158
Views
46
CrossRef citations to date
0
Altmetric
Original

Increased mitochondrial oxidative damage and oxidative DNA damage contributes to the neurodegenerative process in sporadic amyotrophic lateral sclerosis

, &
Pages 221-225 | Received 10 Oct 2007, Published online: 07 Jul 2009

References

  • Siddique T, Figlewicz DA, Pericak-Vance MA, Haines JL, Rouleau G, Jeffers AJ, et al. Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity. N Engl J Med 1991; 324: 1381–1384
  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hertati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59–62
  • Ferrante RJ, Bowne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neorochem 1997; 69: 2064–2074
  • Przedboski S, Donaldson DM, Jakowec M, Kish SJ, Guttman M, Rosoklija G, et al. Brain superoxide dismutase, catalase and glutathione peroxidase activities in amyotrophic lateral sclerosis. N Engl Ann Neurol 1996; 39: 158–165
  • Bogdanov M, Brown RH, Jr, Matson W, Smart R, Hayden D, O'Donnell H, et al. Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med 2000; 29: 652–658
  • Oteiza PI, Uchitel OD, Carrasquedo F, Dubrovski AL, Roma JC, Fraga CG. Evaluation of antioxidants, proteins and lipid oxidation products in blood from sporadic amyotrophic lateral sclerosis patients. Neorochem Res 1997; 22: 535–539
  • Bonnefont-Rousselot D, Lacomblez L, Jaudon M, Lepage S, Salachas F, Bensiman G, et al. Blood oxidative stress in amyotrophic lateral sclerosis. J Neurol Sci 2000; 178: 57–62
  • Iwasaki Y, Ikeda K, Kinoshita M. Vitamin A and E levels are normal in amyotrophic lateral sclerosis. J Neurol Sci 1995; 29: 652–658
  • Paraskevas GP, Kapaki E, Libitaki G, Zournas C, Segditsa I, Papageorgiou C. Ascorbate in healthy subjects, amyotrophic lateral sclerosis and Alzheimer's disease. Acta Nerol Scand 1997; 96: 88–90
  • Molina JA, de Bustos F, Jimenez-Jimenez FJ, Gomez-Escalonilla C, Garcia-Redonda A, Esteban J, et al. Serum levels of coenzyme Q10 in patients with amyotrophic lateral sclerosis. J Neural Transm 2000; 107: 1021–1026
  • Tohgi H., Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C. Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 1999; 46: 129–131
  • Tohgi H., Abe T, Saheki M, Yamazaki K, Takahashi S. α-Tocopherol quinone level is remarkably low in the cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Neurosci Lett 1996; 207: 5–8
  • Yamamoto Y, Kawamura M, Tatsuno K, Yamashita S, Niki E, Naito C., . Formation of lipid hydroperoxides in the cupiric ion-induced oxidation of plasma and low density lipoprotein. Oxidative damage and repair, KJA Davies, et al. Pergamon Press, New York 1991; 287–291
  • Shults CW, Haas RH, Passov D, Beal MF. Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann Neurol 1997; 42: 261–264
  • Jablecki CK, Berry, Leach J. Survival prediction in amyotrophic lateral sclerosis. Muscle Nerve 1989; 12: 833–841
  • Yamashita S, Yamamoto Y. Simultaneous detection ob ubiquinol and ubiquinone in human plasma as a marker of oxidative stress. Anal Biochem 1997; 250: 66–73
  • Shigenaga MK, Gimeno CJ. Ames BN. Urinary 8-hydroxy-27′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc Natl Acad Sci USA 1989; 86: 9697–9701
  • Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 1988; 85: 6465–6467
  • Mattiazzi M, D'Aurelio M, Gajewski CD, Martushava K, Kiaei M, Flint M, et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 2002; 277: 29626–29633
  • Struz LA, Diekert K, Jensen LT, Lill R, Cizewski Culotta V, et al. A fraction of yeast Cu/Zn superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 2001; 276: 38084–38089
  • Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: Implications for the role of mitochondria in neuronal cell death. Ann Nerol 1999; 46: 787–790
  • Bowling AC, Schulz JB, Brown RH, Beal MF. Superoxide dismutase activity. Oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 1993; 61: 2322–2325
  • Kong J, Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 1998; 18: 3241–3250
  • Jaarsma D, Rognoni F, Duijn WV, Verspaget HW, Haasdijk ED, Holstege JC. Cu/Zn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol 2001; 102: 293–305
  • Beal MF. Coenzyme Q10 as a possible treatment for neurodegenerative disease [Review][61 refs]. Free Radic Res 2002; 36: 455–460
  • Sohmiya M, Tanaka M, Suzuki Y, Tanino Y, Okamoto K, Yamamoto Y. An increase of oxidized coenzyme Q-10 occurs in the plasma of sporadic ALS patients. J Neurol Sci 2005; 228: 49–53
  • Warita H, Hayashi T, Murakami T, Manabe Y, Abe K. Oxidative damage to mitochondrial DNA in spinal motoneurons of transgenic ALS mice. Mol Brain Res 2001; 89: 147–152
  • Fitzmaurice PS, Shaw IC, Kleiner HE, Miller RT, Monks TJ, Lau SS, et al. Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 1996; 19: 797–798

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.