605
Views
124
CrossRef citations to date
0
Altmetric
Original

Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage

, , , , , , & , PhD show all
Pages 195-205 | Received 21 Aug 2008, Published online: 07 Jul 2009

References

  • Murphy GP, Lawrence W Jr, Lenhard RE American Society Textbook of Clinical Oncology, 2nd Ed. Atlanta, GA: American Cancer Society; 1995.
  • Chen Y, Jungsuwadee P, Vore M, Butterfield DA, St Clair DK. Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv 2007; 7: 147–156
  • Singal PK, Li T, Kumar D, Danelisen I, Iliskovic N. Adriamycin-induced heart failure: mechanism and modulation. Mol Cell Biochem 2000; 207: 77–86
  • Goormaghtigh E, Brasseur R, Ruysschaert JM. Adriamycin inactivates cytochrome c oxidase by exclusion of the enzyme from its cardiolipin essential environment. Biochem Biophys Res Commun 1982; 104: 314–320
  • Singal PK, Pierce G. Adriamycin stimulates low-affinity Ca2+ binding and lipid peroxidation but depresses myocardial function. Am J Physiol 1986; 250: H419–H425
  • Singal PK, Panagia V. Direct effects of adriamycin on the rat heart sarcolemma. Res Commun Chem Pathol Pharmacol 1984; 43: 67–77
  • Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999; 57: 727–741
  • Gille L, Nohl H. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radic Biol Med 1997; 23: 775–782
  • Arola OJ, Saraste A, Pulkki K, Kallajoki M, Parvinen M, Voipio-Pulkki LM. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res 2000; 60: 1789–1792
  • Li T, Danelisen I, Singal PK. Early changes in myocardial antioxidant enzymes in rats treated with adriamycin. Mol Cell Biochem 2002; 232: 19–26
  • Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 1977; 197: 165–167
  • Singal PK, Iliskovic N, Li T, Kumar D. Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J 1997; 11: 931–936
  • Chen Y, Jungsuwadee P, Vore M, Butterfield DA, St Clair DK. Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv 2007; 7: 147–156
  • Bradamante S, Barenghi L, Villa A. Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 2004; 22: 169–188
  • Fremont L. Biological effects of resveratrol. Life Sci 2000; 66: 663–673
  • Gusman J, Malonne H, Atassi G. Reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 2001; 22: 1111–1117
  • Virgili M, Contestabile A. Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci Lett 2000; 281: 123–126
  • Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K, Forstermann U. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 2002; 106: 1652–1658
  • Dong Z. Molecular mechanism of the chemopreventive effect of resveratrol. Mutat Res 2003; 523–524: 145–150
  • Cao Z, Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur J Pharmacol 2004; 489: 39–48
  • Ara C, Kirimlioglu H, Karabulut AB, Coban S, Ay S, Harputluoglu M, Kirimlioglu V, Yilmaz S. Protective effect of resveratrol against oxidative stress in cholestasis. J Surg Res 2005; 127: 112–117
  • Ara C, Karabulut AB, Kirimlioglu H, Coban S, Ugras M, Kirimliglu V, Yilmaz S. Protective effect of resveratrol against renal oxidative stress in cholestasis. Ren Fail 2005; 27: 435–440
  • Hascalik S, Celik O, Turkoz Y, Hascalik M, Cigremis Y, Mizrak B, Yologlu S. Resveratrol, a red wine constituent polyphenol, protects from ischemia-reperfusion damage of the ovaries. Gynecol Obstet Invest 2004; 57: 218–223
  • Saito M, Satoh S, Kojima N, Tada H, Sato M, Suzuki T, Senoo H, Habuchi T. Effects of phenolic compound, resveratrol, on the renal function and costimulatory adhesion molecule CD86 expression in rat kidneys with ischemia/reperfusion injury. Arch Histol Cytol 2005; 68: 41–49
  • Solmaz A, Şener G, Çetinel Ş, Yüksel M, Gedik N, Yeğen BÇ, Yeğen C. Protective and therapeutic effects of resveratrol, a red wine polyphenol, on acetic acid-induced gastric damage. Gastroenterology 2008;134:A239–A240.
  • Sener G, Tuğtepe H, Yüksel M, Cetinel S, Gedik N, Yeğen BC. Resveratrol improves ischemia/reperfusion-induced oxidative renal injury in rats. Arch Med Res 2006; 37: 822–829
  • Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I, Silverman NH, Tajik AJ. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989; 2: 358–367
  • Ohara Y, Peterson TE, Harrisorn DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 92: 2546–2551
  • Beuge JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978; 52: 302–311
  • Beutler E. Glutathione in red blood cell metabolism. A manual of biochemical methods. Grune & Stratton, New York 1975; 112–114
  • Mylorie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of cupper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 1986; 82: 512–520
  • Aebi H.E. Catalase. Methods of enzymatic analysis3rd edition, HU. Bergmeyer, J. Bergmeyer, M. Grabl. Velag Chemie Gmbh, Weinheim. 1993; III: 273–286
  • Hillegass LM, Griswold DE, Brickson B, Albrightson-Winslow C. Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods 1990; 24: 285–295
  • Kim YK, Lee SH, Goldinger JM, Hong SK. Effect of ethanol on organic ion transport in rabbit kidney. Toxicol Appl Pharmacol 1986; 86: 411–420
  • Reading HW, Isbir T. The role of cation activated ATPase in transmitter release from the rat iris. Q J Exp Physiol 1980; 65: 105–116
  • Fiske CH, SubbaRow Y. The colorimetric determination of phosphorus. J Biol Chem 1925; 66: 375–400
  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurements with the folin phenol reagent. J Biol Chem 1951; 193: 265–275
  • Lopez De Leon A, Rojkind M. A simple micromethod for collagen and total protein determination in formalin-fixed parraffin-embedded sections. J Histochem Cytochem 1985; 33: 737–743
  • Billingham ME, Mason JW, Bristow MR, Daniels JR. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 1978; 62: 865–872
  • Berlin V, Haseltine WA. Reduction of adriamycin to a semiquinone-free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen. J Biol Chem 1981; 256: 4747–4756
  • Deepa PR, Varalakshmi P. Influence of a low-molecular-weight heparin derivative on the nitric oxide levels and apoptotic DNA damage in adriamycin-induced cardiac and renal toxicity. Toxicology 2006; 217: 176–183
  • Stark G. Functional consequences of oxidative membrane damage. J Membr Biol 2005; 205: 1–16
  • Iqbal M, Dubey K, Anwer T, Ashish A, Pillai KK. Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacol Rep 2008; 60: 382–390
  • El-Shitany NA, El-Haggar S, El-desoky K. Silymarin prevents adriamycin-induced cardiotoxicity and nephrotoxicity in rats. Food Chem Toxicol 2008; 46: 2422–2428
  • Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 2007; 49: 330–352
  • Du Y, Lou H. Catechin and proanthocyanidin B4 from grape seeds prevent doxorubicin-induced toxicity in cardiomyocytes. Eur J Pharmacol 2008; 591: 96–101
  • Bast A, Haenen GR, Bruynzeel AM, Van der Vijgh WJ. Protection by flavonoids against anthracycline cardiotoxicity: from chemistry to clinical trials. Cardiovasc Toxicol 2007; 7: 154–159
  • Li T, Danelisen I, Belló-Klein A, Singal PK. Effects of probucol on changes of antioxidant enzymes in adriamycin-induced cardiomyopathy in rats. Cardiovasc Res 2000; 46: 523–530
  • Yagmurca M, Fadillioglu E, Erdogan H, Ucar M, Sogut S, Irmak MK. Erdosteine prevents doxorubicin-induced cardiotoxicity in rats. Pharmacol Res 2003; 48: 377–382
  • You JS, Huang HF, Chang YL, Lee YS. Sheng-mai-san reduces adriamycin-induced cardiomyopathy in rats. Am J Chin Med 2006; 34: 295–305
  • Venditti P, Balestrieri M, De Leo T, Di Meo S. Free radical involvement in doxorubicin-induced electrophysiological alterations in rat papillary muscle fibres. Cardiovasc Res 1998; 38: 695–702
  • Thirunavukkarasu M, Penumathsa SV, Koneru S, Juhasz B, Zhan L, Otani H, Bagchi D, Das DK, Maulik N. Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic Biol Med 2007; 43: 720–729
  • Lu M, Cai YJ, Fang JG, Zhou YL, Liu ZL, Wu LM. Efficiency and structure-activity relationship of the antioxidant action of resveratrol and its analogs. Pharmazie 2002; 57: 474–478
  • Leonard SS, Xia C, Jiang BH, Stinefelt B, Klandorf H, Harris GK, Shi X. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun 2003; 309: 1017–1026
  • Radons J, Heller B, Bürkle A, Hartmann B, Rodriguez ML, Kröncke KD, Burkart V, Kolb H. Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion. Biochem Biophys Res Commun 1994; 30: 1270–1277
  • Pacher P, Liaudet L, Mabley J, Komjáti K, Szabó C. Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J Am Coll Cardiol 2002; 40: 1006–1016
  • Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutat Res 1992; 275: 331–342
  • Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 1994; 91: 10771–10778
  • Zhou S, Palmeira CM, Wallace KB. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 2001; 121: 151–157
  • Inchiosa MA, Jr, Smith CM. Effects of ibuprofen on doxorubicin toxicity. Res Commun Chem Pathol Pharmacol 1990; 67: 63–78
  • Arnhold J, Osipov AN, Spalteholz H, Panasenko OM, Schiller J. Effects of hypochlorous acid on unsaturated phosphatidylcholines. Free Radic Biol Med 2001; 31: 1111–1119
  • Kettle AJ, Winterbourn CC. Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Rep 1997; 3: 3–15
  • Yagmurca M, Fadillioglu E, Erdogan H, Ucar M, Sogut S, Irmak MK. Erdosteine prevents doxorubicin-induced cardiotoxicity in rats. Pharmacol Res 2003; 48: 377–382
  • Hamza A, Amin A, Daoud S. The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 2008; 24: 63–73
  • Szewczuk LM, Penning TM. Mechanism-based inactivation of COX-1 by red wine m-hydroquinones: a structure-activity relationship study. J Nat Prod 2004; 67: 1777–1782
  • Nagi MN, Mansour MA. Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection. Pharmacol Res 2000; 41: 283–289
  • Iliskovic N, Singal PK. Lipid lowering: an important factor in preventing adriamycin induced heart failure. Am J Pathol 1997; 150: 727–733
  • Singh G, Singh AT, Abraham A, Bhat B, Mukherjee A, Verma R, Agarwal SK, Jha S, Mukherjee R, Burman AC. Protective effects of Terminalia arjuna against Doxorubicin-induced cardiotoxicity. J Ethnopharmacol 2008; 117: 123–129
  • Goormaghtigh E, Ruysschaert JM. Anthracycline glycoside-membraneinteractions. Biochim Biophys Acta 1984; 779: 271–288
  • Herman EH, Zhang J, Chadwick DP, Ferrans VJ. Comparison of the protective effects of amifostine and dexrazoxane against the toxicity of doxorubicin in spontaneously hypertensive rats. Cancer Chemother Pharmacol 2000; 45: 329–334

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.