1,635
Views
34
CrossRef citations to date
0
Altmetric
Original

Mitochondrial oxidative stress elicits chromosomal instability after exposure to isocyanates in human kidney epithelial cells

, , , , &
Pages 718-728 | Received 06 Apr 2009, Published online: 19 Jan 2010

References

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39: 44–84
  • Martien S, Abbadie C. Acquisition of oxidative DNA damage during senescence: the first step toward carcinogenesis?. Ann NY Acad Sci 2007; 1119: 51–63
  • Sebekova K, Stopper H, Schupp N, Klassen A, Heidland A. Genomic damage in chronic renal failure-potential therapeutic interventions. J Ren Nutr 2005; 15: 81–86
  • Oláh E, Jakab Z, Balogh E. Genetics of renal tumors. Orv Hetil 2001; 142: 1367–1373
  • Burhans WC, Weinberger M. DNA replication stress, genome instability and aging. Nucleic Acids Res 2007; 35: 7545–7556
  • Samper E, Nicholls DG, Melov S. Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts. Aging Cell 2003; 2: 277–285
  • Ragu S, Faye G, Iraqui I, Masurel-Heneman A, Kolodner R, Huang ME. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc Natl Acad Sci 2007; 104: 9747–9752
  • Helt CE, Rancourt RC, Staversky RJ, O'Reilly MA. p53-dependent induction of p21 (Cip1/WAF1/Sdi1) protects against oxygen-induced toxicity. Toxicol Sci 2001; 63: 214–222
  • Holley AK, St Clair DK. Watching the watcher: regulation of p53 by mitochondria. Future Oncol 2009; 5: 117–130
  • Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166
  • Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI. Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutat Res 2009; 674: 3–22
  • Beyerbach A, Farmer PB, Sabbioni G. Biomarkers for isocyanate exposure: synthesis of isocyanate DNA adducts. Chem Res Toxicol 2006; 19: 1611–1618
  • Mishra PK, Panwar H, Bhargava A, Gorantla VR, Jain SK, Banerjee S, Maudar KK. Isocyanates induces DNA damage, apoptosis, oxidative stress, and inflammation in cultured human lymphocytes. J Biochem Mol Toxicol 2008; 22: 429–440
  • Van-Vleet TR, Schnellmann RG. Toxic nephropathy: environmental chemicals. Semin Nephrol 2003; 23: 500–508
  • Aihara K, Byer KJ, Khan SR. Calcium phosphate-induced renal epithelial injury and stone formation: Involvement of reactive oxygen species. Kidney Intl 2003; 64: 1283–1291
  • Stopper H, Schupp N, Klassen A, Sebekova K, Heidland A. Genomic damage in chronic renal failure—potential therapeutic interventions. J Ren Nutr 2005; 15: 81–86
  • Kirpatovski˘ VI, Plotnikov EIu, Kazachenko AV, Golovanov SA, Syromiatnikova EV, Vysokikh MIu, Zorov DB. The role of the mitochondria generating reactive oxygen species and nitric oxide in postischemic functional disturbance of the kidney. Urologiia 2006; 4: 19–23
  • Jeevaratnam K, Sriramachari S. Acute histopathological changes induced by methyl isocyanate in lungs, liver, kidneys & spleen of rats. Indian J Med Res 1994; 99: 231–235
  • Sethi N, Dayal R, Singh RK. Acute and subacute toxicity study of inhaled methyl isocyanate in Charles Foster rats. Ecotoxicol Environ Saf 1989; 18: 68–74
  • Martinez J, Oiry J, Imbach JL, Winternitz F. Activated N-nitrosocarbamates for region selective synthesis of N-nitrosoureas. J Med Chem 1982; 25: 178–182
  • Schaefer DI, Livanos EM, White AE, Tlsty TD. Multiple mechanisms of N-(phosphonoacetyl)-L-aspartate drug resistance in SV40-infected precrisis human fibroblasts. Cancer Res 1993; 53: 4946–4951
  • Liu BH, Wu TS, Yu FY, Su CC. Induction of oxidative stress response by the mycotoxin patulin in mammalian cells. Toxicol Sci 2007; 95: 340–347
  • Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009; 390: 191–214
  • Slatter JG, Rashed MS, Pearson PG, Han DH, Baillie TA. Biotransformation of methyl isocyanate in the rat. Evidence for glutathione conjugation as a major pathway of metabolism and implications for isocyanate-mediated toxicities. Chem Res Toxicol 1991; 4: 157–161
  • Mason JM, Zeiger E, Haworth S, Ivett J, Valencia R. Genotoxicity studies of methyl isocyanate in Salmonella, Drosophila, and cultured Chinese hamster ovary cells. Environ Mutagen 1987; 9: 19–28
  • Anderson D, Goyle S, Phillips BJ, Tee A, Beech L, Butler WH. Effects of methyl isocyanate on rat muscle cells in culture. Br J Ind Med 1988; 45: 269–274
  • Varma DR, Guest I. The Bhopal accident and methyl isocyanate toxicity. J Toxicol Environ Health 1993; 40: 513–529
  • Jeevaratnam K, Vidya S, Vaidyanathan CS. In vitro and in vivo effect of methyl isocyanate on rat liver mitochondrial respiration. Toxicol Appl Pharmacol 1992; 117: 172–179
  • Vallyathan V, Shi X. The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect 1997; 105(Suppl 1)165–177
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120: 483–495
  • Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2008; 31(Suppl 2)170–180
  • Kaufman DS, Goligorsky MS, Nord EP, Graber ML. Perturbation of cell pH regulation by H2O2 in renal epithelial cells. Arch Biochem Biophys 1993; 302: 245–254
  • Poovala VS, Kanji VK, Tachikawa H, Salahudeen AK. Role of oxidant stress and antioxidant protection in acephate-induced renal tubular cytotoxicity. Toxicol Sci 1998; 46: 403–409
  • Takada S, Inoue E, Tano K, Yoshii H, Abe T, Yoshimura A, Akita M, Tada S, Watanabe M, Seki M, Enomoto T. Generation and characterization of cells that can be conditionally depleted of mitochondrial SOD2. Biochem Biophys Res Commun 2009; 379: 233–238
  • Vamvakas S, Bittner D, Koob M, Glück S, Dekant W. Glutathione depletion, lipid peroxidation, DNA double-strand breaks and the cytotoxicity of 2-bromo-3-(N-acetylcystein-S-yl) hydroquinone in rat renal cortical cells. Chem Biol Interact 1992; 83: 183–199
  • Durovič B, Spasič-Jokič V, Durovič B. Influence of occupational exposure to low-dose ionizing radiation on the plasma activity of superoxide dismutase and glutathione level. Vojnosanit Pregl 2008; 65: 613–618
  • Jochheim CM, Baillie TA. Selective and irreversible inhibition of glutathione reductase in vitro by carbamates thioester conjugates of methyl isocyanate. Biochem Pharmacol 1994; 47: 1197–1206
  • Baylor KJ, Heffron JJ. Isocyanate inactivation of yeast glutathione reductase & its modulation by oxidized glutathione and NADPH. Biochem Soc Trans 1996; 24: 325
  • Rice KP, Penketh PG, Shyam K, Sartorelli AC. Differential inhibition of cellular glutathione reductase activity by isocyanates generated from the antitumor prodrugs Cloretazine and BCNU. Biochem Pharmacol 2005; 69: 1463–1472
  • Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJ, Perstin J, Preston TJ, Wiley MJ, Wong AW. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 2009; 108: 4–18
  • Loft S, Høgh Danielsen P, Mikkelsen L, Risom L, Forchhammer L, Møller P. Biomarkers of oxidative damage to DNA and repair. Biochem Soc Trans 2008; 36: 1071–1076
  • Mikhailov VF, Mazurik VK, Burlakova EB. Signal function of the reactive oxygen species in regulatory networks of the cell reaction to damaging effects: contribution of radiosensitivity and genome instability. Radiat Biol Radioecol 2003; 43: 5–18
  • Ekholm SV, Reed SI. Regulation of G (1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol 2000; 12: 676–684
  • Ekholm SV, Spruck CH, Sangfelt O, van Drogen F, Mueller-Holzner E, Widschwendter M, Zetterberg A, Reed SI. Mutation of hCDC4 leads to cell cycle deregulation of cyclin E in cancer. Cancer Res 2004; 64: 795–800
  • Smith AP, Henze M, Lee JA, Osborn KG, Keck JM, Tedesco D, Bortner DM, Rosenberg MP, Reed SI. Deregulated cyclin E promotes p53 loss of heterozygosity and tumorigenesis in the mouse mammary gland. Oncogene 2006; 25: 7245–7259
  • Fukasawa K. p53, cyclin-dependent kinase and abnormal amplification of centrosomes. Biochim Biophys Acta 2008; 1786: 15–23
  • Matés JM, Segura JA, Alonso FJ, Márquez J. Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 2008; 82: 273–299
  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P. Cyclin E ablation in the mouse. Cell 2003; 114: 431–443
  • Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability. Nature 1999; 401: 297–300
  • Chen D, Purohit A, Halilovic E, Doxsey SJ. Centrosomal anchoring of protein kinase C betaII by pericentrin controls microtubule organization, spindle function, and cytokinesis. J Biol Chem 2004; 279: 4829–4839
  • Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol 2005; 15: 303–311
  • Pihan GA, Wallace J, Zhou Y, Doxsey SJ. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 2003; 63: 1398–1404
  • Chae S, Yun C, Um H, Lee JH, Cho H. Centrosome amplification and multinuclear phenotypes are induced by hydrogen peroxide. Exp Mol Med 2005; 37: 482–487
  • Degtyareva NP, Chen L, Mieczkowski P, Petes TD, Doetsch PW. Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae. Mol Cell Biol 2008; 28: 5432–5445
  • Desler C, Munch-Petersen B, Stevnsner T, Matsui S, Kulawiec M, Singh KK, Rasmussen LJ. Mitochondria as determinant of nucleotide pools and chromosomal stability. Mutat Res 2007; 625: 112–124
  • Goswami HK, Chandorkar M, Bhattacharya K, Vaidyanath G, Parmar D, Sengupta S, Patidar SL, Sengupta LK, Goswami R, Sharma PN. Search for chromosomal variations among gas-exposed persons in Bhopal. Hum Genet 1990; 84: 172–176
  • Bolognesi C, Baur X, Marczynski B, Norppa H, Sepai O, Sabbioni G. Carcinogenic risk of toluene diisocyanate and 4, 4’-methylenediphenyl diisocyanate: epidemiological and experimental evidence. Crit Rev Toxicol 2001; 31: 737–772
  • Lin CM, Wei LY, Wang TC. The delayed genotoxic effect of N-nitroso N-propoxur insecticide in mammalian cells. Food Chem Toxicol 2007; 45: 928–934
  • Major J, Jakab MG, Tompa A. The frequency of induced premature centromere division in human populations occupationally exposed to genotoxic chemicals. Mutat Res 1999; 445: 241–249
  • Garcia-Orad A, Vig BK, Aucoin D. Separation vs. replication of inactive and active centromeres in neoplastic cells. Cancer Genet Cytogenet 2000; 120: 18–24
  • Li JJ, Li SA. Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol Ther 2006; 111: 974–984
  • Voullaire LE, Slater HR, Petrovic V, Choo KHA. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere?. Am J Hum Genet 1993; 52: 1153–1163
  • Metcalfe CJ, Bulazel KV, Ferreri GC, Schroeder-Reiter E, Wanner G, Rens W, Obergfell C, Eldridge MD, O'Neill RJ. Genomic instability within centromeres of interspecific marsupial hybrids. Genetics 2007; 177: 2507–2517
  • Macgregor HC, Sessions SK. The biological significance of variation in satellite DNA and heterochromatin in newts of the genus Triturus: an evolutionary perspective. Phil Trans R Soc Lond B Biol Sci 1986; 312: 243–259
  • Raptis S, Bapat B. Genetic instability in human tumors. EXS 2006; 96: 303–320
  • Cheung AL, Deng W. Telomere dysfunction, genome instability and cancer. Front Biosci 2008; 13: 2075–2090
  • Roy D, Colerangle JB, Singh KP. Is exposure to environmental or industrial endocrine disrupting estrogen-like chemicals able to cause genomic instability?. Front Biosci 1998; 3: 913–921
  • Murnane JP. Telomeres and chromosome instability. DNA Repair 2006; 8: 1082–1092
  • Goetz ME, Luch A. Reactive species: a cell damaging rout assisting to chemical carcinogens. Cancer Lett 2008; 266: 73–83
  • Lu T, Finkel T. Free radicals and senescence. Exp Cell Res 2008; 314: 1918–1922

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.