139
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Addressing the intersection of COVID-19 and metal nanoparticle use: Risks and control strategies

, , , , ORCID Icon &
Pages 463-485 | Published online: 31 Aug 2023

References

  • Abdellatif, A. A. H., & Alsowinea, A. F. (2021). Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotechnology Reviews, 10(1), 1941–1977. https://doi.org/10.1515/ntrev-2021-0115
  • Abo-Zeid, Y., Ismail, N. S. M., McLean, G. R., & Hamdy, N. M. (2020). A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. European Journal of Pharmaceutical Sciences, 153, 105465. https://doi.org/10.1016/j.ejps.2020.105465
  • Adam, V., Loyaux-Lawniczak, S., & Quaranta, G. (2015). Characterization of engineered TiO2 nanomaterials in a life cycle and risk assessments perspective. Environmental Science and Pollution Research International, 22(15), 11175–11192. https://doi.org/10.1007/s11356-015-4661-x
  • Adyel, T. M. (2020). Accumulation of plastic waste during COVID-19. Science (New York, N.Y.), 369(6509), 1314–1315. https://doi.org/10.1126/science.abd9925
  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2005). Extra-/Intracellular Biosynthesis of Gold Nanoparticles by an Alkalotolerant Fungus, Trichothecium sp. Journal of Biomedical Nanotechnology, 1(1), 47–53. https://doi.org/10.1166/jbn.2005.012
  • Aithal, S., Mishriki, S., Gupta, R., Sahu, R. P., Botos, G., Tanvir, S., Hanson, R. W., & Puri, I. K. (2022). SARS-CoV-2 detection with aptamer-functionalized gold nanoparticles. Talanta, 236, 122841. https://doi.org/10.1016/j.talanta.2021.122841
  • Anand, B., Kim, K.-H., Sonne, C., & Bhardwaj, N. (2022). Advanced sanitation products infused with silver nanoparticles for viral protection and their ecological and environmental consequences. Environmental Technology & Innovation, 28, 102924. https://doi.org/10.1016/j.eti.2022.102924
  • Anonymous. (2020). Shortage of personal protective equipment endangers health workers. Bulletin of the World Health Organization, 98(4), 233–233.
  • Aragaw, T. A. (2020). Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Marine Pollution Bulletin, 159, 111517. https://doi.org/10.1016/j.marpolbul.2020.111517
  • Asmathunisha, N., & Kathiresan, K. (2013). A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces. B, Biointerfaces, 103, 283–287. https://doi.org/10.1016/j.colsurfb.2012.10.030
  • Badruddoza, A. Z. M., Shawon, Z. B. Z., Rahman, M. T., Hao, K. W., Hidajat, K., & Uddin, M. S. (2013). Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chemical Engineering Journal, 225, 607–615. https://doi.org/10.1016/j.cej.2013.03.114
  • Bahrami, A., Arabestani, M. R., Taheri, M., Farmany, A., Zadeh, F. N., Hosseini, S. M., Nozari, H., & Nouri, F. (2022). Exploring the Role of Heavy Metals and Their Derivatives on the Pathophysiology of COVID-19. Biological Trace Element Research, 200(6), 2639–2650. https://doi.org/10.1007/s12011-021-02893-x
  • Barata-Silva, C., Vicentini-Neto, S. A., Magalhaes, C. D., Jacob, S., do, C., Moreira, J. C., & Gobbo dos Santos, L. M, Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brasil. (2021). Quality evaluation of masks marketed in Brazil during the COVID-19 pandemic for the presence of silver and silver nanoparticles. Vigilância Sanitária em Debate, 9(1), 29–35. https://doi.org/10.22239/2317-269x.01766
  • Bellan, L. M., Wu, D., & Langer, R. S. (2011). Current trends in nanobiosensor technology. Wiley Interdisciplinary Reviews, 3(3), 229–246. https://doi.org/10.1002/wnan.136
  • Blosi, M., Costa, A. L., Ortelli, S., Belosi, F., Ravegnani, F., Varesano, A., Tonetti, C., Zanoni, I., & Vineis, C. (2021). Polyvinyl alcohol/silver electrospun nanofibers: Biocidal filter media capturing virus-size particles. Journal of Applied Polymer Science, 138(46), e51380. https://doi.org/10.1002/app.51380
  • Botelho, C. M., Fernandes, M. M., Souza, J. M., Dias, N., Sousa, A. M., Teixeira, J. A., Fangueiro, R., & Zille, A. (2021). New textile for personal protective equipment-plasma chitosan/silver nanoparticles nylon fabric. Fibers, 9(1), 3. https://doi.org/10.3390/fib9010003
  • Buyuksunetci, Y. T., Citil, B. E., Tapan, U., & Anik, U. (2021). Development and application of a SARS-CoV-2 colorimetric biosensor based on the peroxidase-mimic activity of gamma-Fe2O3 nanoparticles. Microchimica Acta, 188(10), 335. https://doi.org/10.1007/s00604-021-04989-6
  • Chandra, H., Kumari, P., Bontempi, E., & Yadav, S. (2020). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 24, 101518. https://doi.org/10.1016/j.bcab.2020.101518
  • Chao, L., Wang, Y., Chen, S., & Li, Y. (2021). Preparation and adsorption properties of chitosan-modified magnetic nanoparticles for removal of mo (VI) ions. Polish Journal of Environmental Studies, 30(3), 2489–2498. https://doi.org/10.15244/pjoes/130039
  • Chua, M. H., Cheng, W., Goh, S. S., Kong, J., Li, B., Lim, J. Y. C., Mao, L., Wang, S., Xue, K., Yang, L., Ye, E., Zhang, K., Cheong, W. C. D., Tan, B. H., Li, Z., Tan, B. H., & Loh, X. J. (2020). Face masks in the New COVID-19 normal: Materials, testing, and perspectives. Research (Washington, D.C.), 2020, 7286735. https://doi.org/10.34133/2020/7286735
  • Cordova, Muhammad Reza, Nurhati, Intan Suci, Riani, Etty, Iswari, Marindah Yulia, Nurhasanah,. (2021). Unprecedented plastic-made personal protective equipment (PPE) debris in river outlets into Jakarta Bay during COVID-19 pandemic. Chemosphere, 268, 129360. https://doi.org/10.1016/j.chemosphere.2020.129360
  • Czyżowska, A., & Barbasz, A. (2019). Effect of ZnO, TiO2, Al2O3, and ZrO2 nanoparticles on wheat callus cells. Acta Biochimica Polonica, 66(3), 365–370. https://doi.org/10.18388/abp.2019_2836
  • De Pasquale, I., Lo Porto, C., Dell’Edera, M., Curri, M. L., & Comparelli, R. (2021). TiO2-based nanomaterials assisted photocatalytic treatment for virus inactivation: Perspectives and applications. Current Opinion in Chemical Engineering, 34, 100716. https://doi.org/10.1016/j.coche.2021.100716
  • Deep, A., Sharma, A. L., Mohanta, G. C., Kumar, P., & Kim, K.-H. (2016). A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries. Waste Management (New York, N.Y.), 51, 190–195. https://doi.org/10.1016/j.wasman.2016.01.033
  • Dhama, K., Patel, S. K., Kumar, R., Masand, R., Rana, J., Yatoo, M. I., Tiwari, R., Sharun, K., Mohapatra, R. K., Natesan, S., Dhawan, M., Ahmad, T., Bin Emran, T., Malik, Y. S., & Harapan, H. (2021). The role of disinfectants and sanitizers during COVID-19 pandemic: Advantages and deleterious effects on humans and the environment. Environmental Science and Pollution Research International, 28(26), 34211–34228. https://doi.org/10.1007/s11356-021-14429-w
  • Djellabi, R., Basilico, N., Delbue, S., D’Alessandro, S., Parapini, S., Cerrato, G., Laurenti, E., Falletta, E., & Bianchi, C. L. (2021). Oxidative inactivation of SARS-CoV-2 on photoactive AgNPs@TiO2 ceramic tiles. International Journal of Molecular Sciences, 22(16), 8836. https://doi.org/10.3390/ijms22168836
  • Domingues, C., Santos, A., Alvarez-Lorenzo, C., Concheiro, A., Jarak, I., Veiga, F., Barbosa, I., Dourado, M., & Figueiras, A. (2022). Where is nano today and where is it headed? A review of nanomedicine and the dilemma of nanotoxicology. ACS Nano, 16(7), 9994–10041. https://doi.org/10.1021/acsnano.2c00128
  • Duan, Y., Wang, S., Zhang, Q., Gao, W., & Zhang, L. (2021). Nanoparticle approaches against SARS-CoV-2 infection. Current Opinion in Solid State & Materials Science, 25(6), 100964. https://doi.org/10.1016/j.cossms.2021.100964
  • Farfan-Castro, S., Garcia-Soto, M. J., Comas-Garcia, M., Arevalo-Villalobos, J., Palestino, G., Gonzalez-Ortega, O., & Rosales-Mendoza, S. (2021). Synthesis and immunogenicity assessment of a gold nanoparticle conjugate for the delivery of a peptide from SARS-CoV-2. Nanomedicine, 34, 102372. https://doi.org/10.1016/j.nano.2021.102372
  • Ferdous, Z., Al-Salam, S., Greish, Y. E., Ali, B. H., & Nemmar, A. (2019). Pulmonary exposure to silver nanoparticles impairs cardiovascular homeostasis: Effects of coating, dose and time. Toxicology and Applied Pharmacology, 367, 36–50. https://doi.org/10.1016/j.taap.2019.01.006
  • Garcia-Torra, V., Cano, A., Espina, M., Ettcheto, M., Camins, A., Barroso, E., Vazquez-Carrera, M., Garcia, M. L., Sanchez-Lopez, E., & Souto, E. B. (2021). State of the art on toxicological mechanisms of metal and metal oxide nanoparticles and strategies to reduce toxicological risks. Toxics, 9(8), 195. https://doi.org/10.3390/toxics9080195
  • Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., & Jose-Yacaman, M. (2003). Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 19(4), 1357–1361. https://doi.org/10.1021/la020835i
  • Gardea-Torresdey, J. L., Tiemann, K. J., Parsons, J. G., Gamez, G., & Yacaman, M. J. (2002). Characterization of trace level Au(III) binding to alfalfa biomass (Medicago sativa) by GFAAS. Advances in Environmental Research, 6(3), 313–323. https://doi.org/10.1016/S1093-0191(01)00064-8
  • Gartner, T. E., & Jayaraman, A. (2019). Modeling and simulations of polymers: A roadmap. Macromolecules, 52(3), 755–786. https://doi.org/10.1021/acs.macromol.8b01836
  • Gerhardt, K. E., Gerwing, P. D., & Greenberg, B. M. (2017). Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 256, 170–185. https://doi.org/10.1016/j.plantsci.2016.11.016
  • Gharpure, S., & Ankamwar, B. (2021). Use of nanotechnology in combating coronavirus. 3 Biotech, 11(7), 358. https://doi.org/10.1007/s13205-021-02905-6
  • Gomez-Pastora, J., Bringas, E., & Ortiz, I. (2014). Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chemical Engineering Journal, 256, 187–204. https://doi.org/10.1016/j.cej.2014.06.119
  • Greulich, C., Braun, D., Peetsch, A., Diendorf, J., Siebers, B., Epple, M., & Köller, M. (2012). The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Advances, 2(17), 6981–6987. https://doi.org/10.1039/c2ra20684f
  • Hamida, R. S., Ali, M. A., Redhwan, A., & Bin-Meferij, M. M. (2020). Cyanobacteria - a promising platform in green nanotechnology: A review on nanoparticles fabrication and their prospective applications. International Journal of Nanomedicine, 15, 6033–6066. https://doi.org/10.2147/IJN.S256134
  • Hamouda, R. A., Hussein, M. H., Abo-Elmagd, R. A., & Bawazir, S. S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports, 9(1), 13071. https://doi.org/10.1038/s41598-019-49444-y
  • Haverkamp, R. G., & Marshall, A. T. (2009). The mechanism of metal nanoparticle formation in plants: Limits on accumulation. Journal of Nanoparticle Research, 11(6), 1453–1463. https://doi.org/10.1007/s11051-008-9533-6
  • Hawthorne, J., Musante, C., Sinha, S. K., & White, J. C. (2012). Accumulation and phytotoxicity of engineered nanoparticles to cucurbita pepo. International Journal of Phytoremediation, 14(4), 429–442. https://doi.org/10.1080/15226514.2011.620903
  • Hu, J., & Shipley, H. J. (2013). Regeneration of spent TiO2 nanoparticles for Pb (II), Cu (II), and Zn (II) removal. Environmental Science and Pollution Research International, 20(8), 5125–5137. https://doi.org/10.1007/s11356-013-1502-7
  • Huang, Q., Zhang, J., Zhang, Y., Timashev, P., Ma, X., & Liang, X.-J. (2020). Adaptive changes induced by noble-metal nanostructures in vitro and in vivo. Theranostics, 10(13), 5649–5670. https://doi.org/10.7150/thno.42569
  • Huang, Z., Wang, Q., Guo, Z., Xu, L., Liu, D., Ding, Q., & Gu, N. (2013). Rapid synthesis of high-stable silver nanoparticles by electrochemical method. Nanoscience and Nanotechnology Letters, 5(2), 232–236. https://doi.org/10.1166/nnl.2013.1494
  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650. https://doi.org/10.1039/c1gc15386b
  • Johnston, H. J., Hutchison, G., Christensen, F. M., Peters, S., Hankin, S., & Stone, V. (2010). A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxicology, 40(4), 328–346. https://doi.org/10.3109/10408440903453074
  • Kar, B., Pradhan, D., Mishra, P., Bhuyan, S. K., Ghosh, G., & Rath, G. (2022). Exploring the potential of metal nanoparticles as a possible therapeutic adjunct for Covid-19 infection. Proceedings of the National Academy of Sciences, India. Section B, 92(3), 511–521. https://doi.org/10.1007/s40011-022-01371-1
  • Karabasz, A., Szczepanowicz, K., Cierniak, A., Mezyk-Kopec, R., Dyduch, G., Szczęch, M., Bereta, J., & Bzowska, M. (2019). In vivo studies on pharmacokinetics, toxicity and immunogenicity of polyelectrolyte nanocapsules functionalized with two different polymers: Poly-L-glutamic acid or PEG. International Journal of Nanomedicine, 14, 9587–9602. https://doi.org/10.2147/IJN.S230865
  • Keller, A. A., McFerran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6), 1692. https://doi.org/10.1007/s11051-013-1692-4
  • Khoshnevisan, K., Maleki, H., & Baharifar, H. (2021). Nanobiocide based-silver nanomaterials upon coronaviruses: Approaches for preventing viral infections. Nanoscale Research Letters, 16(1), 100. https://doi.org/10.1186/s11671-021-03558-3
  • Kim, E., Lee, J. H., Kim, J. K., Lee, G. H., Ahn, K., Park, J. D., & Yu, I. J. (2015). Case study on risk evaluation of silver nanoparticle exposure from antibacterial sprays containing silver nanoparticles. Journal of Nanomaterials, 2015, 1–8. https://doi.org/10.1155/2015/346586
  • Klaunig, J. E., Kamendulis, L. M., & Hocevar, B. A. (2010). Oxidative stress and oxidative damage in carcinogenesis. Toxicologic Pathology, 38(1), 96–109. https://doi.org/10.1177/0192623309356453
  • Kumar, S., Karmacharya, M., Joshi, S. R., Gulenko, O., Park, J., Kim, G.-H., & Cho, Y.-K. (2021). Photoactive antiviral face mask with self-sterilization and reusability. Nano Letters, 21(1), 337–343. https://doi.org/10.1021/acs.nanolett.0c03725
  • Kurdekar, A., Chunduri, L. A. A., Haleyurgirisetty, M. K., Hewlett, I. K., & Kamisetti, V. (2019). Sub-picogram level sensitivity in HIV diagnostics achieved with the europium nanoparticle immunoassay through metal enhanced fluorescence. Nanoscale Advances, 1(1), 273–280. https://doi.org/10.1039/c8na00019k
  • Li, Y., Wong, T., Chung, J., Guo, Y. P., Hu, J. Y., Guan, Y. T., Yao, L., Song, Q. W., & Newton, E. (2006). In vivo protective performance of N95 respirator and surgical facemask. American Journal of Industrial Medicine, 49(12), 1056–1065. https://doi.org/10.1002/ajim.20395
  • Liu, K., He, Z., Byrne, H. J., Curtin, J. F., & Tian, F. (2018). Investigating the role of gold nanoparticle shape and size in their toxicities to fungi. International Journal of Environmental Research and Public Health, 15(5), 998. https://doi.org/10.3390/ijerph15050998
  • Liu, N., Qu, G., Wen, R., Liu, X., Wang, Y., Gao, J., Yin, Y., Shi, J., Zhou, Q., He, B., Hu, L., & Jiang, G. (2022). Occurrence of silver-containing particles in rat brains upon intranasal exposure of silver nanoparticles. Metallomics, 14(1), mfab077. https://doi.org/10.1093/mtomcs/mfab077
  • Ma, L., Yin, L., Li, X., Chen, S., Peng, L., Liu, G., Ye, S., Zhang, W., & Man, S. (2022). A smartphone-based visual biosensor for CRISPR-Cas powered SARS-CoV-2 diagnostics. Biosensors & Bioelectronics, 195, 113646. https://doi.org/10.1016/j.bios.2021.113646
  • Maduray, K., & Parboosing, R. (2021). Metal nanoparticles: A promising treatment for viral and arboviral infections. Biological Trace Element Research, 199(8), 3159–3176. https://doi.org/10.1007/s12011-020-02414-2
  • Mahana, A., Guliy, O. I., & Mehta, S. K. (2021). Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges. Ecotoxicology and Environmental Safety, 208, 111662. https://doi.org/10.1016/j.ecoenv.2020.111662
  • Malaczewska, J. (2014). Impact of noble metal nanoparticles on the immune system of animals. Medycyna Weterynaryjna-Veterinary Medicine-Science and Practice, 70(4), 204–208.
  • Mastro, M. A., Hardy, A. W., Boasso, A., Shearer, G. M., Eddy, C. R., & Kub, F. J. (2010). Non-toxic inhibition of HIV-1 replication with silver-copper nanoparticles. Medicinal Chemistry Research, 19(9), 1074–1081. https://doi.org/10.1007/s00044-009-9253-1
  • Matsuura, R., Lo, C.-W., Wada, S., Somei, J., Ochiai, H., Murakami, T., Saito, N., Ogawa, T., Shinjo, A., Benno, Y., Nakagawa, M., Takei, M., & Aida, Y. (2021). SARS-CoV-2 disinfection of air and surface contamination by TiO2 photocatalyst-mediated damage to viral morphology, RNA, and protein. Viruses, 13(5), 942. https://doi.org/10.3390/v13050942
  • Medhi, R., Srinoi, P., Ngo, N., Tran, H.-V., & Lee, T. R. (2020). Nanoparticle-based strategies to combat COVID-19. ACS Applied Nano Materials, 3(9), 8557–8580. https://doi.org/10.1021/acsanm.0c01978
  • Mehranfar, A., & Izadyar, M. (2020). Theoretical design of functionalized gold nanoparticles as antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The Journal of Physical Chemistry Letters, 11(24), 10284–10289. https://doi.org/10.1021/acs.jpclett.0c02677
  • Mironyuk, I. F., Soltys, L. M., Tatarchuk, T. R., & Savka, K. O. (2020). Methods of titanium dioxide synthesis. Physics and Chemistry of Solid State, 21(3), 462–477. https://doi.org/10.15330/pcss.21.3.462-477
  • Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews. Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/s41573-020-0090-8
  • Mitrano, D. M., & Nowack, B. (2017). The need for a life-cycle based aging paradigm for nanomaterials: Importance of real-world test systems to identify realistic particle transformations. Nanotechnology, 28(7), 072001. https://doi.org/10.1088/1361-6528/28/7/072001
  • Mitrano, D. M., Mehrabi, K., Dasilva, Y. A. R., & Nowack, B. (2017). Mobility of metallic (nano)particles in leachates from landfills containing waste incineration residues. Environmental Science, 4(2), 480–492. https://doi.org/10.1039/C6EN00565A
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • MubarakAli, D., Thajuddin, N., Jeganathan, K., & Gunasekaran, M. (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces. B, Biointerfaces, 85(2), 360–365. https://doi.org/10.1016/j.colsurfb.2011.03.009
  • Muzata, T. S., Gebrekrstos, A., & Ray, S. S. (2021). Recent progress in modified polymer-based PPE in fight against COVID-19 and beyond. ACS Omega, 6(43), 28463–28470. https://doi.org/10.1021/acsomega.1c04754
  • Nasrollahzadeh, M., & Sajadi, S. M. (2015). Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteradena Jaub root extract and evaluation of their stability. Ceramics International, 41(10), 14435–14439. https://doi.org/10.1016/j.ceramint.2015.07.079
  • Nowack, B., Boldrin, A., Caballero, A., Hansen, S. F., Gottschalk, F., Heggelund, L., Hennig, M., Mackevica, A., Maes, H., Navratilova, J., Neubauer, N., Peters, R., Rose, J., Schäffer, A., Scifo, L., van Leeuwen, S. v., von der Kammer, F., Wohlleben, W., Wyrwoll, A., & Hristozov, D. (2016). Meeting the needs for released nanomaterials required for further testing-the SUN approach. Environmental Science & Technology, 50(6), 2747–2753. https://doi.org/10.1021/acs.est.5b04472
  • Nzediegwu, C., & Chang, S. X. (2020). Improper solid waste management increases potential for COVID-19 spread in developing countries. Resources, Conservation, and Recycling, 161, 104947. https://doi.org/10.1016/j.resconrec.2020.104947
  • Okuku, E., Kiteresi, L., Owato, G., Otieno, K., Mwalugha, C., Mbuche, M., Gwada, B., Nelson, A., Chepkemboi, P., Achieng, Q., Wanjeri, V., Ndwiga, J., Mulupi, L., & Omire, J. (2021). The impacts of COVID-19 pandemic on marine litter pollution along the Kenyan Coast: A synthesis after 100 days following the first reported case in Kenya. Marine Pollution Bulletin, 162, 111840. https://doi.org/10.1016/j.marpolbul.2020.111840
  • Park, S., Sung, H. K., & Kim, Y. (2016). Green synthesis of metal nanoparticles using sprout plants: Pros and cons. Journal of Nanoscience and Nanotechnology, 16(5), 4444–4449. https://doi.org/10.1166/jnn.2016.10970
  • Park, T. J., Lee, S. Y., Lee, S. J., Park, J. P., Yang, K. S., Lee, K.-B., Ko, S., Park, J. B., Kim, T., Kim, S. K., Shin, Y. B., Chung, B. H., Ku, S.-J., Kim, D. H., & Choi, I. S. (2006). Protein nanopatterns and biosensors using gold binding polypeptide as a fusion partner. Analytical Chemistry, 78(20), 7197–7205. https://doi.org/10.1021/ac060976f
  • Peters, R. J. B., van Bemmel, G., Milani, N. B. L., den Hertog, G. C. T., Undas, A. K., van der Lee, M., & Bouwmeester, H. (2018). Detection of nanoparticles in Dutch surface waters. The Science of the Total Environment, 621, 210–218. https://doi.org/10.1016/j.scitotenv.2017.11.238
  • Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9), 1109. https://doi.org/10.1007/s11051-012-1109-9
  • Pollard, Z. A., Karod, M., & Goldfarb, J. L. (2021). Metal leaching from antimicrobial cloth face masks intended to slow the spread of COVID-19. Scientific Reports, 11(1), 19216. https://doi.org/10.1038/s41598-021-98577-6
  • Pramanik, A., Gao, Y., Patibandla, S., Mitra, D., McCandless, M. G., Fassero, L. A., Gates, K., Tandon, R., & Ray, P. C. (2021). The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles. Nanoscale Advances, 3(6), 1588–1596. https://doi.org/10.1039/d0na01007c
  • Prata, J. C., Silva, A. L. P., Duarte, A. C., & Rocha-Santos, T. (2021). Disposable over reusable face masks: Public safety or environmental disaster? Environments, 8(4), 31. https://doi.org/10.3390/environments8040031
  • Pujalté, I., Passagne, I., Daculsi, R., de Portal, C., Ohayon-Courtès, C., & L’Azou, B. (2015). Cytotoxic effects and cellular oxidative mechanisms of metallic nanoparticles on renal tubular cells: Impact of particle solubility. Toxicology Research, 4(2), 409–422. https://doi.org/10.1039/C4TX00184B
  • Ragelle, H., Danhier, F., Preat, V., Langer, R., & Anderson, D. G. (2017). Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opinion on Drug Delivery, 14(7), 851–864. https://doi.org/10.1080/17425247.2016.1244187
  • Rasmi, Y., Saloua, K. S., Nemati, M., & Choi, J. R. (2021). Recent progress in nanotechnology for COVID-19 prevention, diagnostics and treatment. Nanomaterials (Basel, Switzerland), 11(7), 1788. https://doi.org/10.3390/nano11071788
  • Ratan, Z. A., Mashrur, F. R., Chhoan, A. P., Shahriar, S. M., Haidere, M. F., Runa, N. J., Kim, S., Kweon, D.-H., Hosseinzadeh, H., & Cho, J. Y. (2021). Silver nanoparticles as potential antiviral agents. Pharmaceutics, 13(12), 2034. https://doi.org/10.3390/pharmaceutics13122034
  • Riley, R. S., June, C. H., Langer, R., & Mitchell, M. J. (2019). Delivery technologies for cancer immunotherapy. Nature Reviews. Drug Discovery, 18(3), 175–196. https://doi.org/10.1038/s41573-018-0006-z
  • Roma, J., Matos, A. R., Vinagre, C., & Duarte, B. (2020). Engineered metal nanoparticles in the marine environment: A review of the effects on marine fauna. Marine Environmental Research, 161, 105110. https://doi.org/10.1016/j.marenveres.2020.105110
  • Rosenbaum, R. K., Bachmann, T. M., Gold, L. S., Huijbregts, M. A. J., Jolliet, O., Juraske, R., Koehler, A., Larsen, H. F., MacLeod, M., Margni, M., McKone, T. E., Payet, J., Schuhmacher, M., van de Meent, D., & Hauschild, M. Z. (2008). USEtox-the UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. The International Journal of Life Cycle Assessment, 13(7), 532–546. https://doi.org/10.1007/s11367-008-0038-4
  • Rosenbaum, R. K., Margni, M., & Jolliet, O. (2007). A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. Environment International, 33(5), 624–634. https://doi.org/10.1016/j.envint.2007.01.004
  • Roy, K., Sarkar, C. K., & Ghosh, C. K. (2014). Green synthesis of silver nanoparticles using fruit extract of malus domestica and study of its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures, 9(3), 1137–1146.
  • Salieri, B., Turner, D. A., Nowack, B., & Hischier, R. (2018). Life cycle assessment of manufactured nanomaterials: Where are we? NanoImpact, 10, 108–120. https://doi.org/10.1016/j.impact.2017.12.003
  • Santhoshkumar, T., Rahuman, A. A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A. V., Velayutham, K., Thomas, J., Venkatesan, J., & Kim, S.-K. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7(12), 968–976. https://doi.org/10.1016/S1995-7645(14)60171-1
  • Setua, P., Pramanik, R., Sarkar, S., Ghatak, C., Rao, V. G., Sarkar, N., & Das, S. K. (2011). Synthesis of silver nanoparticle in imidazolium and pyrolidium based ionic liquid reverse micelles: A step forward in nanostructure inorganic material in room temperature ionic liquid field. Journal of Molecular Liquids, 162(1), 33–37. https://doi.org/10.1016/j.molliq.2011.05.015
  • Shiny, K. S., & Sundararaj, R. (2021). Biologically synthesised copper oxide and zinc oxide nanoparticle formulation as an environmentally friendly wood protectant for the management of wood borer, lyctus africanus, lyctus africanus. Maderas-Ciencia Y Tecnologia, 23, 47. https://doi.org/10.4067/s0718-221x2021000100447
  • Silva, A. L. P., Prata, J. C., Mouneyrac, C., Barcelo, D., Duarte, A. C., & Rocha-Santos, T. (2021). Risks of Covid-19 face masks to wildlife: Present and future research needs. The Science of the Total Environment, 792, 148505. https://doi.org/10.1016/j.scitotenv.2021.148505
  • Sindhwani, S., & Chan, W. C. W. (2021). Nanotechnology for modern medicine: Next step towards clinical translation. Journal of Internal Medicine, 290(3), 486–498. https://doi.org/10.1111/joim.13254
  • Singh, L., Kruger, H. G., Maguire, G. E. M., Govender, T., & Parboosing, R. (2017). The role of nanotechnology in the treatment of viral infections. Therapeutic Advances in Infectious Disease, 4(4), 105–131. https://doi.org/10.1177/2049936117713593
  • Sivasankarapillai, V. S., Pillai, A. M., Rahdar, A., Sobha, A. P., Das, S. S., Mitropoulos, A. C., Mokarrar, M. H., & Kyzas, G. Z. (2020). On facing the SARS-CoV-2 (COVID-19) with combination of nanomaterials and medicine: Possible strategies and first challenges. Nanomaterials (Basel, Switzerland), 10(5), 852. https://doi.org/10.3390/nano10050852
  • Soltys, L., Olkhovyy, O., Tatarchuk, T., & Naushad, M. (2021). Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials. Magnetochemistry, 7(11), 145. https://doi.org/10.3390/magnetochemistry7110145
  • Su, E., Yang, M., Ning, C., Ma, X., & Deng, S. (2018). Magnetic combined cross-linked enzyme aggregates (Combi-CLEAs) for cofactor regeneration in the synthesis of chiral alcohol. Journal of Biotechnology, 271, 1–7. https://doi.org/10.1016/j.jbiotec.2018.02.007
  • Subramaniam, V. D., Prasad, S. V., Banerjee, A., Gopinath, M., Murugesan, R., Marotta, F., Sun, X.-F., & Pathak, S. (2019). Health hazards of nanoparticles: Understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug and Chemical Toxicology, 42(1), 84–93. https://doi.org/10.1080/01480545.2018.1491987
  • Sullivan, G. L., Delgado-Gallardo, J., Watson, T. M., & Sarp, S. (2021). An investigation into the leaching of micro and nano particles and chemical pollutants from disposable face masks—Linked to the COVID-19 pandemic. Water Research, 196, 117033. https://doi.org/10.1016/j.watres.2021.117033
  • Taghizadeh, S.-M., Morowvat, M. H., Negahdaripour, M., Ebrahiminezhad, A., & Ghasemi, Y. (2021). Biosynthesis of metals and metal oxide nanoparticles through microalgal nanobiotechnology: Quality control aspects. BioNanoScience, 11(1), 209–226. https://doi.org/10.1007/s12668-020-00805-2
  • Tangaa, S. R., Selck, H., Winther-Nielsen, M., & Khan, F. R. (2016). Trophic transfer of metal-based nanoparticles in aquatic environments: A review and recommendations for future research focus. Environmental Science, 3(5), 966–981. https://doi.org/10.1039/C5EN00280J
  • Teirumnieks, E., Balchev, I., Ghalot, R. S., & Lazov, L. (2021). Antibacterial and anti-viral effects of silver nanoparticles in medicine against COVID-19-a review. Laser Physics, 31(1), 013001. https://doi.org/10.1088/1555-6611/abc873
  • Ullah, A., Heng, S., Munis, M. F. H., Fahad, S., & Yang, X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117, 28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001
  • Velmurugan, P., Sivakumar, S., Young-Chae, S., Seong-Ho, J., Pyoung-In, Y., Jeong-Min, S., & Sung-Chul, H. (2015). Synthesis and characterization comparison of peanut shell extract silver nanoparticles with commercial silver nanoparticles and their antifungal activity. Journal of Industrial and Engineering Chemistry, 31, 51–54. https://doi.org/10.1016/j.jiec.2015.06.031
  • Verleysen, E., Ledecq, M., Siciliani, L., Cheyns, K., Vleminckx, C., Blaude, M.-N., De Vos, S., Brassinne, F., Van Steen, F., Nkenda, R., Machiels, R., Waegeneers, N., Van Loco, J., & Mast, J. (2022). Titanium dioxide particles frequently present in face masks intended for general use require regulatory control. Scientific Reports, 12(1), 2529. https://doi.org/10.1038/s41598-022-06605-w
  • Wang, Z., Wang, Y., Yu, C., Zhao, Y., Fan, M., & Gao, B. (2018). The removal of silver nanoparticle by titanium tetrachloride and modified sodium alginate composite coagulants: Floc properties, membrane fouling, and floc recycle. Environmental Science and Pollution Research International, 25(21), 21058–21069. https://doi.org/10.1007/s11356-018-2240-7
  • World Health Organization. (2023). COVID-19 vaccine tracker and landscape. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
  • Worldometer. (2023). COVID live—Coronavirus statistics. https://www.worldometers.info/coronavirus/
  • Yadav, A., Kon, K., Kratosova, G., Duran, N., Ingle, A. P., & Rai, M. (2015). Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: Progress and key aspects of research. Biotechnology Letters, 37(11), 2099–2120. https://doi.org/10.1007/s10529-015-1901-6
  • Zachar, O. (2020). Formulations for COVID-19 early stage treatment via silver nanoparticles inhalation delivery at home and hospital. ScienceOpen Preprints, https://doi.org/10.14293/S2199-1006.1.SOR-.PPHBJEO.v1
  • Zhou, J., Krishnan, N., Jiang, Y., Fang, R. H., & Zhang, L. (2021). Nanotechnology for virus treatment Nanotechnology for virus treatment. Nano Today, 36, 101031. https://doi.org/10.1016/j.nantod.2020.101031
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W; China Novel Coronavirus Investigating and Research Team. (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.