190
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Differential levels of reactive oxygen species in murine preadipocyte 3T3-L1 cells cultured on type I collagen molecule-coated and gel-covered dishes exert opposite effects on NF-κB-mediated proliferation and migration

, , , , , , , , , , , & show all
Pages 913-928 | Received 06 Jan 2018, Accepted 14 May 2018, Published online: 28 Sep 2018

References

  • Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med. 2005;38(11):1433–1444.
  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.
  • Baran CP, Zeigler MM, Tridandapani S, et al. The role of ROS and RNS in regulating life and death of blood monocytes. Curr Pharm Des. 2004;10(8):855–866.
  • Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–R462.
  • Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792.
  • Wang HJ, He WQ, Chen L, et al. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFalpha-induced cell death. Biochem Biophys Res Commun. 2015;457(4):693–699.
  • Fujisaki H, Hattori S. Keratinocyte apoptosis on type I collagen gel caused by lack of laminin 5/10/11 deposition and Akt signaling. Exp Cell Res. 2002;280(2):255–269.
  • Suzuki Y, Someki I, Adachi E, et al. Interaction of collagen molecules from the aspect of fibril formation: acid-soluble, alkali-treated, and MMP1-digested fragments of type I collagen. J Biochem. 1999;126(1):54–67.
  • Fessel G, Li Y, Diederich V, et al. Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness. PLoS One. 2014;9(11):e110948.
  • Sasaki J, Fujisaki H, Adachi E, et al. Delay of cell cycle progression and induction death of cancer cells on type I collagen fibrils [corrected]. Connect Tissue Res. 2011;52(3):167–177.
  • Fujisaki H, Adachi E, Hattori S. Keratinocyte differentiation and proliferation are regulated by adhesion to the three-dimensional meshwork structure of type IV collagen. Connect Tissue Res. 2008;49(6):426–436.
  • Fujisaki H, Ebihara T, Irie S, et al. Keratinocyte apoptosis on type I collagen fibrils is prevented by ERK1/2 activation under high calcium condition. Connect Tissue Res. 2007;48(3):159–169.
  • Kim JH, Park SH, Nam SW, et al. Curcumin stimulates proliferation, stemness acting signals and migration of 3T3-L1 preadipocytes. Int J Mol Med. 2011;28(3):429–435.
  • Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development. 2013;140(7):1517–1527.
  • Cildir G, Akıncılar SC, Tergaonkar V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med. 2013;19(8):487–500.
  • Collawn SS, Banerjee NS, de la Torre J, et al. Adipose-derived stromal cells accelerate wound healing in an organotypic raft culture model. Ann Plast Surg. 2012;68(5):501–504.
  • Torii T, Miyamoto Y, Sanbe A, et al. Cytohesin-2/ARNO, through its interaction with focal adhesion adaptor protein paxillin, regulates preadipocyte migration via the downstream activation of Arf6. J Biol Chem. 2010;285(31):24270–24281.
  • Davies JC, Tamaddon-Jahromi S, Jannoo R, et al. Cytohesin 2/ARF6 regulates preadipocyte migration through the activation of ERK1/2. Biochem Pharmacol. 2014;92(4):651–660.
  • Crandall DL, Busler DE, McHendry-Rinde B, et al. Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1. J Clin Endocrinol Metab. 2000;85(7):2609–2614.
  • Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012;53(2):227–246.
  • Sul HS, Smas C, Mei B, et al. Function of pref-1 as an inhibitor of adipocyte differentiation. Int J Obes Relat Metab Disord. 2000;24(Suppl 4):S15–S19.
  • Mariman EC, Wang P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci. 2010;67(8):1277–1292.
  • Liu X, Xu Q, Liu W, et al. Enhanced migration of murine fibroblast-like 3T3-L1 preadipocytes on type I collagen-coated dish is reversed by silibinin treatment. Mol Cell Biochem. 2018;441(1–2):35–62.
  • Sato K, Ebihara T, Adachi E, et al. Possible involvement of aminotelopeptide in selfassembly and thermal stability of collagen I as revealed by its removal with proteases. J Biol Chem. 2000;275(33):25870–25875.
  • Wang HJ, Li MQ, Liu WW, et al. Collagen gel protects L929 cells from TNFalpha-induced death by activating NF-kappaB. Connect Tissue Res. 2017;58(5):456–463.
  • Gross J, Kirk D. The heat precipitation of collagen from neutral salt solutions: some rate-regulating factors. J Biol Chem. 1958;233(2):355–360.
  • Park SH, Kim JH, Nam SW, et al. Selenium improves stem cell potency by stimulating the proliferation and active migration of 3T3-L1 preadipocytes. Int J Oncol. 2014;44(1):336–342.
  • Henry CE, Llamosas E, Djordjevic A, et al. Migration and invasion is inhibited by silencing ROR1 and ROR2 in chemoresistant ovarian cancer. Oncogenesis. 2016;5(5):e226.
  • Melin V, Henríquez A, Freer J, et al. Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation. Redox Rep. 2015;20(2):89–96.
  • Scholzen T, Gerdes J. The Ki-67 protein: from the known and the un-known. J Cell Physiol. 2000;182(3):311–322.
  • Jones RM, Luo L, Ardita CS, et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 2013;32(23):3017–3028.
  • Yu Y, Fan SM, Song JK, et al. Hydroxyl radical (•OH) played a pivotal role in oridonin-induced apoptosis and autophagy in human epidermoid carcinoma A431 cells. Biol Pharm Bull. 2012;35(12):2148–2159.
  • Saha S, Sadhukhan P, Sinha K, et al. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways. Biochem Biophys Rep. 2016;5:313–327.
  • Zhang C, Zhong Q, Zhang XF, et al. Effects of cordycepin on proliferation, apoptosis and NF-kappaB signaling pathway in A549 cells. Zhong Yao Cai. 2015;38(4):786–789.
  • Sun X, Chen E, Dong R, et al. Nuclear factor (NF)-kappaB p65 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta. Life Sci. 2015;122:8–14.
  • Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011;21(1):103–115.
  • Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991;10(8):2247–2258.
  • Bowie A, O’Neill LA. Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol. 2000;59(1):13–23.
  • Schoonbroodt S, Piette J. Oxidative stress interference with the nuclear factor-kappa B activation pathways. Biochem Pharmacol. 2000;60(8):1075–1083.
  • Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18(18):2195–2224.
  • Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J. 2000;14(13):1889–1900.
  • Michiels C, Minet E, Mottet D, et al. Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Radic Biol Med. 2002;33(9):1231–1242.
  • Molitor JA, Ballard DW, Greene WC. Kappa B-specific DNA binding proteins are differentially inhibited by enhancer mutations and biological oxidation. New Biol. 1991;3(10):987–996.
  • Chen LF, Greene WC. Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol. 2004;5(5):392–401.
  • Ghosh S, Hayden MS. New regulators of NF-kappaB in inflammation. Nat Rev Immunol. 2008;8(11):837–848.
  • Baud V, Collares D. Post-translational modifications of RelB NF-kappaB subunit and associated functions. Cells. 2016;5(2):E22.
  • Mattioli I, Sebald A, Bucher C, et al. Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import. J Immunol. 2004;172(10):6336–6344.
  • Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J. 2002;21(23):6539–6548.
  • Di Meo S, Reed TT, Venditti P, et al. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049.
  • Liu B, Yang P, Ye Y, et al. Role of ROS in the protective effect of silibinin on sodium nitroprusside-induced apoptosis in rat pheochromocytoma PC12 cells. Free Radic Res. 2011;45(7):835–847.
  • Yang J, Wu LJ, Tashino S, et al. Protein tyrosine kinase pathway-derived ROS/NO productions contribute to G2/M cell cycle arrest in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic Res. 2010;44(7):792–802.
  • Venning FA, Wullkopf L, Erler JT. Targeting ECM disrupts cancer progression. Front Oncol. 2015;5:224.
  • Eble JA, de Rezende FF. Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins. Antioxid Redox Signal. 2014;20(13):1977–1993.
  • Zhao T, Benard V, Bohl BP, et al. The molecular basis for adhesion-mediated suppression of reactive oxygen species generation by human neutrophils. J Clin Invest. 2003;112(11):1732–1740.
  • Taddei ML, Parri M, Mello T, et al. Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species. Antioxid Redox Signal. 2007;9(4):469–481.
  • Jang JY, Min JH, Chae YH, et al. Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation. Antioxid Redox Signal. 2014;20(16):2528–2540.
  • Shimi T, Goldman RD. Nuclear lamins and oxidative stress in cell proliferation and longevity. Adv Exp Med Biol. 2014;773:415–430.
  • Huo YN, Chen W, Zheng XX ROS, MAPK/ERK and PKC play distinct roles in EGF-stimulated human corneal cell proliferation and migration. Cell Mol Biol. 2015;61(7):6–11.
  • Xie W, Wang JQ, Wang QC, et al. Adult neural progenitor cells from Huntington’s disease mouse brain exhibit increased proliferation and migration due to enhanced calcium and ROS signals. Cell Prolif. 2015;48(5):517–531.
  • Sinha N, Dabla PK. Oxidative stress and antioxidants in hypertension: a current review. Curr Hypertens Rev. 2015;11(2):132–142.
  • McDonnell-Dowling K, Kelly JP. The role of oxidative stress in methamphetamine-induced toxicity and sources of variation in the design of animal studies. Curr Neuropharmacol. 2017;15(2):300–314.
  • Curtin JF, Donovan M, Cotter TG. Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods. 2002;265(1–2):49–72.
  • Bronsart LL, Stokes C, Contag CH. Chemiluminescence imaging of superoxide anion detects beta-cell function and mass. PLoS One. 2016;11(1):e0146601.
  • Bazsó-Dombi E, Oravecz K, Jeney F, et al. On the useful role of OH&z.rad; free radicals in differentiation of cultured human fibroblasts. Arch Gerontol Geriatr. 2000;31(3):233–242.
  • Pocernich CB, La Fontaine M, Butterfield DA. In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int. 2000;36(3):185–191.
  • Ross D. Glutathione, free radicals and chemotherapeutic agents. Mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacol Ther. 1988;37(2):231–249.
  • Fiser B, Jójárt B, Csizmadia IG, et al. Glutathione–hydroxyl radical interaction: a theoretical study on radical recognition process. PLoS One. 2013;8(9):e73652.
  • Buscemi CP, Romeo C. Wound healing, angiotensin-converting enzyme inhibition, and collagen-containing products: a case study. J Wound Ostomy Continence Nurs. 2014;41(6):611–614.
  • Gorres KL, Raines RT. Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol. 2010;45(2):106–124.
  • Myllylä R, Majamaa K, Günzler V, et al. Ascorbate is consumed stoichiometrically in the uncoupled reactions catalyzed by prolyl 4-hydroxylase and lysyl hydroxylase. J Biol Chem. 1984;259(9):5403–5405.
  • Geng Y, McQuillan D, Roughley PJ. SLRP interaction can protect collagen fibrils from cleavage by collagenases. Matrix Biol. 2006;25(8):484–491.
  • Van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 2015;44–46:224–231.
  • Simon DD, Niklason LE, Humphrey JD. Tissue transglutaminase, not lysyl oxidase, dominates early calcium-dependent remodeling of fibroblast-populated collagen lattices. Cells Tissues Organs. 2014;200(2):104–117.
  • Ho YY, Lagares D, Tager AM, et al. Fibrosis – a lethal component of systemic sclerosis. Nat Rev Rheumatol. 2014;10(7):390–402.
  • Shilo S, Roth S, Amzel T, et al. Cutaneous wound healing after treatment with plant-derived human recombinant collagen flowable gel. Tissue Eng A. 2013;19(13–14):1519–1526.
  • Jridi M, Bardaa S, Moalla D, et al. Microstructure, rheological and wound healing properties of collagen-based gel from cuttlefish skin. Int J Biol Macromol. 2015;77:369–374.
  • Moura LI, Dias AM, Suesca E, et al. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice. Biochim Biophys Acta. 2014;1842(1):32–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.