200
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Standardization in global environmental antibiotic resistance genes (ARGs) surveillance

, , , , , , & ORCID Icon show all

References

  • Alcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M., Edalatmand, A., Petkau, A., Syed, A., Tsang, S. A., Baker, K. K., Dave, S. J. C., McCarthy, M., Mukiri, M. C., Nasir, K. M., Golbon, J. A., Imtiaz, B., Jiang, H., Kaur, X. J., … McArthur, A. G. (2022). CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), D690–D699. https://doi.org/10.1093/nar/gkac920
  • Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., & Gouil, Q. (2020). Opportunities and challenges in long-read sequencing data analysis. Genome Biology, 21(1), 30. https://doi.org/10.1186/s13059-020-1935-5
  • Arango-Argoty, G., Garner, E., Pruden, A., Heath, L. S., Vikesland, P., & Zhang, L. (2018). DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome, 6(1), 23. https://doi.org/10.1186/s40168-018-0401-z
  • Bengtsson-Palme, J., Hammarén, R., Pal, C., Östman, M., Björlenius, B., Flach, C.-F., Fick, J., Kristiansson, E., Tysklind, M., & Larsson, D. G. J. (2016). Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. The Science of the Total Environment, 572, 697–712. https://doi.org/10.1016/j.scitotenv.2016.06.228
  • Bortolaia, V., Kaas, R. S., Ruppe, E., Roberts, M. C., Schwarz, S., Cattoir, V., Philippon, A., Allesoe, R. L., Rebelo, A. R., Florensa, A. F., Fagelhauer, L., Chakraborty, T., Neumann, B., Werner, G., Bender, J. K., Stingl, K., Nguyen, M., Coppens, J., Xavier, B. B., … Aarestrup, F. M. (2020). ResFinder 4.0 for predictions of phenotypes from genotypes. The Journal of Antimicrobial Chemotherapy, 75(12), 3491–3500. https://doi.org/10.1093/jac/dkaa345
  • Cao, Y. P., Raith, M. R., & Griffith, J. F. (2015). Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment. Water Research, 70, 337–349. https://doi.org/10.1016/j.watres.2014.12.008
  • Che, Y., Xia, Y., Liu, L., Li, A. D., Yang, Y., & Zhang, T. (2019). Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome, 7(1), 44. https://doi.org/10.1186/s40168-019-0663-0
  • Che, Y., Xu, X., Yang, Y., Břinda, K., Hanage, W., Yang, C., & Zhang, T. (2022). High-resolution genomic surveillance elucidates a multilayered hierarchical transfer of resistance between WWTP- and human/animal-associated bacteria. Microbiome, 10(1), 16. https://doi.org/10.1186/s40168-021-01192-w
  • Che, Y., Yang, Y., Xu, X. Q., Brinda, K., Polz, M. F., Hanage, W. P., & Zhang, T. (2021). Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proceedings of the National Academy of Sciences of the United States of America, 118(6), 12.
  • Chen, H. Y., Jing, L. J., Yao, Z. P., Meng, F. S., & Teng, Y. G. (2019). Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: A comparison with other global lakes. Environment International, 127, 267–275. https://doi.org/10.1016/j.envint.2019.03.048
  • Christou, A., Papadavid, G., Dalias, P., Fotopoulos, V., Michael, C., Bayona, J. M., Piña, B., & Fatta-Kassinos, D. (2019). Ranking of crop plants according to their potential to uptake and accumulate contaminants of emerging concern. Environmental Research, 170, 422–432. https://doi.org/10.1016/j.envres.2018.12.048
  • Corno, G., Yang, Y., Eckert, E. M., Fontaneto, D., Fiorentino, A., Galafassi, S., Zhang, T., & Di Cesare, A. (2019). Effluents of wastewater treatment plants promote the rapid stabilization of the antibiotic resistome in receiving freshwater bodies. Water Research, 158, 72–81. https://doi.org/10.1016/j.watres.2019.04.031
  • Damashek, J., Westrich, J. R., McDonald, J. M. B., Teachey, M. E., Jackson, C. R., Frye, J. G., Lipp, E. K., Capps, K. A., & Ottesen, E. A. (2022). Non-point source fecal contamination from aging wastewater infrastructure is a primary driver of antibiotic resistance in surface waters. Water Research, 222, 118853. https://doi.org/10.1016/j.watres.2022.118853
  • De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3), e00181–19. https://doi.org/10.1128/CMR.00181-19
  • Delgado-Baquerizo, M., Hu, H. W., Maestre, F. T., Guerra, C. A., Eisenhauer, N., Eldridge, D. J., Zhu, Y. G., Chen, Q. L., Trivedi, P., Du, S., Makhalanyane, T. P., Verma, J. P., Gozalo, B., Ochoa, V., Asensio, S., Wang, L., Zaady, E., Illan, J. G., Siebe, C., … He, J. Z. (2022). The global distribution and environmental drivers of the soil antibiotic resistome. Microbiome, 10(1), 219. https://doi.org/10.1186/s40168-022-01405-w
  • Dias, M. F., Fernandes, G. D., de Paiva, M. C., Salim, A. C. D., Santos, A. B., & Nascimento, A. M. A. (2020). Exploring the resistome, virulome and microbiome of drinking water in environmental and clinical settings. Water Research, 174, 115630. https://doi.org/10.1016/j.watres.2020.115630
  • Dubey, K. K., Indu., & Sharma, M. (2020). Reprogramming of antibiotics to combat antimicrobial resistance. Archiv der Pharmazie, 353(11), e2000168.
  • Forster, S. C., Liu, J. Y., Kumar, N., Gulliver, E. L., Gould, J. A., Escobar-Zepeda, A., Mkandawire, T., Pike, L. J., Shao, Y., Stares, M. D., Browne, H. P., Neville, B. A., & Lawley, T. D. (2022). Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome. Nature Communications, 13(1), 1445. https://doi.org/10.1038/s41467-022-29096-9
  • Giatsis, C., Sipkema, D., Smidt, H., Heilig, H., Benvenuti, G., Verreth, J., & Verdegem, M. (2015). The impact of rearing environment on the development of gut microbiota in tilapia larvae. Scientific Reports, 5(1), 18206. https://doi.org/10.1038/srep18206
  • Hardwick, S. A., Deveson, I. W., & Mercer, T. R. (2017). Reference standards for next-generation sequencing. Nature Reviews. Genetics, 18(8), 473–484. https://doi.org/10.1038/nrg.2017.44
  • Hendriksen, R. S., Munk, P., Njage, P., van Bunnik, B., McNally, L., Lukjancenko, O., Röder, T., Nieuwenhuijse, D., Pedersen, S. K., Kjeldgaard, J., Kaas, R. S., Clausen, P. T. L. C., Vogt, J. K., Leekitcharoenphon, P., van de Schans, M. G. M., Zuidema, T., de Roda Husman, A. M., Rasmussen, S., Petersen, B., … Aarestrup, F. M. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 10(1), 1124. https://doi.org/10.1038/s41467-019-08853-3
  • Huijbers, P. M. C., Blaak, H., de Jong, M. C. M., Graat, E. A. M., Vandenbroucke-Grauls, C. M. J. E., & Husman, A. M. D. (2015). Role of the environment in the transmission of antimicrobial resistance to humans: A review. Environmental Science & Technology, 49(20), 11993–12004. https://doi.org/10.1021/acs.est.5b02566
  • Jäger, T., Hembach, N., Elpers, C., Wieland, A., Alexander, J., Hiller, C., Krauter, G., & Schwartz, T. (2018). Reduction of antibiotic resistant bacteria during conventional and advanced wastewater treatment, and the disseminated loads released to the environment. Frontiers in Microbiology, 9, 2599. https://doi.org/10.3389/fmicb.2018.02599
  • Jia, B. F., Raphenya, A. R., Alcock, B., Waglechner, N., Guo, P. Y., Tsang, K. K., Lago, B. A., Dave, B. M., Pereira, S., Sharma, A. N., Doshi, S., Courtot, M., Lo, R., Williams, L. E., Frye, J. G., Elsayegh, T., Sardar, D., Westman, E. L., Pawlowski, A. C., … McArthur, A. G. (2017). CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research, 45(D1), D566–D573. https://doi.org/10.1093/nar/gkw1004
  • Jia, S. Y., Bian, K. Q., Shi, P., Ye, L., & Liu, C. H. (2020). Metagenomic profiling of antibiotic resistance genes and their associations with bacterial community during multiple disinfection regimes in a full-scale drinking water treatment plant. Water Research, 176, 115721. https://doi.org/10.1016/j.watres.2020.115721
  • Jin, M., Liu, L., Wang, D. N., Yang, D., Liu, W. L., Yin, J., Yang, Z. W., Wang, H. R., Qiu, Z. G., Shen, Z. Q., Shi, D. Y., Li, H. B., Guo, J. H., & Li, J. W. (2020). Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. The ISME Journal, 14(7), 1847–1856. https://doi.org/10.1038/s41396-020-0656-9
  • Keenum, I., Liguori, K., Calarco, J., Davis, B. C., Milligan, E., Harwood, V. J., & Pruden, A. (2022). A framework for standardized qPCR-targets and protocols for quantifying antibiotic resistance in surface water, recycled water and wastewater. Critical Reviews in Environmental Science and Technology, 52(24), 4395–4419. https://doi.org/10.1080/10643389.2021.2024739
  • Kokkoris, V., Vukicevich, E., Richards, A., Thomsen, C., & Hart, M. (2021). Challenges using droplet digital PCR for environmental samples. Applied Microbiology, 1(1), 74–88. https://doi.org/10.3390/applmicrobiol1010007
  • Lee, K., Kim, D. W., Lee, D. H., Kim, Y. S., Bu, J. H., Cha, J. H., Thawng, C. N., Hwang, E. M., Seong, H. J., Sul, W. J., Wellington, E. M. H., Quince, C., & Cha, C. J. (2020). Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome, 8(1), 2. https://doi.org/10.1186/s40168-019-0774-7
  • Lekunberri, I., Subirats, J., Borrego, C. M., & Balcázar, J. L. (2017). Exploring the contribution of bacteriophages to antibiotic resistance. Environmental Pollution, 220(Pt B), 981–984. https://doi.org/10.1016/j.envpol.2016.11.059
  • Li, A. D., Li, L. G., & Zhang, T. (2015). Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants. Frontiers in Microbiology, 6, 1025. https://doi.org/10.3389/fmicb.2015.01025
  • Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J. M., & Zhang, T. (2015). Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME Journal, 9(11), 2490–2502. https://doi.org/10.1038/ismej.2015.59
  • Li, J., Cao, J. J., Zhu, Y. G., Chen, Q. L., Shen, F. X., Wu, Y., Xu, S. Y., Fan, H., Da, G., Huang, R. J., Wang, J., de Jesus, A. L., Morawska, L., Chan, C. K., Peccia, J., & Yao, M. S. (2018). Global survey of antibiotic resistance genes in air. Environmental Science & Technology, 52(19), 10975–10984. https://doi.org/10.1021/acs.est.8b02204
  • Li, L. G., Huang, Q., Yin, X. L., & Zhang, T. (2020). Source tracking of antibiotic resistance genes in the environment – Challenges, progress, and prospects. Water Research, 185, 12.
  • Li, L. G., Yin, X., & Zhang, T. (2018). Tracking antibiotic resistance gene pollution from different sources using machine-learning classification. Microbiome, 6(1), 93. https://doi.org/10.1186/s40168-018-0480-x
  • Li, X., Rensing, C., Vestergaard, G., Arumugam, M., Nesme, J., Gupta, S., Brejnrod, A. D., & Sørensen, S. J. (2022). Metagenomic evidence for co-occurrence of antibiotic, biocide and metal resistance genes in pigs. Environment International, 158, 106899. https://doi.org/10.1016/j.envint.2021.106899
  • Liang, J., Lin, H., Singh, B., Wang, A., & Yan, Z. (2023). A global perspective on compositions, risks, and ecological genesis of antibiotic resistance genes in biofilters of drinking water treatment plants. Water Research, 233, 119822. https://doi.org/10.1016/j.watres.2023.119822
  • Lin, H. R., Ye, C. S., Chen, S., Zhang, S. H., & Yu, X. (2017). Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts. Environmental Pollution, 230, 242–249. https://doi.org/10.1016/j.envpol.2017.06.047
  • Liu, J. X., Zhu, Y. T., Jay-Russell, M., Lemay, D. G., & Mills, D. A. (2020). Reservoirs of antimicrobial resistance genes in retail raw milk. Microbiome, 8(1), 99. https://doi.org/10.1186/s40168-020-00861-6
  • Ma, L. P., Li, B., & Zhang, T. (2019). New insights into antibiotic resistome in drinking water and management perspectives: A metagenomic based study of small-sized microbes. Water Research, 152, 191–201. https://doi.org/10.1016/j.watres.2018.12.069
  • Ma, L. P., Li, B., Jiang, X. T., Wang, Y. L., Xia, Y., Li, A. D., & Zhang, T. (2017). Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome, 5(1), 154. https://doi.org/10.1186/s40168-017-0369-0
  • Ma, L. P., Xia, Y., Li, B., Yang, Y., Li, L. G., Tiedje, J. M., & Zhang, T. (2016). Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human feces. Environmental Science & Technology, 50(1), 420–427. https://doi.org/10.1021/acs.est.5b03522
  • Maciel-Guerra, A., Baker, M., Hu, Y., Wang, W., Zhang, X. B., Rong, J., Zhang, Y. M., Zhang, J., Kaler, J., Renney, D., Loose, M., Emes, R. D., Liu, L. H., Chen, J. S., Peng, Z. X., Li, F. Q., & Dottorini, T. (2022). Dissecting microbial communities and resistomes for interconnected humans, soil, and livestock. The ISME Journal, 17(1), 21–35. https://doi.org/10.1038/s41396-022-01315-7
  • Marbouty, M., Baudry, L., Cournac, A., & Koszul, R. (2017). Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Science Advances, 3(2), e1602105. https://doi.org/10.1126/sciadv.1602105
  • Martínez, J. L., Coque, T. M., & Baquero, F. (2015). What is a resistance gene? Ranking risk in resistomes. Nature Reviews. Microbiology, 13(2), 116–123. https://doi.org/10.1038/nrmicro3399
  • Munk, P., Brinch, C., Moller, F. D., Petersen, T. N., Hendriksen, R. S., Seyfarth, A. M., Kjeldgaard, J. S., Svendsen, C. A., van Bunnik, B., Berglund, F., Global Sewage Surveillance, C., Larsson, D. G. J., Koopmans, M., Woolhouse, M., & Aarestrup, F. M. (2022). Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nature Communications, 13(1), 7251. https://doi.org/10.1038/s41467-022-34312-7
  • Park, S., Rana, A., Sung, W., & Munir, M. J. A. M. (2021). Competitiveness of quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) technologies, with a particular focus on detection of antibiotic resistance genes (ARGs). Applied Microbiology, 1(3), 426–444. https://doi.org/10.3390/applmicrobiol1030028
  • Pärnänen, K. M. M., Narciso-da-Rocha, C., Kneis, D., Berendonk, T. U., Cacace, D., Do, T. T., Elpers, C., Fatta-Kassinos, D., Henriques, I., Jaeger, T., Karkman, A., Martinez, J. L., Michael, S. G., Michael-Kordatou, I., O’Sullivan, K., Rodriguez-Mozaz, S., Schwartz, T., Sheng, H., Sørum, H., … Manaia, C. M. (2019). Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science Advances, 5(3), eaau9124. https://doi.org/10.1126/sciadv.aau9124
  • Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019). Antibiotic resistance genes identified in wastewater treatment plant systems – A review. The Science of the Total Environment, 697, 134023. https://doi.org/10.1016/j.scitotenv.2019.134023
  • Peng, Z., Hu, Z., Li, Z., Zhang, X., Jia, C., Li, T., Dai, M., Tan, C., Xu, Z., Wu, B., Chen, H., & Wang, X. (2022). Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nature Communications, 13(1), 1116. https://doi.org/10.1038/s41467-022-28750-6
  • Pruden, A., Vikesland, P. J., Davis, B. C., & Husman, A. M. D. (2021). Seizing the moment: Now is the time for integrated global surveillance of antimicrobial resistance in wastewater environments. Current Opinion in Microbiology, 64, 91–99. https://doi.org/10.1016/j.mib.2021.09.013
  • Qamar, F. N., Yousafzai, M. T., Khalid, M., Kazi, A. M., Lohana, H., Karim, S., Khan, A., Hotwani, A., Qureshi, S., Kabir, F., Aziz, F., Memon, N. M., Domki, M. H., & Hasan, R. (2018). Outbreak investigation of ceftriaxone-resistant Salmonella enterica serotype typhi and its risk factors among the general population in Hyderabad, Pakistan: A matched case-control study. The Lancet. Infectious Diseases, 18(12), 1368–1376. https://doi.org/10.1016/S1473-3099(18)30483-3
  • Qian, X., Gunturu, S., Sun, W., Cole, J. R., Norby, B., Gu, J., & Tiedje, J. M. (2021). Long-read sequencing revealed cooccurrence, host range, and potential mobility of antibiotic resistome in cow feces. Proceedings of the National Academy of Sciences of the United States of America, 118(25), e2024464118. https://doi.org/10.1073/pnas.2024464118
  • Qiu, T. L., Huo, L. H., Guo, Y. J., Gao, M., Wang, G. L., Hu, D., Li, C., Wang, Z. W., Liu, G. M., & Wang, X. M. (2022). Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost. Environmental Microbiome, 17(1), 42. https://doi.org/10.1186/s40793-022-00437-x
  • Qiu, Y., Zhang, J., Li, B., Wen, X. H., Liang, P., & Huang, X. (2018). A novel microfluidic system enables visualization and analysis of antibiotic resistance gene transfer to activated sludge bacteria in biofilm. The Science of the Total Environment, 642, 582–590. https://doi.org/10.1016/j.scitotenv.2018.06.012
  • Raza, S., Choi, S., Lee, M., Shin, J., Son, H., Wang, J. H., & Kim, Y. M. (2022). Spatial and temporal effects of fish feed on antibiotic resistance in coastal aquaculture farms. Environmental Research, 212(Pt A), 113177. https://doi.org/10.1016/j.envres.2022.113177
  • Rice, E. W., Wang, P., Smith, A. L., & Stadler, L. B. (2020). Determining hosts of antibiotic resistance genes: A review of methodological advances. Environmental Science & Technology Letters, 7(5), 282–291. https://doi.org/10.1021/acs.estlett.0c00202
  • Riquelme, M. V. P., Garner, E., Gupta, S., Metch, J., Zhu, N., Blair, M. F., Arango-Argoty, G., Maile-Moskowitz, A., Li, A. D., Flach, C. F., Aga, D. S., Nambi, I. M., Larsson, D. G. J., Burgmann, H., Zhang, T., Pruden, A., & Vikesland, P. J. (2022). Demonstrating a comprehensive wastewater-based surveillance approach that differentiates globally sourced resistomes. Environmental Science Technology, 56(21), 14982–14993.
  • Schreiber, C., Zacharias, N., Essert, S. M., Wasser, F., Müller, H., Sib, E., Precht, T., Parcina, M., Bierbaum, G., Schmithausen, R. M., Kistemann, T., & Exner, M. (2021). Clinically relevant antibiotic-resistant bacteria in aquatic environments – An optimized culture-based approach. The Science of the Total Environment, 750, 142265. https://doi.org/10.1016/j.scitotenv.2020.142265
  • Schwermer, C. U., & Uhl, W. (2021). Calculating expected effects of treatment effectivity and river flow rates on the contribution of WWTP effluent to the ARG load of a receiving river. Journal of Environmental Management, 288, 112445. https://doi.org/10.1016/j.jenvman.2021.112445
  • Sharma, M., Rajput, D., Kumar, V., Jatain, I., Aminabhavi, T. M., Mohanakrishna, G., Kumar, R., & Dubey, K. K. (2023). Photocatalytic degradation of four emerging antibiotic contaminants and toxicity assessment in wastewater: A comprehensive study. Environmental Research, 231(Pt 2), 116132. https://doi.org/10.1016/j.envres.2023.116132
  • Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. (2011). Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 480(7376), 241–244. https://doi.org/10.1038/nature10571
  • Stalder, T., Press, M. O., Sullivan, S., Liachko, I., & Top, E. M. (2019). Linking the resistome and plasmidome to the microbiome. The ISME Journal, 13(10), 2437–2446. https://doi.org/10.1038/s41396-019-0446-4
  • Su, Z., Wen, D., Gu, A. Z., Zheng, Y., Tang, Y., & Chen, L. (2022). Industrial effluents boosted antibiotic resistome risk in coastal environments. Environment International, 171, 107714. https://doi.org/10.1016/j.envint.2022.107714
  • Vaz-Moreira, I., Nunes, O. C., & Manaia, C. M. (2014). Bacterial diversity and antibiotic resistance in water habitats: Searching the links with the human microbiome. FEMS Microbiology Reviews, 38(4), 761–778. https://doi.org/10.1111/1574-6976.12062
  • Wang, B., Xu, J., Wang, Y., Stirling, E., Zhao, K., Lu, C., Tan, X., Kong, D., Yan, Q., He, Z., Ruan, Y., & Ma, B. (2023). Tackling soil ARG-carrying pathogens with global-scale metagenomics. Advanced Science, 10(26), e2301980.
  • Wang, C., Yin, X., Xu, X., Wang, D., Liu, L., Zhang, X., Yang, C., Zhang, X., & Zhang, T. (2024). Metagenomic absolute quantification of antibiotic resistance genes and virulence factor genes-carrying bacterial genomes in anaerobic digesters. Water Research, 253, 121258. https://doi.org/10.1016/j.watres.2024.121258
  • Wang, M., Liu, P., Zhou, Q., Tao, W., Sun, Y., & Zeng, Z. (2018). Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces. Environmental Pollution, 238, 291–298. https://doi.org/10.1016/j.envpol.2018.03.024
  • Wang, Y., Lyu, N., Liu, F., Liu, W. J., Bi, Y., Zhang, Z., Ma, S., Cao, J., Song, X., Wang, A., Zhang, G., Hu, Y., Zhu, B., & Gao, G. F. (2021). More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. Environment International, 153, 106534. https://doi.org/10.1016/j.envint.2021.106534
  • WHO (2020). GLASS report: Early implementation 2020. Global Antimicrobial Resistance and Use Surveillance System (GLASS). https://www.who.int/publications/i/item/9789240005587
  • Xie, J., Jin, L., Wu, D., Pruden, A., & Li, X. (2022). Inhalable antibiotic resistome from wastewater treatment plants to urban areas: Bacterial hosts, dissemination risks, and source contributions. Environmental Science & Technology, 56(11), 7040–7051. https://doi.org/10.1021/acs.est.1c07023
  • Xu, N. H., Qiu, D. Y., Zhang, Z. Y., Wang, Y., Chen, B. F., Zhang, Q., Wang, T. Z., Hong, W. J., Zhou, N. Y., Penuelas, J., Gillings, M., Zhu, Y. G., & Qian, H. F. (2023). A global atlas of marine antibiotic resistance genes and their expression. Water Research, 244, 120488. https://doi.org/10.1016/j.watres.2023.120488
  • Yang, Y., Che, Y., Liu, L., Wang, C. X., Yin, X. L., Deng, Y., Yang, C., & Zhang, T. (2022). Rapid absolute quantification of pathogens and ARGs by nanopore sequencing. The Science of the Total Environment, 809, 152190. https://doi.org/10.1016/j.scitotenv.2021.152190
  • Yang, Y., Deng, Y., Liu, L., Yin, X., Xu, X., Wang, D., & Zhang, T. (2023). Establishing reference material for the quest towards standardization in environmental microbial metagenomic studies. Water Research, 245, 120641. https://doi.org/10.1016/j.watres.2023.120641
  • Yang, Y., Deng, Y., Shi, X., Liu, L., Yin, X., Zhao, W., Li, S., Yang, C., & Zhang, T. (2023). QMRA of beach water by nanopore sequencing-based viability-metagenomics absolute quantification. Water Research, 235, 119858. https://doi.org/10.1016/j.watres.2023.119858
  • Yang, Y., Jiang, X. T., Chai, B. L., Ma, L. P., Li, B., Zhang, A. N., Cole, J. R., Tiedje, J. M., & Zhang, T. (2016). ARGs-OAP: Online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics, 32(15), 2346–2351. https://doi.org/10.1093/bioinformatics/btw136
  • Yin, X. L., Deng, Y., Ma, L. P., Wang, Y. L., Chan, L., & Zhang, T. (2019). Exploration of the antibiotic resistome in a wastewater treatment plant by a nine-year longitudinal metagenomic study. Environment International, 133(Pt B), 105270. https://doi.org/10.1016/j.envint.2019.105270
  • Yin, X. L., Jiang, X. T., Chai, B. L., Li, L. G., Yang, Y., Cole, J. R., Tiedje, J. M., & Zhang, T. (2018). ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics, 34(13), 2263–2270. https://doi.org/10.1093/bioinformatics/bty053
  • Yin, X. L., Yang, Y., Deng, Y., Huang, Y., Li, L. G., Chan, L. Y. L., & Zhang, T. (2022). An assessment of resistome and mobilome in wastewater treatment plants through temporal and spatial metagenomic analysis. Water Research, 209, 117885. https://doi.org/10.1016/j.watres.2021.117885
  • Yin, X., Li, L., Chen, X., Liu, Y. Y., Lam, T. T., Topp, E., & Zhang, T. (2023). Global environmental resistome: Distinction and connectivity across diverse habitats benchmarked by metagenomic analyses. Water Research, 235, 119875. https://doi.org/10.1016/j.watres.2023.119875
  • Yin, X., Zheng, X., Li, L., Zhang, A.-N., Jiang, X.-T., & Zhang, T. J. E. (2022). ARGs-OAP v3.0: Antibiotic-resistance gene database curation and analysis pipeline optimization.
  • Zainab, S. M., Junaid, M., Xu, N., & Malik, R. N. (2020). Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Research, 187, 116455. https://doi.org/10.1016/j.watres.2020.116455
  • Zhang, A.-N., Gaston, J. M., Dai, C. L., Zhao, S., Poyet, M., Groussin, M., Yin, X., Li, L.-G., van Loosdrecht, M. C. M., Topp, E., Gillings, M. R., Hanage, W. P., Tiedje, J. M., Moniz, K., Alm, E. J., & Zhang, T. (2021). An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nature Communications, 12(1), 4765. https://doi.org/10.1038/s41467-021-25096-3
  • Zhang, L., Ji, L., Liu, X., Zhu, X., Ning, K., & Wang, Z. (2022). Linkage and driving mechanisms of antibiotic resistome in surface and ground water: Their responses to land use and seasonal variation. Water Research, 215, 118279. https://doi.org/10.1016/j.watres.2022.118279
  • Zhang, Y., Pei, M., Zhang, B., He, Y., & Zhong, Y. (2021). Changes of antibiotic resistance genes and bacterial communities in the advanced biological wastewater treatment system under low selective pressure of tetracycline. Water Research, 207, 117834. https://doi.org/10.1016/j.watres.2021.117834
  • Zhang, Z. Y., Zhang, Q., Wang, T. Z., Xu, N. H., Lu, T., Hong, W. J., Penuelas, J., Gillings, M., Wang, M. X., Gao, W. W., & Qian, H. F. (2022). Assessment of global health risk of antibiotic resistance genes. Nature Communications, 13(1), 1553. https://doi.org/10.1038/s41467-022-29283-8
  • Zhao, J., Jin, L., Wu, D., Xie, J. W., Li, J., Fu, X. W., Cong, Z. Y., Fu, P. Q., Zhang, Y., Luo, X. S., Feng, X. B., Zhang, G., Tiedje, J. M., & Li, X. D. (2022). Global airborne bacterial community-interactions with Earth’s microbiomes and anthropogenic activities. Proceedings of the National Academy of Sciences of the United States of America, 119(42), e2204465119.
  • Zheng, D., Yin, G., Liu, M., Hou, L., Yang, Y., Van Boeckel, T. P., Zheng, Y., & Li, Y. (2022). Global biogeography and projection of soil antibiotic resistance genes. Science Advances, 8(46), eabq8015. https://doi.org/10.1126/sciadv.abq8015
  • Zignol, M., Dean, A. S., Falzon, D., van Gemert, W., Wright, A., van Deun, A., Portaels, F., Laszlo, A., Espinal, M. A., Pablos-Méndez, A., Bloom, A., Aziz, M. A., Weyer, K., Jaramillo, E., Nunn, P., Floyd, K., & Raviglione, M. C. (2016). Twenty years of global surveillance of antituberculosis-drug resistance. The New England Journal of Medicine, 375(11), 1081–1089. https://doi.org/10.1056/NEJMsr1512438

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.