72
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Pathways and challenges in effectively controlling membrane fouling in anaerobic membrane bioreactors

ORCID Icon

References

  • Ahmar Siddiqui, M., Biswal, B. K., Heynderickx, P. M., Kim, J., Khanal, S. K., Chen, G., & Wu, D. (2021). Dynamic anaerobic membrane bioreactor coupled with sulfate reduction (SrDMBR) for saline wastewater treatment. Bioresource Technology, 346, 126447. https://doi.org/10.1016/j.biortech.2021.126447
  • Aslam, M., & Kim, J. (2019). Investigating membrane fouling associated with GAC fluidization on membrane with effluent from anaerobic fluidized bed bioreactor in domestic wastewater treatment. Environmental Science and Pollution Research International, 26(2), 1170–1180. https://doi.org/10.1007/s11356-017-9815-6
  • Aslam, M., Yang, P., Lee, P.-H., & Kim, J. (2018). Novel staged anaerobic fluidized bed ceramic membrane bioreactor: Energy reduction, fouling control and microbial characterization. Journal of Membrane Science, 553, 200–208. https://doi.org/10.1016/j.memsci.2018.02.038
  • Balcıoğlu, G., Vergili, I., Gönder, Z. B., Yilmaz, G., Bacaksiz, A. M., & Kaya, Y. (2023). Effect of powdered activated carbon addition on membrane performance and fouling in anaerobic membrane bioreactor. International Journal of Environmental Science and Technology, 20(3), 3191–3204. https://doi.org/10.1007/s13762-022-04203-x
  • Bouhid de Aguiar, I., & Schroën, K. (2020). Microfluidics used as a tool to understand and optimize membrane filtration processes. Membranes, 10(11), 316. https://doi.org/10.3390/membranes10110316
  • Burman, I., & Sinha, A. (2018). Environmental contaminants: Measurement, modelling and control. T. Gupta, A. K. Agarwal, R. A. Agarwal, and N. K. Labhsetwar (Eds.), (pp. 281–315). Springer Singapore.
  • Burman, I., & Sinha, A. (2020). Anaerobic hybrid membrane bioreactor for treatment of synthetic leachate: Impact of organic loading rate and sludge fractions on membrane fouling. Waste Management (New York, N.Y.), 108, 41–50. https://doi.org/10.1016/j.wasman.2020.04.031
  • Burman, I., & Sinha, A. (2022). Impact assessment of mixed liquor suspended solids from polyurethane media effluent on ceramic membrane fouling in anaerobic hybrid membrane bioreactor. Journal of Environmental Engineering, 148(1) https://doi.org/10.1061/(ASCE)EE.1943-7870.0001956
  • Cai, X., Wang, Z., Qian, Y., Wang, A., Yang, Y., & Xia, S. (2022). Comprehensively understanding fouling properties of cake and bulk sludge in an anammox membrane bioreactor: Focusing on the composition, interfacial thermodynamics and microbial community. Journal of Environmental Chemical Engineering, 10(6), 108612. https://doi.org/10.1016/j.jece.2022.108612
  • Cai, X., Yang, L., Wang, Z., Zhang, M., Shen, L., Hong, H., Lin, H., & Yu, G. (2017). Influences of fractal dimension of membrane surface on interfacial interactions related to membrane fouling in a membrane bioreactor. Journal of Colloid and Interface Science, 500, 79–87. https://doi.org/10.1016/j.jcis.2017.03.107
  • Cao, M., Zhang, Y., & Zhang, Y. (2021). Effect of applied voltage on membrane fouling in the amplifying anaerobic electrochemical membrane bioreactor for long-term operation. RSC Advances, 11(50), 31364–31372. https://doi.org/10.1039/d1ra05500c
  • Cao, M., Zhang, Y., Zhang, B., Liu, Z., Ma, X., & Chen, C. (2020). The preparation of a modified PVDF hollow fiber membrane by coating with multiwalled carbon nanotubes for high antifouling performance. RSC Advances, 10(4), 1848–1857. https://doi.org/10.1039/c9ra07542a
  • Chaipetch, W., Jaiyu, A., Jutaporn, P., Heran, M., & Khongnakorn, W. (2021). Fouling behavior in a high-rate anaerobic submerged membrane bioreactor (AnMBR) for palm oil mill effluent (POME) treatment. Membranes, 11(9), 649. https://doi.org/10.3390/membranes11090649
  • Chen, C., Sun, M., Chang, J., Liu, Z., Zhu, X., Xiao, K., Song, G., Wang, H., Liu, G., & Huang, X. (2022). Unravelling temperature-dependent fouling mechanism in a pilot-scale anaerobic membrane bioreactor via statistical modelling. Journal of Membrane Science, 644, 120145. https://doi.org/10.1016/j.memsci.2021.120145
  • Choi, G., Choi, H., Park, J., & Lee, C. (2022). Effects of applying external voltage on development of anaerobic dynamic membrane under high suspended solids conditions. Chemical Engineering Journal, 438, 135528. https://doi.org/10.1016/j.cej.2022.135528
  • Dagnew, M., Parker, W., & Seto, P. (2012). Anaerobic membrane bioreactors for treating waste activated sludge: Short term membrane fouling characterization and control tests. Journal of Membrane Science, 421-422, 103–110. https://doi.org/10.1016/j.memsci.2012.06.046
  • De Vela, R. J. (2021). A review of the factors affecting the performance of anaerobic membrane bioreactor and strategies to control membrane fouling. Reviews in Environmental Science and Bio/Technology, 20(3), 607–644. https://doi.org/10.1007/s11157-021-09580-2
  • Deng, H., Ren, H., Fan, J., Zhao, K., Hu, C., & Qu, J. (2022). Membrane fouling mitigation by coagulation and electrostatic repulsion using an electro-AnMBR in kitchen wastewater treatment. Water Research, 222, 118883. https://doi.org/10.1016/j.watres.2022.118883
  • Dereli, R. K., van der Zee, F. P., Ozturk, I., & van Lier, J. B. (2019). Treatment of cheese whey by a cross-flow anaerobic membrane bioreactor: Biological and filtration performance. Environmental Research, 168, 109–117. https://doi.org/10.1016/j.envres.2018.09.021
  • Dereli, R. K., Wang, X., van der Zee, F. P., & van Lier, J. B. (2018). Biological performance and sludge filterability of anaerobic membrane bioreactors under nitrogen limited and supplied conditions. Water Research, 137, 164–172. https://doi.org/10.1016/j.watres.2018.03.015
  • Derjaguin, V. B. (1992). Theorie des Anhaftens kleiner Teilchen. Progress in Surface Science, 40(1-4), 6–15. https://doi.org/10.1016/0079-6816(92)90027-F
  • Diez, V., Cámara, J. M., Ruiz, M. O., Martínez, R., & Ramos, C. (2021). A novel jet-loop anaerobic filter membrane bioreactor treating raw slaughterhouse wastewater: Biological and filtration processes. Chemical Engineering Journal, 408, 127288. https://doi.org/10.1016/j.cej.2020.127288
  • Diggle, S. P., et al. (2013). Brenner’s encyclopedia of genetics. S. Maloy & K. Hughes (Eds.), (2nd ed., pp. 25–27). Academic Press.
  • Dong, Q., Parker, W., & Dagnew, M. (2018). Dynamic characterization of a FeCl3-dosed anaerobic membrane bioreactor (AnMBR) treating municipal wastewater. Water Science and Technology, 2017(2), 481–491. https://doi.org/10.2166/wst.2018.175
  • Drews, A. (2010). Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures. Journal of Membrane Science, 363(1-2), 1–28. https://doi.org/10.1016/j.memsci.2010.06.046
  • Drews, A., Prieske, H., Meyer, E.-L., Senger, G., & Kraume, M. (2010). Advantageous and detrimental effects of air sparging in membrane filtration: Bubble movement, exerted shear and particle classification. Desalination, 250(3), 1083–1086. https://doi.org/10.1016/j.desal.2009.09.113
  • Ersahin, M. E. (2015). Application of dynamic membranes in anaerobic membrane bioreactor systems. [Doctor]. Technical University of Delft.
  • Ersahin, M. E., Ozgun, H., Tao, Y., & van Lier, J. B. (2014). Applicability of dynamic membrane technology in anaerobic membrane bioreactors. Water Research, 48, 420–429. https://doi.org/10.1016/j.watres.2013.09.054
  • Evans, P. J., Parameswaran, P., Lim, K., Bae, J., Shin, C., Ho, J., & McCarty, P. L. (2019). A comparative pilot-scale evaluation of gas-sparged and granular activated carbon-fluidized anaerobic membrane bioreactors for domestic wastewater treatment. Bioresource Technology, 288, 120949. https://doi.org/10.1016/j.biortech.2019.01.072
  • Feng, S., Yu, G., Cai, X., Eulade, M., Lin, H., Chen, J., Liu, Y., & Liao, B.-Q. (2017). Effects of fractal roughness of membrane surfaces on interfacial interactions associated with membrane fouling in a membrane bioreactor. Bioresource Technology, 244(Pt 1), 560–568. https://doi.org/10.1016/j.biortech.2017.07.160
  • Gkotsis, P., Lemonidis, G., Mitrakas, M., Pentedimos, A., Kostoglou, M., & Zouboulis, A. (2020). Quantifying the effect of cod to tn ratio, do concentration and temperature on filamentous microorganisms’ population and trans-membrane pressure (Tmp) in membrane bio-reactors (mbr). Processes, 8(11), 1514. https://doi.org/10.3390/pr8111514
  • González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., Barat, R., & Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: Operating conditions and key performance indicators. Water Research, 172, 115518. https://doi.org/10.1016/j.watres.2020.115518
  • González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76–85. https://doi.org/10.1016/j.jenvman.2019.05.010
  • Grossman, A. D., Yang, Y., Yogev, U., Camarena, D. C., Oron, G., & Bernstein, R. (2019). Effect of ultrafiltration membrane material on fouling dynamics in a submerged anaerobic membrane bioreactor treating domestic wastewater. Environmental Science: Water Research & Technology, 5(6), 1145–1156. https://doi.org/10.1039/C9EW00205G
  • Hanvajanawong, K., Suyamud, B., Suwannasilp, B. B., Lohwacharin, J., & Visvanathan, C. (2022). Unravelling capability of two-stage thermophilic anaerobic membrane bioreactors for high organic loading wastewater: Effect of support media addition and irreversible fouling. Bioresource Technology, 348, 126725. https://doi.org/10.1016/j.biortech.2022.126725
  • He, C., Yang, C., Yuan, S., Hu, Z., & Wang, W. (2020). Effects of sludge retention time on the performance of anaerobic ceramic membrane bioreactor treating high-strength phenol wastewater. Archaea (Vancouver, B.C.), 2020, 8895321. https://doi.org/10.1155/2020/8895321
  • Hu, D., Liu, L., Liu, W., Yu, L., Dong, J., Han, F., Wang, H., Chen, Z., Ge, H., Jiang, B., Wang, X., Cui, Y., Zhang, W., Zhang, Y., Liu, S., & Zhao, L. (2022). Improvement of sludge characteristics and mitigation of membrane fouling in the treatment of pesticide wastewater by electrochemical anaerobic membrane bioreactor. Water Research, 213, 118153. https://doi.org/10.1016/j.watres.2022.118153
  • Hu, Y., Cheng, H., Ji, J., & Li, Y.-Y. (2020). A review of anaerobic membrane bioreactors for municipal wastewater treatment with a focus on multicomponent biogas and membrane fouling control. Environmental Science: Water Research & Technology, 6(10), 2641–2663. https://doi.org/10.1039/D0EW00528B
  • Inaba, T., Aoyagi, T., Hori, T., Charfi, A., Suh, C., Lee, J. H., Sato, Y., Ogata, A., Aizawa, H., & Habe, H. (2020). Clarifying prokaryotic and eukaryotic biofilm microbiomes in anaerobic membrane bioreactor by non-destructive microscopy and high-throughput sequencing. Chemosphere, 254, 126810. https://doi.org/10.1016/j.chemosphere.2020.126810
  • Iqbal, T., Lee, K., Lee, C.-H., & Choo, K.-H. (2018). Effective quorum quenching bacteria dose for anti-fouling strategy in membrane bioreactors utilizing fixed-sheet media. Journal of Membrane Science, 562, 18–25. https://doi.org/10.1016/j.memsci.2018.05.031
  • Jeison, D. (2007). Anaerobic membrane bioreactors for wastewater treatment: Feasibility and potential applications. [Doctoral thesis]. Wageningen University.
  • Jeison, D., & van Lier, J. (2007b). Cake formation and consolidation: Main factors governing the applicable flux in anaerobic submerged membrane bioreactors (AnSMBR) treating acidified wastewaters. Separation and Purification Technology, 56(1), 71–78. https://doi.org/10.1016/j.seppur.2007.01.022
  • Jeison, D., & van Lier, J. B. (2007a). Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: Factors affecting long-term operational flux. Water Research, 41(17), 3868–3879. https://doi.org/10.1016/j.watres.2007.06.013
  • Jeison, D., Plugge, C. M., Pereira, A., & van Lier, J. B. (2009). Effects of the acidogenic biomass on the performance of an anaerobic membrane bioreactor for wastewater treatment. Bioresource Technology, 100(6), 1951–1956. https://doi.org/10.1016/j.biortech.2008.10.028
  • Jeong, Y., Kim, Y., Jin, Y., Hong, S., & Park, C. (2018). Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater. Separation and Purification Technology, 199, 182–188. https://doi.org/10.1016/j.seppur.2018.01.057
  • Jiang, M., Qiao, W., Jiang, P., Wu, Z., Lin, M., Sun, Y., & Dong, R. (2022). Mitigating membrane fouling in a high solid food waste thermophilic anaerobic membrane bioreactor by incorporating fixed bed bio-carriers. Chemosphere, 292, 133488. https://doi.org/10.1016/j.chemosphere.2021.133488
  • Jiao, C., Hu, Y., Zhang, X., Jing, R., Zeng, T., Chen, R., & Li, Y.-Y. (2022). Process characteristics and energy self-sufficient operation of a low-fouling anaerobic dynamic membrane bioreactor for up-concentrated municipal wastewater treatment. The Science of the Total Environment, 843, 156992. https://doi.org/10.1016/j.scitotenv.2022.156992
  • Jiwoo, L., et al. (2021). Long-term performance evaluation of granular activated carbon fluidization and biogas sparging in anaerobic fluidized bed membrane bioreactor: Membrane fouling and micropollutant removal. Process Safety and Environmental Protection, 154, 425–432.
  • Judd, S., et al. (2011). The MBR book: Principles and applications of membrane bioreactors for water and wastewater treatment. Elsevier Ltd.
  • Jung, S. Y., Jeong, J., Park, J. D., & Ahn, K. H. (2021). Interplay between particulate fouling and its flow disturbance: Numerical and experimental studies. Journal of Membrane Science, 635, 119497. https://doi.org/10.1016/j.memsci.2021.119497
  • Kim, D. C., & Chung, K. Y. (2019). Numerical simulation of aeration flow phenomena in bench-scale submerged flat membrane bioreactor. Journal of Industrial and Engineering Chemistry, 69, 241–254. https://doi.org/10.1016/j.jiec.2018.09.014
  • Kim, M., Lam, T. Y. C., Tan, G.-Y A., Lee, P.-H., & Kim, J. (2020). Use of polymeric scouring agent as fluidized media in anaerobic fluidized bed membrane bioreactor for wastewater treatment: System performance and microbial community. Journal of Membrane Science, 606, 118121. https://doi.org/10.1016/j.memsci.2020.118121
  • Kunacheva, C., & Stuckey, D. C. (2014). Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: A review. Water Research, 61, 1–18. https://doi.org/10.1016/j.watres.2014.04.044
  • Kwak, W., Rout, P. R., Lee, E., & Bae, J. (2020). Influence of hydraulic retention time and temperature on the performance of an anaerobic ammonium oxidation fluidized bed membrane bioreactor for low-strength ammonia wastewater treatment. Chemical Engineering Journal, 386, 123992. https://doi.org/10.1016/j.cej.2019.123992
  • Laspidou, C. S., & Rittmann, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36(11), 2711–2720. https://doi.org/10.1016/s0043-1354(01)00413-4
  • Lei, Z., Yang, S., Li, X., Wen, W., Huang, X., Yang, Y., Wang, X., Li, Y.-Y., Sano, D., & Chen, R. (2019). Revisiting the effects of powdered activated carbon on membrane fouling mitigation in an anaerobic membrane bioreactor by evaluating long-term impacts on the surface layer. Water Research, 167, 115137. https://doi.org/10.1016/j.watres.2019.115137
  • Li, R., Wang, X., Cai, X., Lin, H., Shen, L., Chen, J., Hong, H., & Liao, B.-Q. (2018). A facile strategy to prepare superhydrophilic polyvinylidene fluoride (PVDF) based membranes and the thermodynamic mechanisms underlying the improved performance. Separation and Purification Technology, 197, 271–280. https://doi.org/10.1016/j.seppur.2018.01.017
  • Liang, S., Qi, G., Xiao, K., Sun, J., Giannelis, E. P., Huang, X., & Elimelech, M. (2014). Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors. Journal of Membrane Science, 463, 94–101. https://doi.org/10.1016/j.memsci.2014.03.037
  • Liang, S., Xiao, K., Zhang, S., Ma, Z., Lu, P., Wang, H., & Huang, X. (2018). A facile approach to fabrication of superhydrophilic ultrafiltration membranes with surface-tailored nanoparticles. Separation and Purification Technology, 203, 251–259. https://doi.org/10.1016/j.seppur.2018.04.051
  • Liu, F., Hashim, N. A., Liu, Y., Abed, M. R M., & Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375(1-2), 1–27. https://doi.org/10.1016/j.memsci.2011.03.014
  • Liu, H., Gu, J., Wang, S., Zhang, M., & Liu, Y. (2020). Performance, membrane fouling control and cost analysis of an integrated anaerobic fixed-film MBR and reverse osmosis process for municipal wastewater reclamation to NEWater-like product water. Journal of Membrane Science, 593, 117442. https://doi.org/10.1016/j.memsci.2019.117442
  • Liu, J., Eng, C. Y., Ho, J. S., Chong, T. H., Wang, L., Zhang, P., & Zhou, Y. (2019a). Quorum quenching in anaerobic membrane bioreactor for fouling control. Water Research, 156, 159–167. https://doi.org/10.1016/j.watres.2019.03.029
  • Liu, L., Hu, Y., Qu, Y., Cheng, D., Yang, Y., Chen, R., & Ji, J. (2023). Performance enhancement of an upflow anaerobic dynamic membrane bioreactor via granular activated carbon addition for domestic wastewater treatment. Sustainability, 15(2), 1055. https://doi.org/10.3390/su15021055
  • Liu, M., Yang, M., Chen, M., Yu, D., Zheng, J., Chang, J., Wang, X., Ji, C., & Wei, Y. (2018). Numerical optimization of membrane module design and operation for a full-scale submerged MBR by computational fluid dynamics. Bioresource Technology, 269, 300–308. https://doi.org/10.1016/j.biortech.2018.08.089
  • Liu, X., Wang, Y., Shi, Y., Li, Q., Dai, P., Guan, J., Waite, T. D., & Leslie, G. (2019b). CFD modelling of uneven flows behaviour in flat-sheet membrane bioreactors: From bubble generation to shear stress distribution. Journal of Membrane Science, 570-571, 146–155. https://doi.org/10.1016/j.memsci.2018.10.040
  • Liu, Z., Zhu, X., Liang, P., Zhang, X., Kimura, K., & Huang, X. (2019c). Distinction between polymeric and ceramic membrane in AnMBR treating municipal wastewater: In terms of irremovable fouling. Journal of Membrane Science, 588, 117229. https://doi.org/10.1016/j.memsci.2019.117229
  • Lohaus, J., Perez, Y. M., & Wessling, M. (2018). What are the microscopic events of colloidal membrane fouling? Journal of Membrane Science, 553, 90–98. https://doi.org/10.1016/j.memsci.2018.02.023
  • Lu, L., Zou, X., Yang, J., Xiao, Y., Wang, Y., Guo, J., & Li, Z. (2020). Biogeography of eukaryotic plankton communities along the upper Yangtze River: The potential impact of cascade dams and reservoirs. Journal of Hydrology, 590, 125495. https://doi.org/10.1016/j.jhydrol.2020.125495
  • Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A. E., Idrees, M., Anjum, F., Jamil, F., Ahmad, R., Khan, A. L., Lesage, G., Heran, M., & Kim, J. (2019). Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 283, 358–372. https://doi.org/10.1016/j.biortech.2019.03.061
  • Maneewan, P., Sajomsang, W., Singto, S., Lohwacharin, J., & Suwannasilp, B. B. (2021). Fouling mitigation in an anaerobic membrane bioreactor via membrane surface modification with tannic acid and copper. Environmental Pollution, 291, 118205. https://doi.org/10.1016/j.envpol.2021.118205
  • Medina, S. C., Zamora-Vacca, N., Luna, H. J., Ratkovich, N., & Rodríguez Susa, M. (2020). SMP production in an anaerobic submerged membrane bioreactor (AnMBR) at different organic loading rates. Membranes, 10(11), 317. https://doi.org/10.3390/membranes10110317
  • Mei, X., Quek, P. J., Wang, Z., & Ng, H. Y. (2017). Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor. Bioresource Technology, 240, 25–32. https://doi.org/10.1016/j.biortech.2017.02.052
  • Meng, F., Chae, S.-R., Drews, A., Kraume, M., Shin, H.-S., & Yang, F. (2009). Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 43(6), 1489–1512. https://doi.org/10.1016/j.watres.2008.12.044
  • Menzel, T., Neubauer, P., & Junne, S. (2020). Role of microbial hydrolysis in anaerobic digestion. Energies, 13(21), 5555. https://doi.org/10.3390/en13215555
  • Mertens, M., Quintelier, M., & Vankelecom, I. F. J. (2019). Magnetically induced membrane vibration (MMV) system for wastewater treatment. Separation and Purification Technology, 211, 909–916. https://doi.org/10.1016/j.seppur.2018.08.060
  • Millanar-Marfa, J. M. J., Borea, L., Castrogiovanni, F., Hasan, S. W., Choo, K.-H., Korshin, G. V., de Luna, M. D. G., Ballesteros, F. C., Jr., Belgiorno, V., & Naddeo, V. (2022). Self-forming dynamic membranes for wastewater treatment. Separation & Purification Reviews, 51(2), 195–211. https://doi.org/10.1080/15422119.2021.1887223
  • Nabi, M., Liang, H., Zhou, Q., Cao, J., & Gao, D. (2023). In-situ membrane fouling control and performance improvement by adding materials in anaerobic membrane bioreactor: A review. Science of the Total Environment, 865, 161262. https://doi.org/10.1016/j.scitotenv.2022.161262
  • Ni, L., Shi, Q., Wu, M., Ma, J., & Wang, Y. (2021). Fouling behavior and mechanism of hydrophilic modified membrane in anammox membrane bioreactor: Role of gel layer. Journal of Membrane Science, 620, 118988. https://doi.org/10.1016/j.memsci.2020.118988
  • Nie, Y., Niu, Q., Kato, H., Sugo, T., Tian, X., & Li, Y.-Y. (2017). Efficient methanogenic degradation of alcohol ethoxylates and microbial community acclimation in treatment of municipal wastewater using a submerged anaerobic membrane bioreactor. Bioresource Technology, 226, 181–190. https://doi.org/10.1016/j.biortech.2016.11.128
  • Nilusha, R. T., Yu, D., Zhang, J., & Wei, Y. (2020). Effects of solids retention time on the anaerobic membrane bioreactor with yttria-based ceramic membrane treating domestic wastewater at ambient temperature. Membranes, 10(9), 196. https://doi.org/10.3390/membranes10090196
  • Odriozola, M., Morales, N., Vázquez-Padín, J. R., Lousada-Ferreira, M., Spanjers, H., & van Lier, J. B. (2020). Fouling mitigation by cationic polymer addition into a pilot-scale anaerobic membrane bioreactor fed with blackwater. Polymers, 12(10), 2383. https://doi.org/10.3390/polym12102383
  • Ostadi, M., Kamelian, F. S., & Mohammadi, T. (2023). Superhydrophilic micro/nano hierarchical functionalized-CuO/PVDF nanocomposite membranes with ultra-low fouling/biofouling performance for acetate wastewater treatment: MBR application. Journal of Membrane Science, 676, 121591. https://doi.org/10.1016/j.memsci.2023.121591
  • Paçal, M., & Semerci, N. (2023). Performance and characteristics of dynamic membranes for dairy wastewater treatment under anaerobic conditions. International Journal of Environmental Science and Technology, 20(7), 7133–7148. https://doi.org/10.1007/s13762-023-04767-2
  • Pourziad, S., Omidkhah, M. R., & Abdollahi, M. (2020). Improved antifouling and self-cleaning ability of PVDF ultrafiltration membrane grafted with polymer brushes for oily water treatment. Journal of Industrial and Engineering Chemistry, 83, 401–408. https://doi.org/10.1016/j.jiec.2019.12.013
  • Pu, Y., Fu, Z., Li, T., Chen, Y., & Zhou, Z. (2022). A Novel anaerobic gravity-driven dynamic membrane bioreactor (AnGDMBR): Performance and fouling characterization. Membranes, 12(7), 683. https://doi.org/10.3390/membranes12070683
  • Ramos, C., Zecchino, F., Ezquerra, D., & Diez, V. (2014). Chemical cleaning of membranes from an anaerobic membrane bioreactor treating food industry wastewater. Journal of Membrane Science, 458, 179–188. https://doi.org/10.1016/j.memsci.2014.01.067
  • Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2012). Sub-critical long-term operation of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Separation and Purification Technology, 100, 88–96. https://doi.org/10.1016/j.seppur.2012.09.010
  • Rong, C., Wang, T., Luo, Z., Hu, Y., Kong, Z., Qin, Y., Hanaoka, T., Ito, M., Kobayashi, M., & Li, Y.-Y. (2022). Pilot plant demonstration of temperature impacts on the methanogenic performance and membrane fouling control of the anaerobic membrane bioreactor in treating real municipal wastewater. Bioresource Technology, 354, 127167. https://doi.org/10.1016/j.biortech.2022.127167
  • Ruigómez, I., González, E., Rodríguez-Gómez, L., & Vera, L. (2022). Fouling control strategies for direct membrane ultrafiltration: Physical cleanings assisted by membrane rotational movement. Chemical Engineering Journal, 436, 135161. https://doi.org/10.1016/j.cej.2022.135161
  • Sanchez, L., Vinardell, S., Charreton, J., Heran, M., & Lesage, G. (2023). Assessing the impact of granular anaerobic membrane bioreactor intensification on treatment performance, membrane fouling and economic balance. Journal of Environmental Chemical Engineering, 11(2), 109369. https://doi.org/10.1016/j.jece.2023.109369
  • Sanchis-Perucho, P., Torres, K. M. M., Ferrer, J., & Robles, Á. (2023). Evaluating the potential of off-line methodologies to determine sludge filterability from different municipal wastewater treatment systems. Chemical Engineering Journal, 468, 143537. https://doi.org/10.1016/j.cej.2023.143537
  • Sapireddy, V., Ragab, A., Katuri, K. P., Yu, Y., Lai, Z., Li, E., Thoroddsen, S. T., & Saikaly, P. E. (2019). Effect of specific cathode surface area on biofouling in an anaerobic electrochemical membrane bioreactor: Novel insights using high-speed video camera. Journal of Membrane Science, 577, 176–183. https://doi.org/10.1016/j.memsci.2019.02.007
  • Shah, S. S. A., & Choo, K.-H. (2020). Isolation and characterization of novel indigenous facultative quorum quenching bacterial strains for ambidextrous biofouling control. Bioresource Technology, 308, 123269. https://doi.org/10.1016/j.biortech.2020.123269
  • Shah, S. S. A., Park, H., Park, H.-J., Kim, J., Angelidaki, I., Lee, C., Kim, J., & Choo, K.-H. (2023). Polyelectrolyte-silica composite quorum quenching biomedia as new antifouling agents for anaerobic membrane bioreactor treatment. Chemical Engineering Journal, 452, 139568. https://doi.org/10.1016/j.cej.2022.139568
  • Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038–1046. https://doi.org/10.1016/j.biortech.2017.09.002
  • Shin, C., Tilmans, S. H., Chen, F., McCarty, P. L., & Criddle, C. S. (2021). Temperate climate energy-positive anaerobic secondary treatment of domestic wastewater at pilot-scale. Water Research, 204, 117598. https://doi.org/10.1016/j.watres.2021.117598
  • Siddiqui, M. A., Biswal, B. K., Saleem, M., Guan, D., Iqbal, A., Wu, D., Khanal, S. K., & Chen, G. (2021). Anaerobic self-forming dynamic membrane bioreactors (AnSFDMBRs) for wastewater treatment-Recent advances, process optimization and perspectives. Bioresource Technology, 332, 125101. https://doi.org/10.1016/j.biortech.2021.125101
  • Soh, Y. N. A., Kunacheva, C., Webster, R. D., & Stuckey, D. C. (2020). Identification of the production and biotransformational changes of soluble microbial products (SMP) in wastewater treatment processes: A short review. Chemosphere, 251, 126391. https://doi.org/10.1016/j.chemosphere.2020.126391
  • Sohn, W., Guo, W., Ngo, H. H., Deng, L., Cheng, D., & Zhang, X. (2021). A review on membrane fouling control in anaerobic membrane bioreactors by adding performance enhancers. Journal of Water Process Engineering, 40, 101867. https://doi.org/10.1016/j.jwpe.2020.101867
  • Song, D., Zhang, W., Cheng, W., Jia, B., Wang, P., Sun, Z., Ma, J., Zhai, X., Qi, J., & Liu, C. (2020). Micro fine particles deposition on gravity-driven ultrafiltration membrane to modify the surface properties and biofilm compositions: Water quality improvement and biofouling mitigation. Chemical Engineering Journal, 393, 123270. https://doi.org/10.1016/j.cej.2019.123270
  • Szabo-Corbacho, M. A., Pacheco-Ruiz, S., Míguez, D., Hooijmans, C. M., García, H. A., Brdjanovic, D., & van Lier, J. B. (2021). Impact of solids retention time on the biological performance of an AnMBR treating lipid-rich synthetic dairy wastewater. Environmental Technology, 42(4), 597–608. https://doi.org/10.1080/09593330.2019.1639829
  • Szabo-Corbacho, M. A., Pacheco-Ruiz, S., Míguez, D., Hooijmans, C. M., Brdjanovic, D., García, H. A., & van Lier, J. B. (2022). Influence of the sludge retention time on membrane fouling in an anaerobic membrane bioreactor (AnMBR) treating lipid-rich dairy wastewater. Membranes, 12(3), 262. https://doi.org/10.3390/membranes12030262
  • Teng, J., Zhang, M., Leung, K.-T., Chen, J., Hong, H., Lin, H., & Liao, B.-Q. (2019). A unified thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs) in a membrane bioreactor. Water Research, 149, 477–487. https://doi.org/10.1016/j.watres.2018.11.043
  • Trofa, M., D’Avino, G., Sicignano, L., Tomaiuolo, G., Greco, F., Maffettone, P. L., & Guido, S. (2019). CFD-DEM simulations of particulate fouling in microchannels. Chemical Engineering Journal, 358, 91–100. https://doi.org/10.1016/j.cej.2018.09.207
  • Vera, L., González, E., Ruigómez, I., Gómez, J., & Delgado, S. (2016). Influence of gas sparging intermittence on ultrafiltration performance of anaerobic suspensions. Industrial & Engineering Chemistry Research, 55(16), 4668–4675. https://doi.org/10.1021/acs.iecr.5b04529
  • Vinardell, S., Astals, S., Peces, M., Cardete, M. A., Fernández, I., Mata-Alvarez, J., & Dosta, J. (2020). Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review. Renewable & Sustainable Energy Reviews, 130, 109936.
  • Wang, C., Ding, M., Albert Ng, T. C., & Yong Ng, H. (2022a). Enhanced dissolved methane recovery and energy-efficient fouling mitigation via membrane vibration in anaerobic membrane bioreactor. Resources, Conservation and Recycling, 184, 106404. https://doi.org/10.1016/j.resconrec.2022.106404
  • Wang, C., Ding, M., Ng, T. C. A., & Ng, H. Y. (2023a). Mechanistic insights into simultaneous reversible and irreversible membrane fouling control in a vibrating anaerobic membrane bioreactor for sustainable municipal wastewater treatment. Chemical Engineering Journal, 466, 143226. https://doi.org/10.1016/j.cej.2023.143226
  • Wang, J., Cahyadi, A., Wu, B., Pee, W., Fane, A. G., & Chew, J. W. (2020). The roles of particles in enhancing membrane filtration: A review. Journal of Membrane Science, 595, 117570. https://doi.org/10.1016/j.memsci.2019.117570
  • Wang, K. M., Cingolani, D., Eusebi, A. L., Soares, A., Jefferson, B., & McAdam, E. J. (2018). Identification of gas sparging regimes for granular anaerobic membrane bioreactor to enable energy neutral municipal wastewater treatment. Journal of Membrane Science, 555, 125–133. https://doi.org/10.1016/j.memsci.2018.03.032
  • Wang, K. M., Soares, A., Jefferson, B., & McAdam, E. J. (2019). Comparable membrane permeability can be achieved in granular and flocculent anaerobic membrane bioreactor for sewage treatment through better sludge blanket control. Journal of Water Process Engineering, 28, 181–189. https://doi.org/10.1016/j.jwpe.2019.01.016
  • Wang, Q., Lin, W., Chou, S., Dai, P., & Huang, X. (2023b). Patterned membranes for improving hydrodynamic properties and mitigating membrane fouling in water treatment: A review. Water Research, 236, 119943. https://doi.org/10.1016/j.watres.2023.119943
  • Wang, T., Jin, Z., Yang, Y., Ma, J., Aghbashlo, M., Zhang, H., Sun, S., Tabatabaei, M., & Pan, J. (2022b). In-depth insights into the temporal-based fouling mechanism and its exploration in anaerobic membrane bioreactors: A review. Journal of Cleaner Production, 375, 134110. https://doi.org/10.1016/j.jclepro.2022.134110
  • Wong, L. Y., Chong, T., Lo, P. K., Bashir, M. J. K., & Ng, C. A. (2019). Performance of anaerobic membrane bioreactors (AnMBRs) with different concentration of powdered activated carbon (PAC) at mesophilic regime in membrane fouling control. 2157, 020014. https://doi.org/10.1063/1.5126549
  • Wu, M., Liu, J., Gao, B., & Sillanpää, M. (2021). Anaerobic offsite Fe2+ releasing for electrocoagulation in ABMBR: Membrane fouling mitigation, nutrients removal and anodes protection. Journal of Water Process Engineering, 39, 101706. https://doi.org/10.1016/j.jwpe.2020.101706
  • Xiang, Z., Chen, X., Bai, J., Rong, H., Li, H., Zhao, Y., & Huang, X. (2023). A novel anaerobic/aerobic-moving bed-dynamic membrane combined biofilm reactor (A/O-MB-DMBR) treating mariculture wastewater with chitosan (CTS): Performance, control and microbial community. Environmental Technology & Innovation, 29, 103009. https://doi.org/10.1016/j.eti.2023.103009
  • Xing, F., Wang, T., Yun, H., & Wang, X. (2022). The granular sludge membrane bioreactor: A new tool to enhance Anammox performance and alleviate membrane fouling. Biochemical Engineering Journal, 187, 108628. https://doi.org/10.1016/j.bej.2022.108628
  • Xu, B., Albert Ng, T. C., Huang, S., Shi, X., & Ng, H. Y. (2020b). Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. Water Research, 169, 115251. https://doi.org/10.1016/j.watres.2019.115251
  • Xu, B., Ng, T. C. A., Huang, S., & Ng, H. Y. (2020a). Effect of quorum quenching on EPS and size-fractioned particles and organics in anaerobic membrane bioreactor for domestic wastewater treatment. Water Research, 179, 115850. https://doi.org/10.1016/j.watres.2020.115850
  • Xu, B., Ng, T. C. A., Huang, S., He, M., Varjani, S., & Ng, H. Y. (2022). Quorum quenching affects biofilm development in an anaerobic membrane bioreactor (AnMBR): from macro to micro perspective. Bioresource Technology, 344(Pt B), 126183. https://doi.org/10.1016/j.biortech.2021.126183
  • Xu, R., Yao, Y., Zhou, Z., Huang, Y.-X., Zhao, S., & Meng, F. (2023). Immobilization of hydrolytic/fermentative bacteria to achieve ultra-low fouling in anaerobic membrane bioreactor. Chemical Engineering Journal, 452, 138821. https://doi.org/10.1016/j.cej.2022.138821
  • Yang, H., Li, Z., Chen, Y., & Zhou, Z. (2022a). Role of microparticles in membrane fouling from acidogenesis to methanogenesis phases in an anaerobic baffled reactor. Science of the Total Environment, 806, 150663. https://doi.org/10.1016/j.scitotenv.2021.150663
  • Yang, J. (2013). Prospects for flux enhancement in anaerobic membrane bioreactors treating saline wastewater. [Doctor]. Technical University of Delft.
  • Yang, J. X., Zhao, B., An, Q., Huang, Y. S., & Guo, J. S. (2018b). Bioaugmentation with A. faecalis strain NR for achieving simultaneous nitrogen and organic carbon removal in a biofilm reactor. Bioresource Technology, 247, 871–880. https://doi.org/10.1016/j.biortech.2017.09.189
  • Yang, J., Gou, Y., Fang, F., Guo, J., Ma, H., Wei, X., & Shahmoradi, B. (2018a). Impacts of sludge retention time on the performance of an algal-bacterial bioreactor. Chemical Engineering Journal, 343, 37–43. https://doi.org/10.1016/j.cej.2018.02.118
  • Yang, J., Ji, X., Lu, L., Ma, H., Chen, Y., Guo, J., & Fang, F. (2017a). Performance of an anaerobic membrane bioreactor in which granular sludge and dynamic filtration are integrated. Biofouling, 33(1), 36–44. https://doi.org/10.1080/08927014.2016.1262845
  • Yang, J., Lu, L., Ouyang, W., Gou, Y., Chen, Y., Ma, H., Guo, J., & Fang, F. (2017b). Estimation of kinetic parameters of an anaerobic digestion model using particle swarm optimization. Biochemical Engineering Journal, 120, 25–32. https://doi.org/10.1016/j.bej.2016.12.022
  • Yang, J., Shi, W., Fang, F., Guo, J., Lu, L., Xiao, Y., & Jiang, X. (2020a). Exploring the feasibility of sewage treatment by algal–bacterial consortia. Critical Reviews in Biotechnology, 40(2), 169–179. https://doi.org/10.1080/07388551.2019.1709796
  • Yang, J., Spanjers, H., & van Lier, J. B. (2012a). Non-feasibility of magnetic adsorbents for fouling control in anaerobic membrane bioreactors. Desalination, 292, 124–128. https://doi.org/10.1016/j.desal.2012.02.017
  • Yang, J., Spanjers, H., & van Lier, J. B. (2020b). Impact of adding aluminum hydroxyl chloride on membrane flux in an anaerobic membrane bioreactor. Journal of Water Process Engineering, 34, 101178. https://doi.org/10.1016/j.jwpe.2020.101178
  • Yang, J., van Lier, J. B., Li, J., Guo, J., & Fang, F. (2022b). Integrated anaerobic and algal bioreactors: A promising conceptual alternative approach for conventional sewage treatment. Bioresource Technology, 343, 126115. https://doi.org/10.1016/j.biortech.2021.126115
  • Yang, J., Vedantam, S., Spanjers, H., Nopens, I., & van Lier, J. B. (2012b). Analysis of mass transfer characteristics in a tubular membrane using CFD modeling. Water Research, 46(15), 4705–4712. https://doi.org/10.1016/j.watres.2012.06.028
  • Yang, S., Zhang, Q., Lei, Z., Wen, W., Huang, X., & Chen, R. (2019a). Comparing powdered and granular activated carbon addition on membrane fouling control through evaluating the impacts on mixed liquor and cake layer properties in anaerobic membrane bioreactors. Bioresource Technology, 294, 122137. https://doi.org/10.1016/j.biortech.2019.122137
  • Yang, Y., Qiao, S., Jin, R., Zhou, J., & Quan, X. (2019b). Novel Anaerobic electrochemical membrane bioreactor with a CNTs hollow fiber membrane cathode to mitigate membrane fouling and enhance energy recovery. Environmental Science & Technology, 53(2), 1014–1021. https://doi.org/10.1021/acs.est.8b05186
  • Yao, Y., Gan, Z., Zhou, Z., Huang, Y.-X., & Meng, F. (2022). Carbon sources driven supernatant micro-particles differentiate in submerged anaerobic membrane bioreactors (AnMBRs). Chemical Engineering Journal, 430, 133020. https://doi.org/10.1016/j.cej.2021.133020
  • Ying, X.-B., Huang, J.-J., Shen, D.-S., Feng, H.-J., Jia, Y.-F., & Guo, Q.-Q. (2021). Fouling behaviors are different at various negative potentials in electrochemical anaerobic membrane bioreactors with conductive ceramic membranes. The Science of the Total Environment, 761, 143199. https://doi.org/10.1016/j.scitotenv.2020.143199
  • Zhang, J., Wang, Q., Wang, Z., Zhu, C., & Wu, Z. (2014). Modification of poly(vinylidene fluoride)/polyethersulfone blend membrane with polyvinyl alcohol for improving antifouling ability. Journal of Membrane Science, 466, 293–301. https://doi.org/10.1016/j.memsci.2014.05.006
  • Zhang, M., Liao, B.-Q., Zhou, X., He, Y., Hong, H., Lin, H., & Chen, J. (2015). Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. Bioresource Technology, 175, 59–67. https://doi.org/10.1016/j.biortech.2014.10.058
  • Zhang, S., Yang, K., Liu, W., Xu, Y., Hei, S., Zhang, J., Chen, C., Zhu, X., Liang, P., Zhang, X., & Huang, X. (2021). Understanding the mechanism of membrane fouling suppression in electro-anaerobic membrane bioreactor. Chemical Engineering Journal, 418, 129384. https://doi.org/10.1016/j.cej.2021.129384
  • Zhen, G., Pan, Y., Lu, X., Li, Y.-Y., Zhang, Z., Niu, C., Kumar, G., Kobayashi, T., Zhao, Y., & Xu, K. (2019). Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives. Renewable & Sustainable Energy Reviews, 115,109392.
  • Zhou, Z., Tao, Y., Zhang, S., Xiao, Y., Meng, F., & Stuckey, D. C. (2019). Size-dependent microbial diversity of sub-visible particles in a submerged anaerobic membrane bioreactor (SAnMBR): Implications for membrane fouling. Water Research, 159, 20–29. https://doi.org/10.1016/j.watres.2019.04.050
  • Zhu, Y., Cao, L., & Wang, Y. (2019). Characteristics of a self-forming dynamic membrane coupled with a bioreactor in application of anammox processes. Environmental Science & Technology, 53(22), 13158–13167. https://doi.org/10.1021/acs.est.9b04314
  • Zuo, Y., Shao, Y., Wang, L., Sun, Y., An, Y., Jiang, L.-M., Yu, N., Hao, R., Zhou, C., Tao, J., & Zhou, Z. (2023). Simultaneous sludge minimization and membrane fouling mitigation in membrane bioreactors by using a microaerobic-Settling pretreatment module. Journal of Environmental Management, 328, 116977. https://doi.org/10.1016/j.jenvman.2022.116977

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.