578
Views
102
CrossRef citations to date
0
Altmetric
Original

Iron-deficiency anaemia enhances red blood cell oxidative stress

, , , , &
Pages 824-829 | Received 17 Jul 2008, Published online: 07 Jul 2009

References

  • Verloop MC, Vuylsteke J, Drogendijk AC. [On a patient with sideroblastic anemia and hemochromatosis.]. Sci Prog 1960; 90: 1213–1214
  • Diez-Ewald M, Layrisse M. Mechanisms of hemolysis in iron deficiency anemia. Further studies. Blood 1968; 32: 884–894
  • Huser HJ, Rieber EE, Berman AR. Experimental evidence of excess hemolysis in the course of chronic iron deficiency anemia. J Lab Clin Med 1967; 69: 405–414
  • Card RT, Weintraub LR. Metabolic abnormalities of erythrocytes in severe iron deficiency. Blood 1971; 37: 725–732
  • Rodvien R, Gillum A, Weintraub LR. Decreased glutathione peroxidase activity secondary to severe iron deficiency: a possible mechanism responsible for the shortened life span of the iron-deficient red cell. Blood 1974; 43: 281–289
  • Kempe DS, Lang PA, Duranton C, Akel A, Lang KS, Huber SM, Wieder T, Lang F. Enhanced programmed cell death of iron-deficient erythrocytes. Faseb J 2006; 20: 368–370
  • Yip R, Mohandas N, Clark MR, Jain S, Shohet SB, Dallman PR. Red cell membrane stiffness in iron deficiency. Blood 1983; 62: 99–106
  • Tillmann W, Schroter W. Deformability of erythrocytes in iron deficiency anemia. Blut 1980; 40: 179–186
  • Vaya A, Simo M, Santaolaria M, Todoli J, Aznar J. Red blood cell deformability in iron deficiency anaemia. Clin Hemorheol Microcirc 2005; 33: 75–80
  • Lang F, Lang KS, Lang PA, Huber SM, Wieder T. Mechanisms and significance of eryptosis. Antioxid Redox Signal 2006; 8: 1183–1192
  • Pfafferott C, Meiselman HJ, Hochstein P. The effect of malonyldialdehyde on erythrocyte deformability. Blood 1982; 59: 12–15
  • Damonte G, Guida L, Sdraffa A, Benatti U, Melloni E, Forteleoni G, Meloni T, Carafoli E, De Flora A. Mechanisms of perturbation of erythrocyte calcium homeostasis in favism. Cell Calcium 1992; 13: 649–658
  • Kumerova A, Lece A, Skesters A, Silova A, Petuhovs V. Anaemia and antioxidant defence of the red blood cells. Mater Med Pol 1998; 30: 12–15
  • Jain SK, Yip R, Hoesch RM, Pramanik AK, Dallman PR, Shohet SB. Evidence of peroxidative damage to the erythrocyte membrane in iron deficiency. Am J Clin Nutr 1983; 37: 26–30
  • Moshynska OV, Tretiak NN, Anoshina MY, Yagovdick MV. [Hemoglobin-induced lipid peroxidation in anemia]. Lik Sprava 2001; 4: 39–43
  • Cellerino R, Guidi G, Perona G. Plasma iron and erythrocytic glutathione peroxidase activity. A possible mechanism for oxidative haemolysis in iron deficiency anemia. Scand J Haematol 1976; 17: 111–116
  • Perona G, Cellerino R, Guidi GC, Moschini G, Stievano BM, Tregnaghi C. Erythrocytic glutathione peroxidase: its relationship to plasma selenium in man. Scand J Haematol 1977; 19: 116–120
  • Bartal M, Mazor D, Dvilansky A, Meyerstein N. Iron deficiency anemia: recovery from in vitro oxidative stress. Acta Haematol 1993; 90: 94–98
  • Melhorn DK, Gross S, Lake GA, Leu JA. The hydrogen peroxide fragility test and serum tocopherol level in anemias of various etiologies. Blood 1971; 37: 438–446
  • Acharya J, Punchard NA, Taylor JA, Thompson RP, Pearson TC. Red cell lipid peroxidation and antioxidant enzymes in iron deficiency. Eur J Haematol 1991; 47: 287–291
  • Ramachandran M, Iyer GY. Erythrocyte membrane lipid peroxidation in iron deficiency anemia. Experientia 1984; 40: 173–174
  • Nagababu E, Rifkind JM. Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem Biophys Res Commun 1998; 247: 592–596
  • Nagababu E, Rifkind JM. Heme degradation by reactive oxygen species. Antioxid Redox Signal 2004; 6: 967–978
  • Nagababu E, Fabry ME, Nagel RL, Rifkind JM. Heme degradation and oxidative stress in murine models for hemoglobinopathies: Thalassemia, sickle cell disease and hemoglobin C disease. Blood Cells Mol Dis 2008; 41: 60–66
  • Nagababu E, Chrest FJ, Rifkind JM. The origin of red cell fluorescence caused by hydrogen peroxide treatment. Free Radic Biol Med 2000; 29: 659–663
  • Stookey L. Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 1970; 42: 779–781
  • Chua AC, Graham RM, Trinder D, Olynyk JK. The regulation of cellular iron metabolism. Crit Rev Clin Lab Sci 2007; 44: 413–459
  • Balagopalakrishna C, Manoharan PT, Abugo OO, Rifkind JM. Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions. Biochemistry 1996; 35: 6393–6398
  • Hebert PC, Van der Linden P, Biro G, Hu LQ. Physiologic aspects of anemia. Crit Care Clin 2004; 20: 187–212
  • Hare GM. Anaemia and the brain. Curr Opin Anaesthesiol 2004; 17: 363–369
  • Nagababu E, Rifkind JM. Reaction of hydrogen peroxide with ferrylhemoglobin: superoxide production and heme degradation. Biochemistry 2000; 39: 12503–12511
  • Shaklai N, Yguerabide J, Ranney HM. Classification and localization of hemoglobin binding sites on the red blood cell membrane. Biochemistry 1977; 16: 5593–5597
  • Demehin AA, Abugo OO, Jayakumar R, Lakowicz JR, Rifkind JM. Binding of hemoglobin to red cell membranes with eosin-5-maleimide-labeled band 3: analysis of centrifugation and fluorescence data. Biochemistry 2002; 41: 8630–8637
  • Low FM, Hampton MB, Peskin AV, Winterbourn CC. Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte. Blood 2007; 109: 2611–2617
  • Nagababu E, Chrest FJ, Rifkind JM. Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase. Biochim Biophys Acta 2003; 1620: 211–217
  • Kiefmann R, Rifkind JM, Nagababu E, Bhattacharya J. Red blood cells induce hypoxic lung inflammation. Blood 2008; 111: 5205–5214
  • Low PS. Role of hemoglobin denaturation and band 3 clustering in initiating red cell removal. Adv Exp Med Biol 1991; 307: 173–183
  • Turrini F, Arese P, Yuan J, Low PS. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem 1991; 266: 23611–23617

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.