34
Views
27
CrossRef citations to date
0
Altmetric
Original Article

Attenuation of the acute adriamycin-induced cardiac and hepatic oxidative toxicity by N-(2-mercaptopropionyl) glycine in rats

, , &
Pages 575-581 | Received 22 Jan 2001, Published online: 07 Jul 2009

References

  • Black D.J., Livingston R.B. Antineoplastic drugs in 10990: a review (Part II). Drugs 1990; 39: 652–673
  • Jain D. Cardiotoxicity of doxorubicin and other anthracycline derivatives. J. Nucl. Cardiol. 2000; 7: 53–62
  • Singal P.K., Li T., Kumar D., Danelisen I., Iliskovic N. Adriamycin-induced heart failure: mechanism and modulation. Mol. Cell Biochem. 2000; 207: 77–86
  • Halliwell B. Free radicals, antioxidants and human disease: Curiosity, cause or consequence?. The Lancet 1994; 344: 721–724
  • Dorr R.T. Cytoprotective agents for anthracyclines. Seminars in Oncology 1996; 23: 23–34
  • Ayene S., Kale R., Srivastava P. Radioprotective effect of 2-mercaptopropionyl glycine on radiation induced lipid peroxidation and enzyme release in erythrocytes. Int. J. Radiation Biol. 1998; 55: 627–639
  • Sharan R., Chakraborty S., Saikia J.R., Sarivastava P.N. 2-mercaptopropionyl glycine affords enhanced radioprotection after a liposome encapsulation. J. Radiation Res. 1995; 36: 31–36
  • Zimmer G., Evers J. 2-mercaptopropionyl glycine improves aortic flow after reoxygenation in working rat hearts. Basic Res. Cardiol. 1998; 83: 445–451
  • Tanaka M., Fujiwara H., Yamasaki K., Sasayama S. Superoxide dismutase and N-2-mercaptopropionil glycine attenuate infarct size limitation effect of ischemic reconditioning in rabbit. Cardiovascular Res. 1994; 28: 980–986
  • Kilgore K.S., Homcister J.W., Satoh B.P., Lucchesi B.R. Sulfhydryl compounds, captopril and MPG inhibit complement-mediated myocardial injury. Am. J. Physiol. 1994; 266: 28–35
  • Al-Harbi M.M. Effect of captopril on the cytological and biochemical changes induced by adriamycin. Food Chem. Toxicol. 1993; 31: 209–212
  • Reitman S., Frankel S. A colourimetric method for determiantion of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am. J. Clin. Pathol. 1957; 28: 56–60
  • Kachmar J.F., Moss D.W. Enzymes. Fundamentals of Clinical Chemistry, W. Teitz. Saunders, Philadelphia, London, Mexico city 1982; 565–595, In
  • Bergmeyer H.U., Bernet E. Lactate dehydrogenase isoenzymes UV assay after separation of DEAE sephadex. Method of enzymatic analysis, H.U. Bermeyer. Verlag Chemie/Academic Press, Weinheim/New York, London 1974; 590–593, In
  • Uchiyamo M., Mihara H. Determination of malonaldehyde precursor in tissue by thiobarbituric acid test. Anal. Biochem. 1978; 86: 271–275
  • Nishikimi M., Rao N., Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972; 46: 849–853
  • Bock P.P., Kramer R., Pavelka M. A simple assay for catalase determination. Cell Biol. Monogr. 1980; 7: 44–74
  • Beutler E. Red Cell metabolism. A manual of biochemical methods, E. Beutler. Grune and Stratton, New York 1982; 137–140, In
  • Wahab M.H., Akoul E.S., Abdel-Aziz A.A. Modulatory effects of melatonin and vitamin E on dexorubicin- induced cardiotoxicity in Ehrlich ascites carcinoma-bearing mice. Tumorigenesis 2000; 86: 157–162
  • Singal P.K., Siveski N., Ibskovic N., Hell M., Thomas T.P., Li T. Combination therapy with probucol prevents adriamycin induced cardiomyopathy. Mol. Cell. Cardiol. 1995; 27: 1055–1063
  • Singal P.K., Llikovic N., Li T., Kumar D. Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J. 1997; 11: 931–936
  • Singal P.K., Iliskovic N. Doxorubicin-Induced Cardiomyopathy. New. Engl. J. Med. 1998; 339: 990–995
  • Pristos C.A., Ma J. Basal and drug-induced antioxidant enzyme activities cooelate with agedependant doxorubicin oxidative toxicity. Chem.-Biol. Interact. 2000; 127: 1–11
  • Zwier J.L. Reduction of O2 by ironadriamycin. J. Biol. Chem. 1984; 259: 6056–6058
  • Mohamed H.E., El-Swefy S.E., Hagar H.H. The protective effect of glutathione administration on adriamycin-induced acute cardiac toxicity in rats. Pharmacol. Res. 2000; 42: 115–121
  • Pritsos C.A., Sokoloff M., Gustafson D.L. PZ-51 (Ebselen) in vivo protection against adriamycin-induced mouse cardiac and hepatic lipid peroxidation and toxicity. Biochem. Pharmacol. 1992; 44: 839–841
  • Julka D., Sandhir R., Gill K.D. Adriamycin-induced oxidative stress in central nervous system. Biochem. Mol. Biol. Interact. 1993; 29: 807–820
  • Hershko C., Pinson A., Link G. Prevention of anthracycline cardiotoxicity by iron chelation. Acta Hematologica 1996; 95: 87–92
  • Dixon I.M., Hata Y., Dhalla N.S. Sarcolemmal Na+-K+-ATPase in congestive heart failure due to myocardial infarction. Am. J. Physiol. 1992; 262: C664–C671
  • Berroud A., Le-Roy A., Voisin P. Membrane oxidative damage induced by ionizing radiation detected by fluorescence polarization. Radiat. Environmental Biophy. 1996; 35: 289–295
  • De Atley S.M., Aksenov M.Y., Aksenov M.V., Jordan B., Carney J.M., Butterfield D.A. Adriamycin-induced changes of creatin kinase activity in vivo and in cardiomocyte culture. Toxicology 1999; 134: 51–62
  • Yen H., Oberley T.D., Vichitbandha S., Ye-Shih H.O., St. Clair D.K. The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J. Clin. Invest. 1996; 98: 1253–1260
  • Miura T., Muraoka S., Fujimoto Y. Inactivation of creatin kinase by adriamycin during interaction with horserasdish peroxidase. Biochem. Pharmacol. 2000; 60: 95–99
  • Yin X., Wu H., Chen Y., Kang Y.J. Induction of antioxidants by adriamycin in mouse heart. Biochem. Pharmacol. 1998; 56: 87–93
  • Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br. J. Pharmacol. 1998; 124: 425–427
  • Mostafa M.G., Mima T., Ohnishi S.T., Mori K. S-allylcysteine ameliorates doxorubicine toxicity in heart and liver in mice. Planta Med. 2000; 66: 148–151
  • Chopra M., Beswick M., Clapperton H., Dargie J., Smith W.E., McMurray J. Antioxidant effects of angiotensin converting enzyme inhibitors (ACE): Free radical and oxidant scavenging are sulfhydryl dependant, but lipid peroxidation is inhibited by both sulfhydryl and nonsulfhydryl containing ACE inhibitors. J. Cardiovasc. Pharmacol. 1992; 19: 330–340
  • Mita I. Chemistry, pharmacology and current clinical application of tiopronin. Recent Advances in 2-MPG Treatment of Liver Diseases, R. Williams, G. Gasbarrini, M. Davis. Santen Pharmaceuticla Col, Ltd., OsakaJapan 1981; 3–10, In
  • Koerner J., Anderson B., Dage R. Protection against postischemic myocardial dysfunction in anesthetized rabbits with scavengers of oxygenderived free radicals: superoxide dismutase plus catalase, N-2-mercaptopropionyl glycine and captopril. J. Cardiovasc. Pharmacol. 1991; 17: 185–191
  • Turner J.J., Rice-Evans C.A., Davies M.J., Newman E.S. The formation of free radicals by cardiac myocytes under oxidative stress and the effect of electron-donating drugs. Biochem. J. 1991; 277: 833–837

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.