626
Views
21
CrossRef citations to date
0
Altmetric
Review Articles

On the relevance of hydroxyl radical to purine DNA damage

ORCID Icon, , , &
Pages 384-404 | Received 15 Oct 2020, Accepted 10 Jan 2021, Published online: 26 Jan 2021

References

  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 5th ed. Oxford: Oxford University Press; 2015.
  • Chatgilialoglu C, Studer A, editors. Encyclopedia of radicals in chemistry, biology and materials. Vol 3: Chemical biology. Chichester: Wiley; 2012.
  • Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278–286.
  • Buxton GV, Greenstock CL, Helman WP, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH)/O−) in aqueous solution. J Phys Chem Ref Data. 1988;17(2):513–886.
  • Wardman P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data. 1989;18(4):1637–1755.
  • Von Sonntag C. Free-radical-induced DNA damage and its repair. A chemical perspective. Berlin: Springer-Verlag; 2006.
  • Dizdaroglu M, Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radic Res. 2012;46(4):382–419.
  • Cadet J, Davies KJA, Medeiros MHG, et al. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med. 2017;107:13–34.
  • Pogozelski WK, Tullius TD. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar Moiety. Chem Rev. 1998;98(3):1089–1108.
  • Pitié M, Pratviel G. Activation of DNA carbon-hydrogen bonds by metal complexes. Chem Rev. 2010;110(2):1018–1059.
  • Greenberg MM. Reactivity of nucleic acid radicals. Adv Phys Org Chem. 2016;50:119–202.
  • Steenken S, Jovanovic SV. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc. 1997;119(3):617–618.
  • Giese B. Long-distance electron transfer through DNA. Annu Rev Biochem. 2002;71:51–70.
  • Kawai K, Majima T. Hole transfer kinetics of DNA. Acc Chem Res. 2013;46(11):2616–2625.
  • Capobianco A, Caruso T, D'Ursi AM, et al. Delocalized hole domains in Guanine-rich DNA oligonucleotides. J Phys Chem B. 2015;119(17):5462–5466.
  • Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res. 2008;41(8):1075–1083.
  • Chatgilialoglu C, Ferreri C, Geacintov NE, et al. 5′,8-Cyclopurine lesions in DNA damage: chemical, analytical, biological and diagnostic significance. Cells. 2019;8(6):513.
  • Shafirovich V, Geacintov NE. Removal of oxidatively generated DNA damage by overlapping repair pathways. Free Radic Biol Med. 2017;107:53–61.
  • Kumar N, Raja S, Van Houten B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res. 2020;48(20):11227–11243.
  • Whitaker AM, Schaich MA, Smith MR, et al. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed). 2017;22:1493–1522.
  • Aydogan B, Marshall DT, Swarts SG, et al. Site-specific OH attack to the sugar moiety of DNA: a comparison of experimental data and computational simulation. Radiat Res. 2002;157(1):38–44.
  • Balasubramanian B, Pogozelski WK, Tullius TD. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci U S A. 1998;95(17):9738–9743.
  • Chan W, Chen B, Wang L, et al. Quantification of the 2-deoxyribonolactone and nucleoside 5′-aldehyde products of 2-deoxyribose oxidation in DNA and cells by isotope-dilution gas chromatography mass spectrometry: differential effects of gamma-radiation and Fe2+-EDTA. J Am Chem Soc. 2010;132(17):6145–6153.
  • Dedon PC. The chemical toxicology of 2-deoxyribose oxidation in DNA. Chem Res Toxicol. 2008;21(1):206–219.
  • Emanuel CJ, Newcomb M, Ferreri C, et al. Kinetics of 2′-deoxyuridin-1′-yl radical reactions. J Am Chem Soc. 1999;121(12):2927–2928.
  • Gimisis T, Chatgilialoglu C. Fate of the C-1′ peroxyl radical in the 2′-deoxyuridine system. Chem Commun. 1998;(12):1249–1250.
  • Chatgilialoglu C, Ferreri C, Terzidis MA. Purine 5′,8-cyclonucleoside lesions: chemistry and biology. Chem Soc Rev. 2011;40(3):1368–1382.
  • Chatgilialoglu C, Guerra M, Mulazzani QG. Model studies of DNA C5′ radicals. Selective generation and reactivity of 2′-deoxyadenosin-5′-yl radical. J Am Chem Soc. 2003;125(13):3839–3848.
  • Chatgilialoglu C, D'Angelantonio M, Kciuk G, et al. New insights into the reaction paths of hydroxyl radicals with 2'-deoxyguanosine. Chem Res Toxicol. 2011;24(12):2200–2206.
  • Chatgilialoglu C, Bazzanini R, Jimenez LB, et al. (5'S)- and (5'R)-5',8-cyclo-2'-deoxyguanosine: mechanistic insights on the 2'-deoxyguanosin-5'-yl radical cyclization. Chem Res Toxicol. 2007;20(12):1820–1824.
  • Chatgilialoglu C, Eriksson LA, Krokidis MG, et al. Oxygen dependent purine lesions in double-stranded oligodeoxynucleotides: kinetic and computational studies highlight the mechanism for 5',8-Cyclopurine Formation. J Am Chem Soc. 2020;142(12):5825–5833.
  • Navacchia ML, Chatgilialoglu C, Montevecchi PC. C5'-adenosinyl radical cyclization. A stereochemical investigation . J Org Chem. 2006;71(12):4445–4452.
  • Boussicault F, Kaloudis P, Caminal C, et al. The fate of C5' radicals of purine nucleosides under oxidative conditions. J Am Chem Soc. 2008;130(26):8377–8385.
  • Chatgilialoglu C, Krokidis MG, Masi A, et al. New insights into the reaction paths of hydroxyl radicals with purine moieties in DNA and double-stranded oligonucleotides. Molecules. 2019;24(21):3860.
  • Guerrero CR, Wang J, Wang Y. Induction of 8,5'-cyclo-2'-deoxyadenosine and 8,5'-cyclo-2'-deoxyguanosine in isolated DNA by Fenton-type reagents. Chem Res Toxicol. 2013;26(9):1361–1366.
  • Belmadoui N, Boussicault F, Guerra M, et al. Radiation-induced formation of purine 5',8-cyclonucleosides in isolated and cellular DNA: high stereospecificity and modulating effect of oxygen. Org Biomol Chem. 2010;8(14):3211–3219.
  • Ravanat JL, Breton J, Douki T, et al. Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. Br J Radiol. 2014;87(1035):20130715.
  • Bergeron F, Auvré F, Radicella JP, et al. HO* radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases. Proc Natl Acad Sci U S A. 2010;107(12):5528–5533.
  • Ravanat JL, Saint-Pierre C, Cadet J. One-electron oxidation of the guanine moiety of 2'-deoxyguanosine: influence of 8-oxo-7,8-dihydro-2'-deoxyguanosine . J Am Chem Soc. 2003;125(8):2030–2031.
  • Robert G, Wagner JR. Tandem lesions arising from 5-(uracilyl)methyl peroxyl radical addition to guanine: product analysis and mechanistic studies. Chem Res Toxicol. 2020;33(2):565–575.
  • Cui L, Ye W, Prestwich EG, et al. Comparative analysis of four oxidized guanine lesions from reactions of DNA with peroxynitrite, singlet oxygen, and γ-radiation. Chem Res Toxicol. 2013;26(2):195–202.
  • Rokhlenko Y, Geacintov NE, Shafirovich V. Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions. J Am Chem Soc. 2012;134(10):4955–4962.
  • Chatgilialoglu C, D'Angelantonio M, Guerra M, et al. A reevaluation of the ambident reactivity of the guanine moiety towards hydroxyl radicals. Angew Chem Int Ed Engl. 2009;48(12):2214–2217.
  • Terzidis MA, Prisecaru A, Molphy Z, et al. Radical-induced purine lesion formation is dependent on DNA helical topology. Free Radic Res. 2016;50(sup1):S91–S101.
  • Steenken S. Purine bases, nucleosides, and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e- and OH adducts. Chem Rev. 1989;89(3):503–520.
  • Jaruga P, Kirkali G, Dizdaroglu M. Measurement of formamidopyrimidines in DNA. Free Radic Biol Med. 2008;45(12):1601–1609.
  • Dizdaroglu M, Kirkali G, Jaruga P. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects. Free Radic Biol Med. 2008;45(12):1610–1621.
  • Greenberg MM. The formamidopyrimidines: purine lesions formed in competition with 8-oxopurines from oxidative stress. Acc Chem Res. 2012;45(4):588–597.
  • Cadet J, Douki T, Ravanat JL. Oxidatively generated base damage to cellular DNA. Free Radic Biol Med. 2010;49(1):9–21.
  • Munk BH, Burrows CJ, Schlegel HB. Exploration of mechanisms for the transformation of 8-hydroxy guanine radical to FAPyG by density functional theory. Chem Res Toxicol. 2007;20(3):432–444.
  • Chaban GM, Wang D, Huo WM. Ab initio study of guanine damage by hydroxyl radical. J Phys Chem A. 2015;119(2):377–382.
  • Liu P, Wang Q, Niu M, et al. Multi-level quantum mechanics and molecular mechanics study of ring opening process of guanine damage by hydroxyl radical in aqueous solution. Sci Rep. 2017;7(1):7798.
  • Francés-Monerris A, Merchán M, Roca-Sanjuán D. Mechanism of the OH radical addition to adenine from quantum-chemistry determinations of reaction paths and spectroscopic tracking of the intermediates. J Org Chem. 2017;82(1):276–288.
  • Fleming AM, Burrows CJ. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic Biol Med. 2017;107:35–52.
  • Fleming AM, Muller JG, Ji I, et al. Characterization of 2'-deoxyguanosine oxidation products observed in the Fenton-like system Cu(II)/H2O2/reductant in nucleoside and oligodeoxynucleotide contexts . Org Biomol Chem. 2011;9(9):3338–3348.
  • Thomas CS, Pollard HC, Razskazovskiy Y, et al. Sources of 2,5-diaminoimidazolone lesions in DNA damage initiated by hydroxyl radical attack. Free Radic Res. 2020;54(7):517–524.
  • Yu H, Venkatarangan L, Wishnok JS, et al. Quantitation of four guanine oxidation products from reaction of DNA with varying doses of peroxynitrite. Chem Res Toxicol. 2005;18(12):1849–1857.
  • Hebert SP, Schlegel HB. Computational study of the oxidation of guanine to form 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih). Chem Res Toxicol. 2019;32(11):2295–2304.
  • Fleming AM, Muller JG, Dlouhy AC, et al. Structural context effects in the oxidation of 8-oxo-7,8-dihydro-2'-deoxyguanosine to hydantoin products: electrostatics, base stacking, and base pairing. J Am Chem Soc. 2012;134(36):15091–15102.
  • Steenken S, Jovanovic SV, Bietti M, et al. The trap depth (in DNA) of 8-oxo-7,8-dihydro-2′deoxyguanosine as derived from electron-transfer equilibria in aqueous solution. J Am Chem Soc. 2000;122(10):2373–2374.
  • Meggers E, Dussy A, Schäfer T, et al. Electron transfer in DNA from guanine and 8-oxoguanine to a radical cation of the carbohydrate backbone. Chem Eur J. 2000;6(3):485–492.
  • Fleming AM, Burrow CJ. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and abasic site tandem lesions are oxidation prone yielding hydantoin products that strongly destabilize duplex DNA. Org Biomol Chem. 2017;15(39):8341–8353.
  • White B, Tarun MC, Gathergood N, et al. Oxidised guanidinohydantoin (Ghox) and spiroiminodihydantoin (Sp) are major products of iron- and copper-mediated 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine oxidation. Mol Biosyst. 2005;1(5-6):373–381.
  • Crean C, Geacintov NE, Shafirovich V. Oxidation of guanine and 8-oxo-7,8-dihydroguanine by carbonate radical anions: insight from oxygen-18 labeling experiments. Angew Chem Int Ed Engl. 2005;44(32):5057–5060.
  • Niles JC, Wishnok JS, Tannenbaum SR. Spiroiminodihydantoin and guanidinohydantoin are the dominant products of 8-oxoguanosine oxidation at low fluxes of peroxynitrite: mechanistic studies with 18O. Chem Res Toxicol. 2004;17(11):1510–1519.
  • Gremaud JN, Martin BD, Sugden KD. Influence of substrate complexity on the diastereoselective formation of spiroiminodihydantoin and guanidinohydantoin from chromate oxidation. Chem Res Toxicol. 2010;23(2):379–385.
  • Fleming AM, Burrows CJ. G-quadruplex folds of the human telomere sequence alter the site reactivity and reaction pathway of guanine oxidation compared to duplex DNA. Chem Res Toxicol. 2013;26(4):593–607.
  • Luo W, Muller JG, Burrows CJ. The pH-dependent role of superoxide in riboflavin-catalyzed photooxidation of 8-oxo-7,8-dihydroguanosine. Org Lett. 2001;3(18):2801–2804.
  • Cooke MS, Evans MD, Dizdaroglu M, et al. Oxidative DNA damage: mechanisms, mutation, and disease. Faseb J. 2003;17(10):1195–1214.
  • Dizdaroglu M. Oxidatively induced DNA damage and its repair in cancer. Mutat Res Rev Mutat Res. 2015;763:212–245.
  • Figueroa-González G, Pérez-Plasencia C. Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol Lett. 2017;13(6):3982–3988.
  • Gonzalez-Hunt CP, Wadhwa M, Sanders LH. DNA damage by oxidative stress: measurement strategies for two genomes. Curr Opin Toxicol. 2018;7:87–94.
  • Morton TH. Isotopic labelling in mass spectrometry. In Encyclopedia of spectroscopy and spectrometry. Vol. 2. 3rd ed. Oxford, UK: Elsevier/Academic Press; 2017. p. 501–511.
  • Yu Y, Cui Y, Niedernhofe LJ, et al. Occurrence, biological consequences, and human health relevance of oxidative stress-induced DNA damage. Chem Res Toxicol. 2016;29(12):2008–2039.
  • Reddy MV, Randerath K. Nuclease P1-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis. 1986;7(9):1543–1551.
  • Gupta RC, Arif JM. An improved (32)P-postlabeling assay for the sensitive detection of 8-oxodeoxyguanosine in tissue DNA. Chem Res Toxicol. 2001;14(8):951–957.
  • Zhou GD, Moorthy B. Detection of bulky endogenous oxidative DNA lesions derived from 8,5’-cyclo-2’-deoxyadenosine by 32P-postlabeling assay. Curr Protoc Toxicol. 2015;64:17.17.1–17.17.14.
  • Cooke MS, Olinski R, Loft S, European Standards Committee on Urinary (DNA) Lesion Analysis. Measurement and meaning of oxidatively modified DNA lesions in urine. Cancer Epidemiol Biomarkers Prev. 2008;17(1):3–14.
  • Okahashi Y, Iwamoto T, Suzuki N, et al. Quantitative detection of 4-hydroxyequilenin-DNA adducts in mammalian cells using an immunoassay with a novel monoclonal antibody. Nucleic Acids Res. 2010;38(12):e133.
  • Chung MK, Riby J, Li H, et al. A sandwich enzyme-linked immunosorbent assay for adducts of polycyclic aromatic hydrocarbons with human serum albumin. Anal Biochem. 2010;400(1):123–129.
  • Iwamoto T, Brooks PJ, Nishiwaki T, et al. Quantitative and in situ detection of oxidatively generated DNA damage 8,5'-cyclo-2'-deoxyadenosine using an immunoassay with a novel monoclonal antibody. Photochem Photobiol. 2014;90(4):829–836.
  • Mori T, Nakane H, Iwamoto T, et al. High levels of oxidatively generated DNA damage 8,5'-cyclo-2'-deoxyadenosine accumulate in the brain tissues of xeroderma pigmentosum group A gene-knockout mice. DNA Repair (Amst). 2019;80:52–58.
  • Liu S, Wang Y. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem Soc Rev. 2015;44(21):7829–7854.
  • Dizdaroglu M, Coskun E, Jaruga P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radic Res. 2015;49(5):525–548.
  • Scanlan LD, Coskun SH, Jaruga P, et al. Measurement of oxidatively induced DNA damage in Caenorhabditis elegans with high-salt DNA extraction and isotope-dilution mass spectroscopy. Anal Chem. 2019;91(19):12149–12155.
  • Gassman NR, Coskun E, Stefanick DF, et al. Bisphenol A promotes cell survival following oxidative DNA damage in mouse fibroblasts. PLoS One. 2015;10(2):e0118819.
  • Jaruga P, Coskun E, Kimbrough K, et al. Biomarkers of oxidatively induced DNA damage in dreissenid mussels: a genotoxicity assessment tool for the Laurentian Great Lakes. Environ Toxicol. 2017;32(9):2144–2153.
  • Muftuoglu M, de Souza-Pinto NC, Dogan A, et al. Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase. J Biol Chem. 2009;284(14):9270–9279.
  • Reipa V, Atha DH, Coskun SH, et al. Controlled potential electro-oxidation of genomic DNA. PLoS One. 2018;13(1):e0190907.
  • Calkins MJ, Vartanian V, Owen N, et al. Enhanced sensitivity of Neil1-/- mice to chronic UVB exposure. DNA Repair (Amst). 2016;48:43–50.
  • Frelon S, Douki T, Ravanat JL, et al. High-performance liquid chromatography-tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA . Chem Res Toxicol. 2000;13(10):1002–1010.
  • Frelon S, Douki T, Favier A, et al. Hydroxyl radical is not the main reactive species involved in the degradation of DNA bases by copper in the presence of hydrogen peroxide. Chem Res Toxicol. 2003;16(2):191–197.
  • Malayappan B, Garrett TJ, Segal M, et al. Urinary analysis of 8-oxoguanine, 8-oxoguanosine, fapy-guanine and 8-oxo-2'-deoxyguanosine by high-performance liquid chromatography-electrospray tandem mass spectrometry as a measure of oxidative stress. J Chromatogr A. 2007;1167(1):54–62.
  • Kino K, Saito I, Sugiyama H. Product analysis of GG-specific photooxidation of DNA via electron transfer: 2-aminoimidazolone as a major guanine oxidation product. J Am Chem Soc. 1998;120(29):7373–7374.
  • Kupan A, Saulière A, Broussy S, et al. Guanine oxidation by electron transfer: one- versus two-electron oxidation mechanism. Chembiochem. 2006;7(1):125–133.
  • Terzidis MA, Chatgilialoglu C. An ameliorative protocol for the quantification of purine 5',8-cyclo-2'-deoxynucleosides in oxidized DNA. Front Chem. 2015;3:47.
  • Traube FR, Schiffers S, Iwan K, et al. Isotope-dilution mass spectrometry for exact quantification of noncanonical DNA nucleosides. Nat Protoc. 2019;14(1):283–312.
  • Wang J, Yuan B, Guerrero C, et al. Quantification of oxidative DNA lesions in tissues of Long-Evans Cinnamon rats by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope-dilution method. Anal Chem. 2011;83(6):2201–2209.
  • Terzidis MA, Ferreri C, Chatgilialoglu C. Radiation-induced formation of purine lesions in single and double stranded DNA: Revised quantification. Front Chem. 2015;3:18.
  • Chatgilialoglu C. Cyclopurine (cPu) lesions: what, how, and why? Free Radic Res. 2019;53(9-10):941–943.
  • Brooks PJ. The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions. Free Radic Biol Med. 2017;107:90–100.
  • Wang J, Clauson CL, Robbins PD, et al. The oxidative DNA lesions 8,5'-cyclopurines accumulate with aging in a tissue-specific manner. Aging Cell. 2012;11(4):714–716.
  • Masi A, Sabbia A, Ferreri C, et al. Diastereomeric recognition of 5′,8-cyclo-2′-deoxyadenosine lesions by human Poly(ADP-ribose)polymerase 1 in a biomimetic model. Cells. 2019;8(2):116.
  • Xu M, Lai Y, Jiang Z, et al. A 5', 8-cyclo-2'-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase β. Nucleic Acids Res. 2014;42(22):13749–13763.
  • Jiang Z, Xu M, Lai Y, et al. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks. DNA Repair (Amst)). 2015;33:24–34.
  • Krokidis MG, Terzidis MA, Efthimiadou E, et al. Purine 5',8-cyclo-2'-deoxynucleoside lesions: formation by radical stress and repair in human breast epithelial cancer cells. Free Radic Res. 2017;51(5):470–482.
  • Nyaga SG, Jaruga P, Lohani A, et al. Accumulation of oxidatively induced DNA damage in human breast cancer cell lines following treatment with hydrogen peroxide. Cell Cycle. 2007;6(12):1472–1478.
  • Mitra D, Luo X, Morgan A, et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature. 2012;491(7424):449–453.
  • Egler A, Fernandes E, Rothermund K, et al. Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene. 2005;24(54):8038–8050.
  • Yu Y, Guerrero CR, Liu S, et al. Comprehensive assessment of oxidatively induced modifications of DNA in a rat model of human Wilson's Disease. Mol Cell Proteomics. 2016;15(3):810–817.
  • Krokidis M, Louka M, Efthimiadou E, et al. Membrane lipidome reorganization and accumulation of tissue DNA lesions in tumor-bearing mice: an exploratory study. Cancers. 2019;11(4):480.
  • Jaruga P, Rozalski R, Jawien A, et al. DNA damage products (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines as potential biomarkers in human urine for atherosclerosis. Biochemistry. 2012;51(9):1822–1824.
  • Kant M, Akış M, Çalan M, et al. Elevated urinary levels of 8-oxo-2'-deoxyguanosine, (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines, and 8-iso-prostaglandin F2α as potential biomarkers of oxidative stress in patients with prediabetes. DNA Repair (Amst). 2016;48:1–7.
  • Marietta C, Brooks PJ. Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells. EMBO Rep. 2007;8(4):388–393.
  • Brooks PJ. The 8,5'-cyclopurine-2'-deoxynucleosides: candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair (Amst). 2008;7(7):1168–1179.
  • Krokidis MG, Parlanti E, D’Errico M, et al. Purine DNA lesions at different oxygen concentration in DNA repair-impaired human cells (EUE-siXPA). Cells. 2019;8:1377.
  • D'Errico M, Parlanti E, Teson M, et al. New functions of XPC in the protection of human skin cells from oxidative damage. Embo J. 2006;25(18):4305–4315.
  • D'Errico M, Parlanti E, Teson M, et al. The role of CSA in the response to oxidative DNA damage in human cells. Oncogene. 2007;26(30):4336–4343.
  • Krokidis MG, D’Errico M, Pascucci B, et al. Oxygen-dependent accumulation of purine DNA lesions in cockayne syndrome cells. Cells. 2020;9(7):1671.
  • Masi A, Fortini P, Krokidis MG, et al. Increased levels of 5',8-cyclopurine DNA lesions in inflammatory bowel diseases. Redox Biol. 2020;34:101562.
  • Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nat. 2009;461(7267):1071–1078.
  • Iyama T, Wilson DM. 3rd. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). 2013;12(8):620–636.
  • Lindahl T, Karran P, Wood RD. DNA excision repair pathways. Curr Opin Genet Dev. 1997;7(2):158–169.
  • Marteijn JA, Lans H, Vermeulen W, et al. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465–481.
  • Barnes DE, Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445–476.
  • Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 2008;18(1):27–47.
  • Fortini P, Dogliotti E. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst). 2007;6(4):398–409.
  • Robertson AB, Klungland A, Rognes T, et al. DNA repair in mammalian cells: base excision repair: the long and short of it. Cell Mol Life Sci. 2009;66(6):981–993.
  • Hanawalt PC. Subpathways of nucleotide excision repair and their regulation. Oncogene. 2002;21(58):8949–8956.
  • Sugasawa K, Okamoto T, Shimizu Y, et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 2001;15(5):507–521.
  • Nouspikel T. DNA repair in mammalian cells: nucleotide excision repair: variations on versatility. Cell Mol Life Sci. 2009;66(6):994–1009.
  • van Steeg H, Kraemer KH. Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer. Mol Med Today. 1999;5(2):86–94.
  • Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol. 2008;9(12):958–970.
  • Markkanen E. Not breathing is not an option: how to deal with oxidative DNA damage. DNA Repair (Amst). 2017;59:82–105.
  • Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–656.
  • Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112.
  • Geancitov NE, Shafirovich V. Reactions of small reactive species with DNA. In: Chatgilialoglu C, Studer A, editors. Encyclopedia of radicals in chemistry, biology and materials. Vol. 3. Chichester, UK: Wiley; 2012. p. 1283–1317.
  • Winterbourn CC. Biological chemistry of reactive oxygen species. In: Chatgilialoglu C, Studer A, editors. Encyclopedia of radicals in chemistry, biology and materials. Vol. 3. Chichester, UK: Wiley; 2012. p. 1259–1281.
  • Illes E, Mizrahi A, Marks V, et al. Carbonate-radical-anions, and not hydroxyl radicals, are the products of the Fenton reaction in neutral solutions containing bicarbonate. Free Radic Biol Med. 2019;131:1–6.
  • Illes E, Patra SG, Marks V, et al. The FeII(citrate) Fenton reaction under physiological conditions. J Inorg Biochem. 2020; 206:111018.
  • Fleming AM, Burrows CJ. Iron Fenton oxidation of 2'-deoxyguanosine in physiological bicarbonate buffer yields products consistent with the reactive oxygen species carbonate radical anion not the hydroxyl radical. Chem Commun (Camb)). 2020;56(68):9779–9782.
  • Fleming AM, Burrows CJ. On the irrelevancy of hydroxyl radical to DNA damage from oxidative stress and implications for epigenetics. Chem Soc Rev. 2020;49(18):6524–6528.
  • Sedelnikova OA, Redon CE, Dickey JS, et al. Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res. 2010;704(1-3):152–159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.