231
Views
15
CrossRef citations to date
0
Altmetric
Original

Flow cytometric estimation of ‘labile iron pool’ in human white blood cells reveals a positive association with ageing

, , , , &
Pages 253-259 | Received 18 Dec 2007, Published online: 07 Jul 2009

References

  • Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 2001; 33: 940–959
  • Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts; molecular control of mammalian iron metabolism. Cell 2004; 117: 285–297
  • Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol 2005; 202: 199–211
  • Halliwell B, Gutteridge JMC. The role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990; 186: 1–85
  • Symons MCR, Gutteridge JMC. Free radicals and iron: chemistry, biology, and medicine. Oxford: Oxford Science Publications; 1998.
  • Doulias PT, Kotoglou P, Tenopoulou M, Keramisanou D, Tzavaras T, Brunk U, Galaris D, Angelidis C. Involvement of heat shock protein-70 in the mechanism of hydrogen peroxide-induced DNA damage: the role of lysosomes and iron. Free Radic Biol Med 2007; 42: 567–577
  • Dunn LL, Rahmanto YS, Richardson DR. Iron uptake and metabolism in the new millennium. Trends Cell Biol 2007; 17: 93–100
  • Himmelfarb J. Iron regulation. J Am Soc Nephrol 2007; 18: 379–381
  • Napier I, Ponka P, Richardson DR. Iron trafficking in mitochondrion: novel pathways revealed by disease. Blood 2005; 105: 1867–1874
  • Cheng Y, Zak O, Aisen P, Harrison SC, Walz T. Structure of the human transferring receptor-transferrin complex. Cell 2004; 116: 565–576
  • Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1996; 1275: 161–203
  • Hintze KJ, Theil EC. Cellular regulation and molecular interactions of the ferritins. Cell Mol Life Sci 2006; 63: 591–600
  • Yongmin MA, de Groot H, Liu Z, Hider RC, Petrat F. Chelation and determination of labile iron in primary hepatocytes by pyridinone fluorescent probes. Biochem J 2006; 395: 49–55
  • Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 2003; 531: 81–92
  • Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med 2002; 33: 1037–1046
  • Tenopoulou M, Doulias PT, Barbouti A, Brunk UT, Galaris D. Role of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis. Biochem J 2005; 387: 703–710
  • Glickstein H, El RB, Shvartsman M, Cabantchik ZI. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood 2005; 106: 3242–3250
  • Melidou M, Riganakos K, Galaris D. Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: the role of iron chelation. Free Radic Biol Med 2005; 39: 1591–1600
  • Eisenstein RS. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 2001; 20: 627–662
  • Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 2006; 1763: 668–689
  • Pantopoulos K. Iron metabolismand the IRE/IRP regulatory system: an update. Ann NY Acad Sci 2004; 1012: 1–13
  • Epsztejn S, Kakhlon O, Glickstein H, Breuer W, Cabantchik ZI. Fluorescence analysis of the labile iron pool of mammalian cells. Anal Biochem 1997; 248: 31–40
  • Cabantchik ZI, Kakhlon O, Epsztejn S, Zanninelli G, Breuer W. Intracellular and extracellular labile iron pools. Adv Exp Med Biol 2002; 509: 55–75
  • van der A DL, Marx JJ, Grobbee DE, Kamphuis MH, Georgiou NA, van Kats-Renaud JH, Breuer W, Cabantchik ZI, Roest M, Voorbij HA, van der Schouw YT. Non-transferrin-bound iron and risk of coronary heart disease in postmenopausal women. Circulation 2006;113:1942–1949.
  • Pootrakul P, Breuer W, Sametband M, Sirankapracha P, Hershko C, Cabantchik ZI. Labile plasma iron (LPI) as an indicator of chelatable plasma redox activity in iron-overload β-thalassemia/HbE patients treated with an oral chelator. Blood 2004; 104: 1504–1510
  • Esposito B, Breuer W, Sirankapracha P, Pootrakul P, Hershko C, Cabantchik ZI. Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood 2003; 102: 2670–2677
  • Jacobs EM, Hendriks JC, van Tits BL, Evans PJ, Breuer W, Liu DY, Jansen EH, Jauhiainen K, Sturm B, Porter JB, Scheiber-Mojdehkar B, von Bonsdorff L, Cabantchik ZI, Hider RC, Swinkels DW. Results of an international round robin for the quantification of serum non-transferrin-bound iron: need for defining standardization and a clinically relevant isoform. Anal Biochem 2005; 341: 241–250
  • Takizawa M, Chiba J, Haga S, Asano T, Yamazaki T, Yamamoto N, Honda M. Novel two-parameter flow cytometry (MIL4/SSC followed by MIL4/CT7) allows for identification of five fractions of guinea pig leukocytes in peripheral blood and lymphoid organs. J Immunol Methods 2006; 311: 47–56
  • Breuer W, Epstein S, Millgram P, Cabantchik ZI. Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am J Physiol 1995; 268: C1354–C1351
  • Coyne D. Iron indices: what do they really mean?. Kidney Int 2006; 101: S4–S8
  • Qayyum R, Schulman P. Iron and atherosclerosis. Clin Cardiol 2005; 28: 119–122
  • Wood RJ. The iron-heart disease connection: is it dead or just hiding?. Ageing Res Rev 2004; 3: 355–367
  • You SA, Wang Q. Ferritin in atherosclerosis. Clin Chim Acta 2005; 357: 1–16
  • Lee DH, Jacobs DR, Jr. Serum markers of stored body iron are not appropriate markers of health effects of iron: a focus on serum ferritin. Med Hypoth 2004; 66: 442–445
  • Kartikasari AE, Georgiou NA, Visseren FL, van Kats-Renaud H, van Asbeck BS, Marx JJ. Endothelial activation and induction of monocyte adhesion by nontransferrin-bound iron present in human sera. FASEB J 2006; 20: 353–355
  • Tenopoulou M, Kurz T, Doulias PT, Galaris D, Brunk UT. Does the calcein-AM method assay the total cellular ‘labile iron pool’ or only a fraction of it?. Biochem J 2007; 403: 261–266
  • Dallman PR, Siimens MA, Steckel A. Iron deficiency in infancy and childhood. Am J Clin Nutr 1980; 33: 86–118
  • Cook JD, Finch CA, Smith NJ. Elevation of the iron status of a population. Blood 1976; 48: 449–455
  • Nakano M, Kawanishi Y, Kamohara S, Uchida Y, Shiota M, Inatomi Y, Komori T, Miyazawa K, Gondo K, Yamasawa I. Oxidative DNA damage (8-hydroxydeoxyguanosine) and body iron status: a study on 2507 healthy people. Free Radic Biol Med 2003; 35: 826–832
  • Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 1990; 87: 4533–4537
  • Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidizes proteins. J Biol Chem 1987; 262: 5488–5491
  • Polla AS, Polla LL, Polla BS. Iron as the malignant spirit in successful ageing. Ageing Res Rev 2003; 2: 25–37
  • Sullivan JL. Is stored iron safe?. J Lab Clin Med 2004; 144: 280–284
  • Gackowski D, Kruszewski M, Bartlomiejczyk T, Jawien A, Ciecierski M, Olinski R. The level of 8-oxo-7,8-dihydro-2′-deoxyguanosine is positively correlated with the size of the labile iron pool in human lymphocytes. J Biol Inorg Chem 2002; 7: 548–550
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298–300
  • Beckman KB, Ames BN. The free radical theory of ageing matures. Physiol Rev 1998; 78: 547–581
  • Junqueira VB, Barros SB, Chan SS, Rodriguez L, Giavarotti L, Abud RL, Deucher GP. Aging and oxidative stress. Mol Aspects Med 2005; 25: 5–16
  • Brunk U, Terman A. The mitochondrial-lysosomal axis theory of aging. Accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 2002; 269: 1996–2002
  • Grune T, Jung K, Merker K, Davies KJA. Decreased proteolysis caused by protein aggregation, inclusion bodies, plaques, lipofuscin, ceroid and aggresomes during oxidative stress, aging and disease. Int J Biochem Cell Biol 2004; 36: 2519–2530
  • Terman A, Brunk U. Oxidative stress, accumulation of biological ‘garbage’, and aging. Antiox Redox Signal 2006; 8: 197–204
  • Schoneich C. Protein modification in aging: an update. Exp Gerontol 2006; 41: 807–812
  • Barbouti A, Doulias PT, Zhu BZ, Frei B, Galaris D. Intracellular iron, but not copper, plays a critical role in hydrogen peroxide-induced DNA damage. Free Radic Biol Med 2001; 31: 490–498
  • Doulias PT, Christoforidis S, Brunk UT, Galaris D. Endosomal and lysosomal effects of desferrioxamine: protection of HeLa cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest. Free Radic Biol Med 2003; 35: 719–728
  • Prus E, Fibach E. Flow cytometry measurement of the labile iron pool in human hematopoietic cells. Cytometry A 2008;73:22–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.