1,095
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Benefits of arbuscular mycorrhizal fungi in reducing organic contaminant residues in crops: Implications for cleaner agricultural production

ORCID Icon, , , &
Pages 1580-1612 | Published online: 23 Sep 2019

References

  • Akhtar, M. S., & Siddiqui, Z. A. (2008). Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In Z. A. Siddiqui, M. S. Akhtar, & K. Futai (Eds.), Mycorrhizae: Sustainable agriculture and forestry (pp. 61–97). Dordrecht: Springer.
  • Alarcón, A., Davies, F. T., Jr., Autenrieth, R. L., & Zuberer, D. A. (2008). Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. International Journal of Phytoremediation, 10(4), 251–263. doi:10.1080/15226510802096002
  • Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145–180. doi:10.1146/annurev.phyto.38.1.145
  • Aranda, E., Scervino, J. M., Godoy, P., Reina, R., Ocampo, J. A., Wittich, R. M., & García-Romera, I. (2013). Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. Environmental Pollution, 181, 182–189. doi:10.1016/j.envpol.2013.06.034
  • Augé, R. M., Toler, H. D., & Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza, 25(1), 13–24. doi:10.1007/s00572-014-0585-4
  • Banerjee, S., Walder, F., Buchi, L., Meyer, M., Held, A. Y., Gattinger, A., … van der Heijden, M. G. A. (2019). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal, 13(7), 1722–1736. doi:10.1038/s41396-019-0383-2
  • Baum, C., El-Tohamy, W., & Gruda, N. (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae, 187, 131–141. doi:10.1016/j.scienta.2015.03.002
  • Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282–2287. doi:10.1016/j.envpol.2010.02.003
  • Bertrand, M., Barot, S., Blouin, M., Whalen, J., de Oliveira, T., & Roger-Estrade, J. (2015). Earthworm services for cropping systems. A review. Agronomy for Sustainable Development, 35(2), 553–567. doi:10.1007/s13593-014-0269-7
  • Bethlenfalvay, G. J., & Linderman, R. G. (1992). Preface. In: G. J. Bethlenfalvay and R. G. Linderman (Eds.), Mycorrhizae in sustainable agriculture (pp viii–xiii). ASA Special Publication Number 54, Madison, WI.
  • Bethlenfalvay, G. J., Mihara, K. L., Schreiner, R. P., & McDaniel, H. (1996). Mycorrhizae, biocides, and biocontrol. 1. Herbicide-mycorrhiza interactions in soybean and cocklebur treated with bentazon. Applied Soil Ecology, 3(3), 197–204. doi:10.1016/0929-1393(96)00092-3
  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350. doi:10.1007/s11274-011-0979-9
  • Binet, P., Portal, J. M., & Leyval, C. (2000). Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biology and Biochemistry, 32(14), 2011–2017. doi:10.1016/S0038-0717(00)00100-0
  • Cabello, M. N. (2001). Glomus tortuosum (Glomales), an arbuscular-mycorrhizal fungus (AMF) isolated from hydrocarbon-polluted soils. Nova Hedwigia, 17, 513–520.
  • Cabello, M. N. (2006). Hydrocarbon pollution: Its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiology Ecology, 22(3), 233–236. doi:10.1111/j.1574-6941.1997.tb00375.x
  • Cabral, L., Giachini, A. J., & Siqueira, J. O. (2015). Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: Mechanisms and major benefits of their applications. World Journal of Microbiology and Biotechnology, 31, 1655–1664. doi:10.1007/s11274-015-1918-y
  • Calonne, M., Fontaine, J., Debiane, D., Laruelle, F., Grandmougin-Ferjani, A., & Sahraoui, A. L. H. (2014). The arbuscular mycorrhizal Rhizophagus irregularis activates storage lipid biosynthesis to cope with the benzo[a]pyrene oxidative stress. Phytochemistry, 97, 30–37. doi:10.1016/j.phytochem.2013.10.014
  • Calonne-Salmon, M., Plouznikoff, K., & Declerck, S. (2018). The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 increases the phosphorus uptake and biomass of Medicago truncatula, a benzo[a]pyrene-tolerant plant species. Mycorrhiza, 28(8), 761–771. doi:10.1007/s00572-018-0861-9
  • Cao, J., Ji, D., & Wang, C. (2015). Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils. Soil Biology and Biochemistry, 90, 283–292. doi:10.1016/j.soilbio.2015.08.020
  • Cao, J., Wang, C., Dou, Z., Liu, M., & Ji, D. (2018). Hyphospheric impacts of earthworms and arbuscular mycorrhizal fungus on soil bacterial community to promote oxytetracycline degradation. Journal of Hazardous Materials, 341, 346–354. doi:10.1016/j.jhazmat.2017.07.038
  • Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science & Policy, 9, 685–692. doi:10.1016/j.envsci.2006.08.002
  • Casida, J. E. (2017). Organophosphorus xenobiotic toxicology. Annual Review of Pharmacology and Toxicology, 57(1), 309–327. doi:10.1146/annurev-pharmtox-010716-104926
  • Chen, B., & Yuan, M. (2011). Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. Journal of Soils and Sediments, 11(1), 62–71. doi:10.1007/s11368-010-0266-7
  • Chen, C., Qian, Y., Chen, Q., Tao, C., Li, C., & Li, Y. (2011). Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. Food Control, 22(7), 1114–1120. doi:10.1016/j.foodcont.2011.01.007
  • Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 33(6), 745–755. doi:10.1016/j.biotechadv.2015.05.003
  • Chen, S., Wang, J., Waigi, M. G., & Gao, Y. (2018). Glomalin-related soil protein influences the accumulation of polycyclic aromatic hydrocarbons by plant roots. Science of the Total Environment, 644, 465–473. doi:10.1016/j.scitotenv.2018.06.370
  • Chhabra, M. L., & Jalali, B. L. (2013). Impact of pesticides-mycorrhiza interaction on growth and development of wheat. Journal of Biopesticides, 6, 129–132.
  • Corgié, S. C., Beguiristain, T., & Leyval, C. (2004). Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L. Applied and Environmental Microbiology, 70, 3552–3557. doi:10.1128/AEM.70.6.3552-3557.2004
  • Corgié, S. C., Fons, F., Beguiristain, T., & Leyval, C. (2006). Biodegradation of phenanthrene, spatial distribution of bacterial populations and dioxygenase expression in the mycorrhizosphere of Lolium perenne inoculated with Glomus mosseae. Mycorrhiza, 16(3), 207–212. doi:10.1007/s00572-006-0049-6
  • Criquet, S., Joner, E., Leglize, P., & Leyval, C. (2000). Anthracene and mycorrhiza affect the activity of oxidoreductases in the roots and the rhizosphere of lucerne (Medicago sativa L.). Biotechnology Letters, 22(21), 1733–1737. doi:10.1023/A:1005604719909
  • De La Providencia, L., Stefani, F. O. P., Labridy, M., St-Arnaud, M., & Hijri, M. (2015). Arbuscular mycorrhizal fungal diversity associated with Eleocharis obtusa and Panicum capillare growing in an extreme petroleum hydrocarbon-polluted sedimentation basin. FEMS Microbiology Letters, 362(12), 81. doi:10.1093/femsle/fnv081
  • Debiane, D., Garçon, G., Verdin, A., Fontaine, J., Durand, R., Grandmougin-Ferjani, A., … Sahraoui, L. H. (2008). In vitro evaluation of the oxidative stress and genotoxic potentials of anthracene on mycorrhizal chicory roots. Environmental and Experimental Botany, 64(2), 120–127. doi:10.1016/j.envexpbot.2008.04.003
  • Debiane, D., Garçon, G., Verdin, A., Fontaine, J., Durand, R., Shirali, P., … Lounès-Hadj Sahraoui, A. (2009). Mycorrhization alleviates benzo[α]pyrene-induced oxidative stress in an in vitro chicory root model. Phytochemistry, 70(11–12), 1421–1427. doi:10.1016/j.phytochem.2009.07.002
  • Dong, J., Wang, L., Ma, F., Yang, J., Zhang, X., Zhao, T., & Qi, S. (2017). Effects of Funnelliformis mosseae inoculation on alleviating atrazine damage in Canna indica L. var. flava Roxb. International Journal of Phytoremediation, 19(1), 46–55. doi:10.1080/15226514.2016.1216079
  • Driai, S., Verdin, A., Laruelle, F., Beddiar, A., & Sahraoui, L. H. (2015). Is the arbuscular mycorrhizal fungus Rhizophagus irregularis able to fulfil its life cycle in the presence of diesel pollution? International Biodeterioration & Biodegradation, 105, 58–65. doi:10.1016/j.ibiod.2015.08.012
  • Fan, X., Chang, W., Feng, F., & Song, F. (2018). Responses of photosynthesis-related parameters and chloroplast ultrastructure to atrazine in alfalfa (Medicago sativa L.) inoculated with arbuscular mycorrhizal fungi. Ecotoxicology and Environmental Safety, 166, 102–108. doi:10.1016/j.ecoenv.2018.09.030
  • Feng, G., Song, Y., Li, X., & Christie, P. (2003). Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Applied Soil Ecology, 22(2), 139–148. doi:10.1016/S0929-1393(02)00133-6
  • Fester, T. (2013). Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation. Microbial Biotechnology, 6(1), 80–84. doi:10.1111/j.1751-7915.2012.00357.x
  • Fester, T., Giebler, J., Wick, L. Y., Schlosser, D., & Kästner, M. (2014). Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Current Opinion in Biotechnology, 27, 168–175. doi:10.1016/j.copbio.2014.01.017
  • Franco‐Ramírez, A., Ferrera‐Cerrato, R., Varela‐Fregoso, L., … Alarcón, A. (2007). Arbuscular mycorrhizal fungi in chronically petroleum‐contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination. Journal of Basic Microbiology, 47, 378–383. doi:10.1002/jobm.200610293
  • Frey‐Klett, P., Garbaye, J., & Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. The New Phytologist, 176(1), 22–36. doi:10.1111/j.1469-8137.2007.02191.x
  • Gao, Y., Cheng, Z., Ling, W., & Huang, J. (2010). Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresource Technology, 101(18), 6895–6901. doi:10.1016/j.biortech.2010.03.122
  • Gao, Y., Li, Q., Ling, W., & Zhu, X. (2011). Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Journal of Hazardous Materials, 185(2–3), 703–709. doi:10.1016/j.jhazmat.2010.09.076
  • Gao, Y., Zhou, Z., Ling, W., Hu, X., & Chen, S. (2017). Glomalin-related soil protein enhances the availability of polycyclic aromatic hydrocarbons in soil. Soil Biology and Biochemistry, 107, 129–132. doi:10.1016/j.soilbio.2017.01.002
  • Gao, Y., Zong, J., Que, H., Zhou, Z., Xiao, M., & Chen, S. (2017). Inoculation with arbuscular mycorrhizal fungi increases glomalin-related soil protein content and PAH removal in soils planted with Medicago sativa L. Soil Biology and Biochemistry, 115, 148–151. doi:10.1016/j.soilbio.2017.08.023
  • Garcés-Ruiz, M., Senés-Guerrero, C., Declerck, S., & Cranenbrouck, S. (2017). Arbuscular mycorrhizal fungal community composition in Carludovica palmata, Costus scaber and Euterpe precatoria from weathered oil ponds in the Ecuadorian Amazon. Frontiers in Microbiology, 8, 2134. doi:10.3389/fmicb.2017.02134
  • Garcés-Ruiz, M., Senés-Guerrero, C., Declerck, S., & Cranenbrouck, S. (2018). Community composition of arbuscular mycorrhizal fungi associated with native plants growing in a petroleum‐polluted soil of the Amazon region of Ecuador. Microbiology Open, 8, e00703. doi:10.1002/mbo3.703
  • Gaspar, M., Cabello, M., Cazau, M., & Pollero, R. (2002). Effect of phenanthrene and Rhodotorula glutinis on arbuscular mycorrhizal fungus colonization of maize roots. Mycorrhiza, 12(2), 55–59. doi:10.1007/s00572-001-0147-4
  • Göhre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223(6), 1115–1122. doi:10.1007/s00425-006-0225-0
  • Gómez-Arroyo, S., Cortés-Eslava, J., Villalobos-Pietrini, R., Calderón-Segura, M. E., Flores-Márquez, A. R., & Espinosa-Aguirre, J. J. (2007). Differential mutagenic response of Salmonella typhimurium to the plant-metabolized organophosphorus insecticides, phoxim and azinphos methyl. Toxicology in Vitro, 21(5), 950–955. doi:10.1016/j.tiv.2007.01.027
  • Gomez-Eyles, J. L., Sizmur, T., Collins, C. D., & Hodson, M. E. (2011). Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environmental Pollution, 159(2), 616–622. doi:10.1016/j.envpol.2010.09.037
  • Habte, M., & Manjunath, A. (1988). Influence of phenamiphos on the vesicular-arbuscular mycorrhizal symbiosis in Leucaena leucocephala. Biology and Fertility of Soils, 5(4), 313–316. doi:10.1007/BF00262138
  • Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9(3), 177–192. doi:10.1038/nrmicro2519
  • Harrier, L. A., & Watson, C. A. (2004). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science, 60(2), 149–157. doi:10.1002/ps.820
  • Hassan, S. E.-D., Bell, T. H., Stefani, F. O. P., Denis, D., Hijri, M., & St-Arnaud, M. (2014). Contrasting the community structure of arbuscular mycorrhizal fungi from hydrocarbon-contaminated and uncontaminated soils following willow (Salix spp. L.) planting. PLoS One, 9(7), e102838. doi:10.1371/journal.pone.0102838
  • Hernández-Ortega, H. A., Alarcón, A., Ferrera-Cerrato, R., Zavaleta-Mancera, H. A., López-Delgado, H. A., & Mendoza-López, M. R. (2012). Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. Journal of Environmental Management, 95, S319–S324. doi:10.1016/j.jenvman.2011.02.015
  • Hickman, Z. A., & Reid, B. J. (2008). Earthworm assisted bioremediation of organic contaminants. Environment International, 34(7), 1072–1081. doi:10.1016/j.envint.2008.02.013
  • Hodge, A., Campbell, C. D., & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413(6853), 297–299. doi:10.1038/35095041
  • Huang, H., Zhang, S., Chen, B. D., Wu, N., Shan, X. Q., & Christy, P. (2006). Uptake of atrazine and cadmium from soil by maize (Zea mays L.) in association with the arbuscular mycorrhizal fungus Glomus etunicatum. Journal of Agricultural and Food Chemistry, 54(25), 9377–9382. doi:10.1021/jf061699g
  • Huang, H., Zhang, S., Shan, X. Q., Chen, B. D., Zhu, Y. G., & Bell, J. N. B. (2007). Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environmental Pollution, 146(2), 452–457. doi:10.1016/j.envpol.2006.07.001
  • Huang, H., Zhang, S., Wu, N., Luo, L., & Christie, P. (2009). Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biology and Biochemistry, 41(4), 726–734. doi:10.1016/j.soilbio.2009.01.009
  • Huang, J. C., Tang, M., Niu, Z. C., & Zhang, R. Q. (2007). Arbuscular mycorrhizal fungi in petroleum-contaminated soil in Suinign area of Sichuan Province. Chinese Journal of Ecology, 26, 1389–1392.
  • Huang, L. L., Li, S., & Tang, M. (2012). Arbuscular mycorrhizal fungi and glomalin in the rhizosphere of different plant species grown in oil—contaminated soil. Acta Botanica Boreali-Occidentalia Sinica, 32, 573–578.
  • Jallow, M., Awadh, D., Albaho, M., Devi, V., & Ahmad, N. (2017). Monitoring of pesticide residues in commonly used fruits and vegetables in Kuwait. International Journal of Environmental Research and Public Health, 14, 833. doi:10.3390/ijerph14080833
  • Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., & Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils 37, 1–16. doi:10.1007/s00374-002-0546-5
  • Joner, E. J., & Leyval, C. (2003a). Phytoremediation of organic pollutants using mycorrhizal plants: A new aspect of rhizosphere interactions. Agronomie, 23(5–6), 495–502. doi:10.1051/agro:2003021
  • Joner, E. J., & Leyval, C. (2003b). Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environmental Science & Technology, 37, 2371–2375. doi:10.1021/es020196y
  • Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80. doi:10.1016/j.envint.2013.07.019
  • Koide, R., & Kabir, Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist, 148(3), 511–517. doi:10.1046/j.1469-8137.2000.00776.x
  • Korade, D. L., & Fulekar, M. H. (2009). Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. Journal of Hazardous Materials, 172(2–3), 1344–1350. doi:10.1016/j.jhazmat.2009.08.002
  • Lagos, C., Larsen, J., Correa, E. S., Almonacid, L., Herrera, H., Fuentes, A., & Arriagada, C. (2018). Dual inoculation with mycorrhizal and saprotrophic fungi suppress the maize growth and development under phenanthrene exposure. Journal of Soil Science and Plant Nutrition, 18, 721–734. doi:10.4067/S0718-95162018005002102
  • Lavelle, P. (1988). Earthworm activities and the soil system. Biology and Fertility of Soils, 6(3), 237–251. doi:10.1007/BF00260820
  • Lenoir, I., Fontaine, J., Tisserant, B., Laruelle, F., & Sahraoui, A. L. H. (2017). Beneficial contribution of the arbuscular mycorrhizal fungus, Rhizophagus irregularis, in the protection of Medicago truncatula roots against benzo[a]pyrene toxicity. Mycorrhiza, 27(5), 465–412. doi:10.1007/s00572-017-0764-1
  • Lenoir, I., Sahraoui, A. L. H., & Fontaine, J. (2016). Arbuscular mycorrhizal fungal‐assisted phytoremediation of soil contaminated with persistent organic pollutants: A review. European Journal of Soil Science, 67(5), 624–640. doi:10.1111/ejss.12375
  • Lenoir, I., Sahraoui, A. L. H., Laruelle, F., Dalpé, Y., & Fontaine, J. (2016). Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil. Environmental Pollution, 213, 549–560. doi:10.1016/j.envpol.2016.02.056
  • Leyval, C., & Binet, P. (1998). Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants. Journal of Environment Quality, 27(2), 402–407. doi:10.2134/jeq1998.00472425002700020022x
  • Li, Z., Ma, Z., Kuijp, T. J. V. D., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. doi:10.1016/j.scitotenv.2013.08.090
  • Liu, A., & Dalpé, Y. (2009). Reduction in soil polycyclic aromatic hydrocarbons by arbuscular mycorrhizal leek plants. International Journal of Phytoremediation, 11(1), 39–52. doi:10.1080/15226510802363444
  • Liu, S., Luo, Y., Cao, Z., Wu, L., Ding, K., & Christie, P. (2004). Degradation of benzo[α]pyrene in soil with arbuscular mycorrhizal alfalfa. Environmental Geochemistry and Health, 26(2), 285–293. doi:10.1023/B:EGAH.0000039592.80489.e5
  • Lu, Y. F., & Lu, M. (2015). Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms. Journal of Hazardous Materials, 285, 535–541. doi:10.1016/j.jhazmat.2014.07.021
  • Lu, Y. F., Lu, M., Peng, F., Wan, Y., & Liao, M. H. (2014). Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms. Chemosphere, 106, 44–50. doi:10.1016/j.chemosphere.2013.12.089
  • Małachowska-Jutsz, A., & Kalka, J. (2010). Influence of mycorrhizal fungi on remediation of soil contaminated by petroleum hydrocarbons. Fresenius Environmental Bulletin, 19, 3217–3223.
  • Małachowska-Jutsz, A., Rudek, J., & Janosz, W. (2011). The effect of ribwort (Plantago lanceolata) and its myrorrhizas on the growth of microflora in soil contaminated with used engine oil. Archives of Environmental Protection, 37, 99–113.
  • Meier, S., Borie, F., Bolan, N., & Cornejo, P. (2012). Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Critical Reviews in Environmental Science and Technology, 42(7), 741–775. doi:10.1080/10643389.2010.528518
  • Miller, R. M., & Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In: Y. Kapulnik, & D. D. Douds (Eds.), Arbuscular mycorrhizas: Physiology and function (pp. 3–18). Netherlands: Springer.
  • Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology, 12, 563–569. doi:10.1111/j.1438-8677.2009.00308.x
  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Surfactant-enhanced remediation of contaminated soil: A review. Engineering Geology, 60(1–4), 371–380. doi:10.1016/S0013-7952(00)00117-4
  • Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429–448. doi:10.1016/j.biotechadv.2013.12.005
  • Nelson, S. D., & Khan, S. U. (1992). Uptake of atrazine by hyphae of Glomus vesicular-arbuscular mycorrhizae and root systems of corn (Zea mays L.). Weed Science, 40(1), 161–170. doi:10.1017/S0043174500057131
  • Oehl, F., Sieverding, E., Ineichen, K., Mäder, P., Boller, T., & Wiemken, A. (2003). Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Applied and Environmental Microbiology, 69(5), 2816–2824. doi:10.1128/AEM.69.5.2816-2824.2003
  • Porcel, R., Aroca, R., & Ruiz-Lozano, J. M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 32(1), 181–200. doi:10.1007/s13593-011-0029-x
  • Qin, H., Brookes, P. C., & Xu, J. (2016). Arbuscular mycorrhizal fungal hyphae alter soil bacterial community and enhance polychlorinated biphenyls dissipation. Frontiers in Microbiology, 7, 939. doi:10.3389/fmicb.2016.00939
  • Qin, H., Brookes, P. C., Xu, J., & Feng, Y. (2014). Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi. Environmental Science and Pollution Research, 21, 12790–12799. doi:10.1007/s11356-014-3231-y
  • Qin, H., Lin, X. G., Yin, R., Zhang, H. Y., & Wang, J. H. (2006). Influence of an arbuscular mycorrhizal fungi and two bacterial strains on DEHP degradation and growth of mung bean in soil. Acta Scientiae Circumstantiae, 26, 1651–1657.
  • Qin, H., Lin, X. G., Yin, R., Zhang, H. Y., & Wang, J. H. (2008). Effect of combined incubation of two bacteria strains and an arbuscular mycorrhizal fungi on DEHP degradation and growth of mung bean in red soil. Acta Pedologica Sinica, 45, 143–149. doi:10.3321/j.issn:0564-3929.2008.01.019
  • Rabie, G. H. (2005). Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. Mycobiology, 33(1), 41–50. doi:10.4489/MYCO.2005.33.1.041
  • Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385. doi:10.1016/j.envint.2019.01.067
  • Rajtor, M., & Piotrowska-Seget, Z. (2016). Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere, 162, 105–116. doi:10.1016/j.chemosphere.2016.07.071
  • Ren, C. G., Kong, C. C., Bian, B., Liu, W., Li, Y., Luo, Y. M., & Xie, Z. H. (2017). Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. International Journal of Phytoremediation, 19(9), 789–797. doi:10.1080/15226514.2017.1284755
  • Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. The New Phytologist, 171(1), 41–53. doi:10.1111/j.1469-8137.2006.01750.x
  • Rillig, M. C., Wright, S. F., Nichols, K. A., Schmidt, W. F., & Torn, M. S. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233(2), 167–177. doi:10.1023/A:1010364221169
  • Rinaudo, V., Bàrberi, P., Giovannetti, M., & van der Heijden, M. G. (2010). Mycorrhizal fungi suppress aggressive agricultural weeds. Plant and Soil, 333(1–2), 7–20. doi:10.1007/s11104-009-0202-z
  • Sainz, M., González‐Penalta, B., & Vilariño, A. (2006). Effects of hexachlorocyclohexane on rhizosphere fungal propagules and root colonization by arbuscular mycorrhizal fungi in Plantago lanceolata. European Journal of Soil Science, 57(1), 83–90. doi:10.1111/j.1365-2389.2005.00775.x
  • Sapbamrer, R., & Hongsibsong, S. (2014). Organophosphorus pesticide residues in vegetables from farms, markets, and a supermarket around Kwan Phayao Lake of Northern Thailand. Archives of Environmental Contamination and Toxicology, 67(1), 60–67. doi:10.1007/s00244-014-0014-x
  • Schmidt, S. N., Christensen, J. H., & Johnsen, A. R. (2010). Fungal PAH-metabolites resist mineralization by soil microorganisms. Environmental Science & Technology, 44, 1677–1682. doi:10.1021/es903415t
  • Schreiner, R. P., & Bethlenfalvay, G. J. (1995). Mycorrhizal interactions in sustainable agriculture. Critical Reviews in Biotechnology, 15(3–4), 271–285. doi:10.3109/07388559509147413
  • Siqueira, J. O., Safir, G. R., & Nair, M. G. (1991). VA-mycorrhizae and mycorrhiza stimulating isoflavonoid compounds reduce plant herbicide injury. Plant and Soil, 134(2), 233–242. doi:10.1007/BF00012041
  • Smith, S. E., Jakobsen, I., Grønlund, M., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156(3), 1050–1057. doi:10.1104/pp.111.174581
  • Song, F., Li, J., Fan, X., Zhang, Q., Wei, C., Yang, F., & Geng, G. (2016). Transcriptome analysis of Glomus mosseae/Medicago sativa mycorrhiza on atrazine stress. Scientific Reports, 6(1), 20245. doi:10.1038/srep20245
  • Syed, J. H., Alamdar, A., Mohammad, A., Ahad, K., Shabir, Z., Ahmed, H., … Ahmad, I. (2014). Pesticide residues in fruits and vegetables from Pakistan: A review of the occurrence and associated human health risks. Environmental Science and Pollution Research, 21(23), 13367–13393. doi:10.1007/s11356-014-3117-z
  • Tang, M., Chen, H., Huang, J. C., Tian, Z. Q., Coleman, D., Fu, S. L., & Zou, X. M. (2009). AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biology and Biochemistry, 41(5), 936–940. doi:10.1016/j.soilbio.2008.11.007
  • Teng, Y., Luo, Y., Sun, X., Tu, C., Xu, L., Liu, W., … Christie, P. (2010). Influence of arbuscular mycorrhiza and Rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: A field study. International Journal of Phytoremediation, 12(5), 516–533. doi:10.1080/15226510903353120
  • Teng, Y., Luo, Y. M., Gao, J., & Li, Z. G. (2008). Combined remediation effects of arbuscular mycorrhizal fungi-legumes-Rhizobium symbiosis on PCBs contaminated soils. Environmental Science, 29(10), 2925–2929. doi:10.3321/j.issn:0250-3301.2008.10.041
  • Teng, Y., Wang, X., Li, L., Li, Z., & Luo, Y. (2015). Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Frontiers in Plant Science, 6, 32. doi:10.3389/fpls.2015.00032
  • Tisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., … Gianinazzi-Pearson, V. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences, 110(50), 20117–20122. doi:10.1073/pnas.1313452110
  • Trindade, A. V., Siqueira, J. O., & Stürmer, S. L. (2006). Arbuscular mycorrhizal fungi in papaya plantations of Espirito Santo and Bahia, Brazil. Brazilian Journal of Microbiology, 37(3), 283–289. doi:10.1590/S1517-83822006000300016
  • Varma, A. (1999). Hydrolytic enzymes from arbuscular mycorrhizae: The current status. In V. Ajit & V. Hock (Eds.), Mycorrhiza: Structure, function, molecular biology and biotechnology (pp. 373–389). Berlin Heidelberg: Springer.
  • Veiga, R. S., Jansa, J., Frossard, E., & van der Heijden, M. G. (2011). Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS One, 6(12), e27825. doi:10.1371/journal.pone.0027825
  • Verdin, A., Sahraoui, A. L., Fontaine, J., Grandmougin-Ferjani, A., & Durand, R. (2006). Effects of anthracene on development of an arbuscular mycorrhizal fungus and contribution of the symbiotic association to pollutant dissipation. Mycorrhiza, 16(6), 397–405. doi:10.1007/s00572-006-0055-8
  • Wang, F. (2017). Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Critical Reviews in Environmental Science and Technology, 47(20), 1901–1957. doi:10.1080/10643389.2017.1400853
  • Wang, F. Y., Shi, Z. Y., Tong, R. J., & Xu, X. F. (2011). Dynamics of phoxim residues in green onion and soil as influenced by arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 185(1), 112–116. doi:10.1016/j.jhazmat.2010.09.004
  • Wang, F. Y., Tong, R. J., Shi, Z. Y., Xu, X. F., & He, X. H. (2011). Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils. PLoS One, 6(2), e16949. doi:10.1371/journal.pone.0016949
  • Wang, X., Teng, Y., Zhang, N., Christie, P., Li, Z., Luo, Y., & Wang, J. (2017). Rhizobial symbiosis alleviates polychlorinated biphenyls-induced systematic oxidative stress via brassinosteroids signaling in alfalfa. Science of the Total Environment, 592, 68–77. doi:10.1016/j.scitotenv.2017.03.066
  • Welbaum, G. E., Sturz, A. V., Dong, Z., & Nowak, J. (2004). Managing soil microorganisms to improve productivity of agro-ecosystems. Critical Reviews in Plant Sciences, 23(2), 175–193. doi:10.1080/07352680490433295
  • White, J. C., Ross, D. W., Gent, M. P., Eitzer, B. D., & Mattina, M. I. (2006). Effect of mycorrhizal fungi on the phytoextraction of weathered p,p-DDE by Cucurbita pepo. Journal of Hazardous Materials, 137(3), 1750–1757. doi:10.1016/j.jhazmat.2006.05.012
  • Whitfield Åslund, M. L., Lunney, A. I., Rutter, A., & Zeeb, B. A. (2010). Effects of amendments on the uptake and distribution of DDT in Cucurbita pepo ssp pepo plants. Environmental Pollution, 158(2), 508–513. doi:10.1016/j.envpol.2009.08.030
  • Wu, F., Yu, X., Wu, S., & Wong, M. (2014). Effects of inoculation of PAH-degrading bacteria and arbuscular mycorrhizal fungi on responses of ryegrass to phenanthrene and pyrene. International Journal of Phytoremediation, 16(2), 109–122. doi:10.1080/15226514.2012.759526
  • Wu, N., Huang, H., Zhang, S., Zhu, Y.-G., Christie, P., & Zhang, Y. (2009). Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus. Environmental Pollution, 157(5), 1613–1618. doi:10.1016/j.envpol.2008.12.022
  • Wu, N., Zhang, S., Huang, H., Shan, X., Christie, P., & Wang, Y. (2008). DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environmental Pollution, 151(3), 569–575. doi:10.1016/j.envpol.2007.04.005
  • Xu, L., Zhang, J., Yuan, Y., Liu, R., & Li, M. (2016). Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on remediation of soil polluted with methamidophos. Acta Pedologica Sinica, 53, 919–929. doi:10.11766/trxb201511090480
  • Xu, X. Q., Li, M., & Liu, R. J. (2009). A survey of arbuscular mycorrhizal fungal diversity in pesticide polluted soil. Journal of Qingdao Agricultural University (Natural Science), 26, 1–3. doi:10.3969/j.issn.1674-148X.2009.01.001
  • Xun, F., Xie, B., Liu, S., & Guo, C. (2015). Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research, 22, 598–608. doi:10.1007/s11356-014-3396-4
  • Yang, Z., Zong, J., Zhu, X., & Ling, W. (2016). Correlations of glomalin contents and PAHs removal in alfalfa-vegetated soils with inoculation of arbuscular mycorrhizal fungi. Journal of Agricultural Resources & Environment, 33, 349–354. doi:10.13254/j.jare.2016.0086
  • Yu, R., Liu, Q., Liu, J., Wang, Q., & Wang, Y. (2016). Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control, 60, 353–360. doi:10.1016/j.foodcont.2015.08.013
  • Yu, X., Wu, S., Wu, F., & Wong, M. (2011). Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. Journal of Hazardous Materials, 186(2–3), 1206–1217. doi:10.1016/j.jhazmat.2010.11.116
  • Zeng, Y. C., Li, Q. L., Gao, Y. Z., Ling, W. T., & Xiao, M. (2010). Effects of arbuscular mycorrhiza (AM) on residual and forms of polycyclic aromatic hydrocarbons in soils. Soils, 42, 106–110.
  • Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., … Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472–8483. doi:10.1007/s11356-013-1659-0
  • Zhang, X. H., Zhu, Y. G., Lin, A. J., Chen, B. D., Smith, S. E., & Smith, F. A. (2006). Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. Chemosphere, 64(10), 1627–1632. doi:10.1016/j.chemosphere.2006.01.034
  • Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z., & McGrath, S. P. (2014). Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 49, 750–759. doi:10.1021/es5047099
  • Zhou, X., Zhou, J., Xiang, X., Cébron, A., Béguiristain, T., & Leyval, C. (2013). Impact of four plant species and arbuscular mycorrhizal (AM) fungi on polycyclic aromatic hydrocarbon (PAH) dissipation in spiked soil. Polish Journal of Environmental Studies, 22, 1239–1245.
  • Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 33(3), 406–413. doi:10.1016/j.envint.2006.12.005
  • Zhuo, S., Su, J. X., Li, H. S., Li, Y. M., He, H. Z., Wen, X. Y., & Li, Y. J. (2011). Combined remediation effects of ryegrass-mycorrhizal fungi-earthworms on PCB contaminated soil. Acta Scientiae Circumstantiae, 31, 150–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.