complexation of Mercury(II) in soil organic matter:  EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ. Sci. Technol. 40:4174–4180.
  • Skyllberg, U. (2012). Chapter 7: Chemical speciation of mercury in soil and sediment. In Liu, G., Cai, Y., and O'Driscoll, N. (Eds.), Environmental chemistry and toxicology of mercury. Hoboken: Wiley.
  • Slowey, A. J. (2010). Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter. Geochim. Cosmochim. Acta 74:4693–4708.
  • Smith-Downey, N. V., Sunderland, E. M., and Jacob, D. J. (2010). Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. J. Geophys. Res. 115:G03008, doi:10.1029/2009JG001124.
  • Smolinska, B, and Szczodrowska, A. (2016). Antioxidative response of Lepidium sativum L. during assisted phytoremediation of Hg contaminated soil. New Biotechnol. in press, doi:10.1016/j.nbt.2016.07.004.
  • Soerensen, A. L., Sunderland, E. M., Holmes, C. D., Jacob, D. J., Yantosca, R. M., Skov, H., Christensen, J. H., Strode, S. A., and Mason, R. P.. (2010). An improved global model for air-sea exchange of mercury: High concentrations over the North Atlantic. Environ. Sci. Technol. 44:8574–8580.
  • Solis, M. T., Yuen, E., Cortez, P. S., and Goebel, P. J. (2000). Family poisoned by mercury vapor inhalation. Am. J. Emerg. Med. 18:599–602.
  • Son, J., Ryoo, M. I., Jung, J., and Cho, K. (2007). Effects of cadmium, mercury and lead on the survival and instantaneous rate of increase of Paronychiurus kimi (Lee) (Collembola). Appl. Soil Ecol. 35:404–411.
  • Song, X., and van Heyst, B.. (2005). Volatilization of mercury from soils in response to simulated precipitation. Atmos. Environ. 39:7494–7505.
  • Song, X., Ye, M., Tang, X., and Wang, C. (2013). Ionic liquids dispersive liquid-liquid microextraction and HPLC-atomic fluorescence spectrometric determination of mercury species in environmental waters. J. Sep. Sci. 36:414–420.
  • Spiegel, S. J., Yassi, A., Spiegel, J. M., and Veiga, M. M. (2005). Reducing mercury and responding to the global gold rush. Lancet 366:2070–2072.
  • Stamenkovic, J., and Gustin, M. S. (2009). Nonstomatal versus stomatal uptake of atmospheric mercury. Environ. Sci. Technol. 43:1367–1372.
  • Steenhuisen, F., and Wilson, S. J. (2015). Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories. Atmos. Environ. 112:167–177.
  • Stefansson, E. S., Heyes, A., and Rowe, C. L. (2013). Accumulation of dietary methylmercury and effects on growth and survival in two estuarine forage fish: Cyprinodon variegatus and Menidia beryllina. Environ. Toxicol. Chem. 32:848–856.
  • Stein, E. D., Cohen, Y., and Winer, A. M. (1996). Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 26:1–43.
  • St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Bloom, N. S., and Flett, R. J. (1994). Importance of wetlands as sources of methyl mercury to boreal forest ecosystems. Can. J. Fish. Aquat. Sci. 51:1065–1076.
  • St. Louis, V. L., Derocher, A. E., Stirling, I., Graydon, J. A., Lee, C., Jocksch, E., Richardson, E., Ghorpade, S., Kwan, A. K., Kirk, J. L., Lehnherr, I., and Swanson, H. K. (2011). Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic. Environ. Sci. Technol. 45:5922–5928.
  • Stoor, R. W., Hurley, J. P., Babiarz, C. L., and Armstrong, D. E. (2006). Subsurface sources of methyl mercury to Lake Superior from a wetland-forested watershed. Sci. Total Environ. 368:99–110.
  • Streets, D. G., Zhang, Q., and Wu, Y. (2009). Projections of global mercury emissions in 2050. Environ. Sci. Technol. 43:2983–2988.
  • Studemeister, P. A. (1984). Mercury deposits of western California: an overview. Miner. Deposita 19:202–207.
  • Sun, R., Wang, D., Zhang, Y., Mao, W., Zhang, T., Ma, M., and Zhang, C. (2013). Photo-degradation of monomethylmercury in the presence of chloride ion. Chemosphere 91:1471–1476.
  • Sunderland, E. M., Gobas, F. A.P. C., Branfireun, B. A., and Heyes, A. (2006). Environmental controls on the speciation and distribution of mercury in coastal sediments. Mar. Chem. 102:111–123.
  • Sunderland, E. M., and Mason, R. P. (2007). Human impacts on open ocean mercury concentrations. Global Biogeochem. Cycles 21:GB4022, doi:10.1029/2006GB002876.
  • Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., and Landing, W. M. (2009). Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochem. Cycles 23:GB2010, doi:10.1029/2008GB003425.
  • Sundseth, K., Pacyna, J. M., Pacyna, E. G., Munthe, J., Belhaj, M., and Astrom, S. (2010). Economic benefits from decreased mercury emissions: Projections for 2020. J. Clean Prod. 18:386–394.
  • Sundseth, K., Pacyna, J. M., Banel, A., Pacyna, E. G., and Rautio, A. (2015). Climate change impacts on environmental and human exposure to mercury in the arctic. Int. J. Environ. Res. Public Health 12:3579–3599.
  • Sundseth, K., Pacyna, J. M., Pacyna, E. G., Pirrone, N., and Thorne, R. J. (2017). Global sources and pathways of mercury in the context of human health. Int. J. Environ. Res. Public Health 14:105, doi:10.3390/ijerph14010105.
  • Syversen, T., and Kaur, P. (2012). The toxicology of mercury and its compounds. J. Trace Elem. Med. Biol. 26:215–226.
  • Takeuchi, T., Morikawa, N., Matsumoto, H., and Shiraishi, Y. (1962). A pathological study of Minamata disease in Japan. Acta Neuropathol. 2:40–57.
  • Temme, C. (2003). Reaktionen des Quecksilbers und seiner Spezies in bodennahen Luftschichten der Antarktis. Geesthacht: GKSS.
  • Templeton, D. M., Ariese, F., Cornelis, R., Danielsson, L. G., Muntau, H., van Leeuwen, H. P., and Łobiński, R. (2000). Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure Appl. Chem. 72:1453–1470.
  • Teršič, T., Gosar, M., and Šajn, R. (2009). Impact of mining activities on soils and sediments at the historical mining area in Podljubelj, NW Slovenia. J. Geochem. Explor. 100:1–10.
  • Teršič, T., Gosar, M., and Biester, H. (2011). Distribution and speciation of mercury in soil in the area of an ancient mercury ore roasting site, Frbejžene trate (Idrija area, Slovenia). J. Geochem. Explor. 110:136–145.
  • Teršič, T., and Gosar, M. (2012). Comparison of elemental contents in earthworm cast and soil from a mercury-contaminated site (Idrija area, Slovenia). Sci. Total Environ. 430:28–33.
  • Teršič, T., Biester, H., and Gosar, M. (2014). Leaching of mercury from soils at extremely contaminated historical roasting sites (Idrija area, Slovenia). Geoderma 226–227:213–222.
  • Tessier, A., Campbell, P. G. C., and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844–851.
  • Tipping, E., Lofts, S., Hooper, H., Frey, B., Spurgeon, D., and Svendsen, C. (2010). Critical Limits for Hg(II) in soils, derived from chronic toxicity data. Environ. Pollut. 158:2465–2471.
  • Tjerngren, I., Karlsson, T., Björn, E., and Skyllberg, U. (2012). Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands. Biogeochemistry 108:335–350.
  • Todorova, S. G., Driscoll Jr., C. T., Matthews, D. A., Effler, S. W., Hines, M. E., and Henry, E. A. (2009). Evidence for Regulation of Monomethyl Mercury by Nitrate in a Seasonally Stratified, Eutrophic Lake. Environ. Sci. Technol. 43:6572–6578.
  • Tomiyasu, T., Takenaka, S., Noguchi, Y., Kodamatani, H., Matsuyamab, A., Oki, K., Kono, Y., Kanzaki, R., and Akagi, H. (2014). Estimation of the residual total mercury in marine sediments of Minamata Bay after a pollution prevention project. Mar. Chem. 159:19–24.
  • Travnikov, O. (2012). Chapter 10: Atmospheric Transport of Mercury. In Liu, G., Cai, Y., and O'Driscoll, N. (Eds.), Environmental chemistry and toxicology of mercury. Hoboken, NJ: Wiley.
  • Trudel, M., and Rasmussen, J. B. (1997). Modeling the elimination of mercury by fish. Environ. Sci. Technol. 31:1716–1722.
  • Trudel, M., Tremblay, A., Schetagne, R., and Rasmussen, J. B. (2000). Estimating food consumption rates of fish using a mercury mass balance model. Can. J. Fish. Aquat. Sci. 57:414–428.
  • Tsui, M. T. K., and Finlay, J. C. (2011). Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems. Environ. Sci. Technol. 45:5981–5987.
  • Turyk, M. E., Bhavsar, S. P., Bowerman, W., Boysen, E., Clark, M., Diamond, M., Mergler, D., Pantazopoulos, P., Schantz, S., and Carpenter, D. O. (2012). Risks and benefits of consumption of Great Lakes fish. Environ. Health Persp. 120:11–18.
  • Ullrich, S. M., Tanton, T. W., and Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 31:241–293.
  • [UNEP] United Nations Environment Programme. (2002). Global Mercury Assessment. Geneva: UNEP.
  • UNEP. (2006). Summary of supply, trade and demand information on mercury. Geneva: UNEP.
  • UNEP. (2008). Mercury Fate and Transport in the Global Atmosphere: Measurements, Models and Policy Implications. Geneva: UNEP.
  • UNEP. (2009). Khaidarkan mercury. Geneva: UNEP.
  • UNEP. (2013a). Minamata Convention on Mercury. Geneva: UNEP.
  • UNEP. (2013b). Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. Geneva: UNEP.
  • United States Congress. (2008). Public Law 110–414. Mercury Export Ban Act of 2008. 110th Congress, Washington, DC.
  • [U. S. EPA] U. S. Environmental Protection Agency. (1997). Mercury Study Report to Congress. Volume V: Health Effects of Mercury and Mercury Compounds. Washington, DC: U. S. EPA.
  • U. S. EPA. (2001). Water Quality Criterion for the Protection of Human Health: Methylmercury: Final. Washington, DC: U. S. EPA.
  • U. S. EPA. (2011). 2010 Biennial National Listing of Fish Advisories. Washington, DC: U. S. EPA.
  • [USGS] U. S. Geological Survey. (2002). Glacial Ice Cores Reveal A Record of Natural and Anthropogenic Atmospheric Mercury Deposition for the Last 270 Years. Reston: U. S. Geological Survey.
  • USGS. (2012). Mineral commodity summaries 2012. Reston: U. S. Geological Survey.
  • Válega, M., Lima, A. I. G., Figueira, E. M.A. P., Pereira, E., Pardal, M. A., and Duarte, A. C. (2009). Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure. Chemosphere 74:530–536.
  • Van Walleghem, J. L. A., Blanchfield, P. J., Hrenchuk, L. E., and Hintelmann, H. (2013). Mercury elimination by a top predator, Esox lucius. Environ. Sci. Technol. 47:4147–4154.
  • Vannini, A., Nicolardi, V., Bargagli, R., and Loppi, S. (2014). Estimating atmospheric mercury concentrations with lichens. Environ. Sci. Technol. 48:8754–8759.
  • Varian-Ramos, C. W., Swaddle, J. P., and Cristol, D. A. (2014). Mercury reduces avian reproductive success and imposes selection: an experimental study with adult- or lifetime-exposure in zebra finch. PLoS ONE 9:e95674.
  • Verma, S., Kumar, R., Khadwal, A., and Singhi, S. (2010). Accidental inorganic mercury chloride poisoning in a 2-year old child. Indian J. Pediatr. 77:1153–1155.
  • Vieira, S. M., de Almeida, R., Holanda, I. B. B., Mussy, M. H., Galvão, R. C. F., Crispim, P. T. B., Dórea, J. G., and Bastos, W. R. (2013). Total and methyl-mercury in hair and milk of mothers living in the city of Porto Velho and in villages along the Rio Madeira, Amazon, Brazil. Int. J. Hyg. Environ. Health 216:682–689.
  • Wallschläger, D., Desai, M. V. M., Spengler, M., and Wilken, R. D.. (1998a). Mercury speciation in floodplain soils and sediments along a contaminated river transect. J. Environ. Qual. 27:1034–1044.
  • Wallschläger, D., Desai, M. V. M., Spengler, M., Windmöller, C. C., and Wilken, R. D.. (1998b). How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments. J. Environ. Qual. 27:1044–1054.
  • Wallschläger, D., Kock, H. H., Schroeder, W. H., Lindberg, S. E., Ebinghaus, R., R.-Wilken, D. (2000). Mechanism and significance of mercury volatilization from contaminated floodplains of the German river Elbe. Atmos. Environ. 34:3745–3755.
  • Wang, J., Feng, X., Anderson, C. W. N., Qiu, G., Ping, L., Bao, Z. (2011). Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil—Results from a greenhouse study. J. Hazard. Mater. 186:119–127.
  • Wang, J., Feng, X., Anderson, C. W. N., Xing, Y., and Shang, L.. (2012a). Remediation of mercury contaminated sites—A review. J. Hazard. Mater. 221–222:1–18.
  • Wang, J., Feng, X., Anderson, C. W. N., Wang, H., and Wang, L. (2014). Thiosulphate-induced mercury accumulation by plants: metal uptake and transformation of mercury fractionation in soil—results from a field study. Plant Soil 375:21–33.
  • Wang, J. J., Guo, Y. Y., Guo, D. L., Yin, S. L., Kong, D. L., Liu, Y. S., and Zeng, H.. (2012b). Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal. Environ. Sci. Technol. 46:769–777.
  • Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., and Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ. Pollut. 131:323–336.
  • Wang, X., Ma, L. Q., Rathinasabapathi, B., Liu, Y., and Zeng, G. (2010). Uptake and translocation of arsenite and arsenate by Pteris vittata L.: Effects of silicon, boron and mercury. Environ. Exp. Bot. 68:222–229.
  • Warren, H. V., Delavault, R. E., and Barakso, J. (1966). Some observations on the geochemistry of mercury as applied to prospecting. Econ. Geol. 61:1010–1028.
  • Watras, C. J., and Bloom, N. S. (1992). Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation. Limnol. Oceanogr. 37:1313–1318.
  • [WCC] World Chlorine Council. (2013). Reduction of Mercury Emissions & Use in the Chlor-Alkali Sector. Washington, DC: WCC.
  • Weaver, R. W., Melton, J. R., Wang, D., and Duble, R. L. (1984). Uptake of arsenic and mercury from soil by bermudagrass Cynodon dactylon. Environ. Pollut. A 33:133–142.
  • Weber, J. H. (1993). Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment. Chemosphere 26:2063–2077.
  • Whalin, L., Kim, E. H., and Mason, R. (2007). Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar. Chem. 107:278–294.
  • Wheatley, B., and Paradis, S. (1995). Exposure of Canadian aboriginal peoples to methylmercury. Water Air Soil Pollut. 80:3–11.
  • Wheatley, B., and Wheatley, M. A. (2000). Methylmercury and the health of indigenous peoples: a risk management challenge for physical and social sciences and for public health policy. Sci. Total Environ. 259:23–29.
  • [WHO] World Health Organization. (1990). Environmental Health Criteria 101. Methylmercury. Geneva: WHO.
  • WHO. (2007). Health risks of heavy metals from long-range transboundary air pollution. Copenhagen: WHO.
  • Wilhelm, S. M. (2001). Estimate of Mercury Emissions to the Atmosphere from Petroleum. Environ. Sci. Technol. 35:4704–4710.
  • Windham-Myers, L., Fleck, J. A., Ackerman, J. T., Marvin-Di, M., Pasquale, Stricker, C. A., Heim, W. A., Bachand, P. A. M., Eagles-Smith, C. A., Gill, G., Stephenson, M., and Alpers, C. N. (2014). Mercury cycling in agricultural and managed wetlands: A synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study. Sci. Total Environ. 484:221–231.
  • Wright, N., Yeoman, W. B., and Carter, G. F. (1980). Massive oral ingestion of elemental mercury without poisoning. Lancet 315:206.
  • Xin, M., and Gustin, M. S. (2007). Gaseous elemental mercury exchange with low mercury containing soils: Investigation of controlling factors. Appl. Geochem. 22:1451–1466.
  • Xu, J., Bravo, A. G., Lagerkvist, A., Bertilsson, S., Sjöblom, R., and Kumpiene, J. (2015). Sources and remediation techniques for mercury contaminated soil. Environ. Int. 74:42–53.
  • Yaginuma-Sakurai, K., Murata, K., Iwai-Shimada, M., Nakai, K., Kurokawa, N., Tatsuta, N., and Satoh, H. (2012). Hair-to-blood ratio and biological half-life of mercury: experimental study of methylmercury exposure through fish consumption in humans. J. Toxicol. Sci. 37:123–130.
  • Yates, D. E., Mayack, D. T., Munney, K., Evers, D. C., Major, A., Kaur, T., and Taylor, R. J. (2005). Mercury Levels in Mink (Mustela vison) and River Otter (Lontra canadensis) from Northeastern North America. Ecotoxicology 14:263–274.
  • Yin, R., Feng, X., Wang, J., Bao, Z., Yu, B., and Chen, J. (2013). Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan Mercury Mine, SW China. Chem. Geol. 336:80–86.
  • Yin, R., Feng, X., Zhang, J., Pan, K., Wang, W., and Li, X. (2016). Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China. Chemosphere 147:173–179.
  • Yin, Y., Allen, H. E., Li, Y., Huang, C. P., and Sanders, P. F. (1996). Adsorption of Mercury(II) by Soil: Effects of pH, Chloride, and Organic Matter. J. Environ. Qual. 25:837–844.
  • Yin, Y., Allen, H. E., Huang, C. P., and Sanders, P. F. (1997). Effects of pH, chloride and Calcium(II) on adsorption of monomethylmercury by soils. Environ Toxicol Chem 16:2457–2462.
  • Yoshida, M. (2002). Placental to fetal transfer of mercury and fetotoxicity. Tohoku J. Exp. Med. 196:79–88.
  • Yoshida, M., Satoh, M., Shimada, A., Yamamoto, E., Yasutake, A., and Tohyama, C. (2002). Maternal-to-fetus transfer of mercury in metallothionein-null pregnant mice after exposure to mercury vapor. Toxicology 175:215–222.
  • Yu, L. P., and X.-Yan, P. (2003). Factors affecting the stability of inorganic and methylmercury during sample storage. Trend Anal. Chem. 22:245–253.
  • Yu, R. Q., Reinfelder, J. R., Hines, M. E., and Barkay, T. (2013). Mercury methylation by the methanogen Methanospirillum hungatei. Appl. Environ. Microb. 79:6325–6330.
  • Yu, Y., Zhang, S., and Huang, H. (2010). Behavior of mercury in a soil-plant system as affected by inoculation with the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 20:407–414.
  • Žagar, D., Sirnik, N., Četina, M., Horvat, M., Kotnik, J., Ogrinc, N., Hedgecock, I. M., Cinnirella, S., De Simone, F., Gencarelli, C. N., and Pirrone, N. (2014). Mercury in the Mediterranean. Part 2: processes and mass balance. Environ. Sci. Pollut. R 21:4081–4094.
  • Zagury, G. J., Neculita, C. M., Bastien, C., and Deschênes, L. (2006). Mercury fractionation, bioavailability, and ecotoxicity in highly contaminated soils from chlor-alkali plants. Environ. Toxicol. Chem. 25:1138–1147.
  • Zhang, H., and Lindberg, S. E. (1999). Processes influencing the emission of mercury from soils: A conceptual model. J. Geophys. Res. 104:21889–21896.
  • Zhang, H., Lindberg, S. E., Marsik, F. J., and Keeler, G. J. (2001). Mercury air/surface exchange kinetics of background soils of the tahquamenon river watershed in the Michigan Upper Peninsula. Water Air Soil Pollut. 126:151–169.
  • Zhang, H., Feng, X., Larssen, T., Shang, L., and Li, P. (2010). Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environ. Sci. Technol. 44:4499–4504.
  • Zhang, H., Yin, R., Feng, X., Sommar, J., Anderson, C. W. N., Sapkota, A., Fu, X., and Larssen, T. (2013). Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures. Sci. Rep. 3:3322, doi:10.1038/srep03322.
  • Zhang, H., Holmes, C. D., and Wu, S. (2016). Impacts of changes in climate, land use and land cover on atmospheric mercury. Atmos. Environ. 141:230–244.
  • Zhang, X., Rygwelski, K. R., Kreis Jr., R. G., and Rossmann, R. (2014). A mercury transport and fate model (LM2-Mercury) for mass budget assessment of mercury cycling in Lake Michigan. J. Great Lakes Res. 40:347–359.
  • Zhang, X., Rygwelski, K. R., Rowe, M. D., Rossmann, R., and Kreis, R. G. Jr. (2016). Global and regional contributions to total mercury concentrations in Lake Michigan water. J. Great Lakes Res. 42:62–69.
  • Zhang, Y., Cui, Y., and Chen, L. Y. (2012). Mercury inhibits the L170C mutant of aquaporin Z by making waters clog the water channel. Biophys. Chem. 160:69–74.
  • Zheng, Y., Jensen, A. D., Windelin, C., and Jensen, F. (2012). Review of technologies for mercury removal from flue gas from cement production processes. Prog. Energ. Combust. 38:599–629.
  • Zhong, H., and W.-Wang, X. (2008). Effects of sediment composition on inorganic mercury partitioning, speciation and bioavailability in oxic surficial sediments. Environ. Pollut. 151:222–230.
  • Zhou, K., Jia, J., Li, X., Pang, X., Li, C., Zhou, J., Luo, G., and Wei, F. (2013). Continuous vinyl chloride monomer production by acetylene hydrochlorination on Hg-free bismuth catalyst: From lab-scale catalyst characterization, catalytic evaluation to a pilot-scale trial by circulating regeneration in coupled fluidized beds. Fuel Process. Technol. 108:12–18.
  • Zornoza, P., Vázquez, S., Esteban, E., Fernández-Pascual, M., and Carpena, R. (2002). Cadmium-stress in nodulated white lupin: strategies to avoid toxicity. Plant Physiol. Biochem. 40:1003–1009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.