258
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Potential role of free-radical processes in biomolecules damage during COVID-19 and ways of their regulation

ORCID Icon, , , , , , & show all
Pages 665-676 | Received 30 Jun 2020, Accepted 11 May 2021, Published online: 21 Jun 2021

References

  • Sanders JM, Monogue ML, Jodlowski TZ, et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323(18):1824–1836.
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 5th ed. New York: Oxford Univ. Press; 2015.
  • De Clercq E. Antiviral drugs in current clinical use. J Clin Virol. 2004;30(2):115–133.
  • De Clercq E. Antivirals: past, present and future. Biochem Pharmacol. 2013;85(6):727–744.
  • Morfin F, Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol. 2003;26(1):29–37.
  • van der Vries E, Schutten M, Fraaij P, et al. Influenza virus resistance to antiviral therapy. Adv Pharmacol. 2013;67:217–246.,
  • Richman DD. Antiviral drug resistance. Antiviral Res. 2006;71(2-3):117–121.
  • Weber IT, Harrison RW. Tackling the problem of HIV drug resistance. Postepy Biochem. 2016;62(3):273–279.
  • Griffiths PD. A perspective on antiviral resistance. J Clin Virol. 2009;46(1):3–8.
  • Todt D, Walter S, Brown RJ, et al. Mutagenic effects of ribavirin on hepatitis E virus-viral extinction versus selection of fitness-enhancing mutations. Viruses. 2016;8(10):283.,
  • Vivet-Boudou V, Isel C, Safadi YEI, et al. Evaluation of anti-HIV-1 mutagenic nucleoside analogues. J Biol Chem. 2015;290(1):371–383.,
  • Wutzler P, Thust R. Genetic risks of antiviral nucleoside analogues – a survey. Antiviral Res. 2001;49(2):55–74.
  • Antonelli G, Turriziani O. Antiviral therapy: old and current issues. Int J Antimicrob Agents. 2012;40(2):95–102.
  • Wu J. Tackle the free radicals damage in COVID-19. Nitric Oxide. 2020;102:39–41.
  • Buffinton GD, Christen S, Peterhans E, et al. Oxidative stress in lungs of mice infected with influenza A virus. Free Radic Res Commun. 1992;16(2):99–110.,
  • Hennet T, Peterhans E, Stocker R. Alterations in antioxidant defences in lung and liver of mice infected with influenza A virus. J. Gen. Virol. 1992;73(1):39–46.
  • Akaike T. Role of free radicals in viral pathogenesis and mutation. Rev Med Virol. 2001;11(2):87–101.
  • Camini FC, da Silva Caetano CC, Almeida LT, et al. Implications of oxidative stress on viral pathogenesis. Arch Virol. 2017;162(4):907–917.,
  • Molteni CG, Principi N, Esposito S. Reactive oxygen and nitrogen species during viral infections. Free Radic Res. 2014;48(10):1163–1169.
  • Mendonca P, Soliman KFA. Flavonoids activation of the transcription factor Nrf2 as a hypothesis approach for the prevention and modulation of SARS-CoV-2 infection severity. Antioxidants. 2020;9(8):659.
  • Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19) ). Clin Exp Pediatr. 2020;63(4):119–124.
  • Mironova GD, Belosludtseva NV, Ananyan MA. Prospects for the use of regulators of oxidative stress in the comprehensive treatment of the novel Coronavirus Disease 2019 (COVID-19) and its complications. Eur Rev Med Pharmacol Sci. 2020; 24(16):8585–8591.
  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19 . J Infect. 2020;80(6):607–613.
  • Khomich OA, Kochetkov SN, Bartosch B, et al. Redox biology of respiratory viral infections. Viruses. 2018;10(8):392.,
  • Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143:110102
  • Rello J, Storti E, Belliato M, et al. Clinical phenotypes of SARS-CoV-2: Implications for clinicians and researchers. Eur. Respir. J. 2020;21:2001028.
  • Xie J, Covassin N, Fan Z, et al. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin. Proc. 2020;95(6):1138–1147.
  • Xie J, Tong Z, Guan X, et al. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med. 2020;46(5):837–840.,
  • Leyfman Y, Erick TK, Reddy SS, et al. Potential Immunotherapeutic Targets For Hypoxia Due to COVI-FLU. Shock. 2020;54(4):438–450.
  • Beltrán-García J, Osca-Verdegal R, Pallardó FV, et al. Oxidative stress and inflammation in COVID-19-associated sepsis: the potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants. 2020;9(10):936.
  • Koch A, Kähler W, Klapa S, et al. The conundrum of using hyperoxia in COVID-19 treatment strategies: may intermittent therapeutic hyperoxia play a helpful role in the expression of the surface receptors ACE2 and Furin in lung tissue via triggering of HIF-1α? Intensive Care Med Exp. 2020;8:53.
  • Marchetti M. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol. 2020;99(8):1701–1707.
  • Wagener FADTG, Pickkers P, Peterson SJ, et al. Targeting the Heme-Heme Oxygenase System to Prevent Severe Complications Following COVID-19 Infections. Antioxidants. 2020;9(6):540.,
  • Henry BM, de Oliveira M, Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021–1028.
  • Gómez-Pastora J, Weigand M, Kim J, et al. Hyperferritinemia in critically ill COVID-19 patients - Is ferritin the product of inflammation or a pathogenic mediator? Clin Chim Acta. 2020;509:249–251.,
  • Perricone C, Bartoloni E, Bursi R, et al. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res. 2020;68(4):213–224.
  • Laforge M, Elbim C, Frère C, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20(9):515–516.,
  • Arai H. Oxidative modification of lipoproteins. In: Kato, Y. editor. Lipid hydroperoxide-derived modification of biomolecules. Subcellular Biochemistry. Dordrecht: Springer. 2014;77:103–114.
  • Fourquet S, Guerois R, Biard D, et al. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol Chem. 2010;285(11):8463–8471.,
  • Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–426.
  • Kagan VE. Lipid peroxidation in biomembranes. 1st ed. Boca Raton, Florida: CRC press; 1988.
  • Arnhold J. Cell and tissue destruction: mechanisms, protection, disorders. New York (NY): Academic Press; 2020. p. 342.
  • Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419–425.
  • Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111(10):5944–5972.
  • Negre-Salvayre A, Auge N, Ayala V, et al. Pathological aspects of lipid peroxidation. Free Radic Res. 2010;44(10):1125–1171.,
  • Shadyro O, Lisovskaya A. ROS-induced lipid transformations without oxygen participation. Chem Phys Lipids. 2019;221:176–183.
  • Shadyro OI. Radiation-induced free radical fragmentation of cell membrane components and the respective model compounds. in: F. Minisci (Eds.), Free radicals in biology and environment., Dordrecht: Kluwer Academic Publishers, 1997. pp. 317–329.
  • Shadyro O, Samovich S, Edimecheva I. Free-radical and biochemical reactions involving polar part of glycerophospholipids, Free Radic. Free Radic Biol Med. 2019;144:6–15.
  • Edimecheva IP, Kisel RM, Shadyro OI, et al. Homolytic cleavage of the O-glycoside bond in carbohydrates: a steady-state radiolysis study. J Radiat Res. 2005;46(3):319–324.,
  • Sladkova АА, Sosnovskaya АА, Edimecheva IP, et al. Radiation-induced destruction of hydroxyl-containing amino acids and dipeptides. Radiat Phys Сhem. 2012;81(12):1896–1903.,
  • Petryaev EP, Moshchinskaya SV, Timoshchuk VA, et al. Effect of structure of the carbohydrate fragment on homolytic cleavage on N-glycosidic and phosphate ester bonds in nucleosides and nucleotides. J Org Chem USSR. 1988;24:982–985.
  • Teuwen L-A, Geldhof V, Pasut A, et al. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389–391.,
  • Fernández-Quintela A, Milton-Laskibar I, Trepiana J, et al. Key aspects in nutritional management of COVID-19 patients. JCM. 2020;9(8):2589.,
  • Amaegberi NV, Semenkova GN, Kvacheva ZB, et al. 2-Hexadecenal inhibits growth of C6 glioma cells. Cell Biochem Funct. 2019;37(4):281–289.,
  • Abu-Farha M, Thanaraj TA, Qaddoumi MG, et al. The role of lipid metabolism in COVID-19 virus infection and as a drug target. IJMS. 2020;21(10):3544.,
  • Shen B, Yi X, Sun Y, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020;182(1):59–72.e15.,
  • Paliwal VK, Garg RK, Gupta A, et al. Neuromuscular presentations in patients with COVID-19. Neurol Sci. 2020;41(11):3039–3056.,
  • Shadyro O, Yurkova I, Kisel M, et al. Formation of phosphatidic acid, ceramide, and diglyceride on radiolysis of lipids: identification by MALDI-TOF mass spectrometry, Free Radic. Free Radic Biol Med. 2004;36(12):1612–1624.,
  • Yurkova I, Kisel M, Arnhold J, et al. Free-radical fragmentation of galactocerebrosides: a MALDI-TOF mass spectrometry study. Chem Phys Lipids. 2005;134(1):41–49.,
  • Edwards MJ, Becker KA, Gripp B, et al. Sphingosine prevents binding of SARS-CoV-2 spike to its cellular receptor ACE2. J. Biol. Chem. 2020;295(45):15174–15182.
  • Oskeritzian CA, Hait NC, Wedman P, et al. The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. J Allergy Clin Immunol. 2015;135(4):1008–1018.e1.
  • Abdalla M, Ismail NEM, Mohamed AH, et al. Plasma levels of phospholipids in patients with COVID-19. A Promising simple biochemical parameter to evaluate the disease severity. 2020.
  • Seeds MC, Grier BL, Suckling BN, et al. Secretory phospholipase A2-mediated depletion of phosphatidylglycerol in early acute respiratory distress syndrome. Am. J. Med. Sci. 2012;343(6):446–451.
  • Kuronuma K, Mitsuzawa H, Takeda K, et al. Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. J Biol Chem. 2009;284(38):25488–25500.
  • Numata M, Chu HW, Dakhama A, et al. Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc Natl Acad Sci USA. 2010;107(1):320–325.
  • Bollag WB, Gonzales JN. Phosphatidylglycerol and surfactant: a potential treatment for COVID-19? Med Hypotheses. 2020;144:110277
  • Kitsiouli E, Nakos G, Lekka ME. Phospholipase A2 subclasses in acute respiratory distress syndrome. Biochim Biophys Acta. 2009;1792(10):941–953.
  • Nasi A, McArdle S, Gaudernack G, et al. Reactive oxygen species as an initiator of toxic innate immune responses in retort to SARS-CoV-2 in an ageing population, consider N-acetylcysteine as early therapeutic intervention. Toxicol. Rep. 2020;7:768–771.,
  • Ali OH, Bomze D, Risch L, et al. Severe COVID-19 is associated with elevated serum IgA and antiphospholipid IgA-antibodies. Clin. Infect. Dis. 2020; ciaa1496.
  • Jizzini M, Shah M, Zhou K. SARS-CoV-2 and anti-cardiolipin antibodies. Clin Med Insights Case Rep. 2020;13:1179547620980381
  • Samovich S, Edimecheva I, Shadyro O, et al. Free-radical processes resulting in formation of new lipid molecules. Free Rad Biol Med. 2019;139.
  • Yao Y, Lawrence DA. Susceptibility to COVID‐19 in populations with health disparities: Posited involvement of mitochondrial disorder, socioeconomic stress, and pollutants. J Biochem Mol Toxicol. 2020;35:e22626.
  • Ott M, Zhivotovsky B, Orrenius S. Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ. 2007;14(7):1243–1247.
  • Shenoy S. Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflamm Res. 2020;69(11):1077–1085.
  • Bizunok NA. The antioxidant activity structure determinants of the phenol, diphenol and polyphenols derivatives in regard to ROS, generated by macrophages in various microenvirons, Voennaya meditsina. 1 2013. 84–94 (Engl. Transl.). https://elibrary.ru/item.asp?id=20936579.
  • Samadi M, Shirvani H, Rahmati-Ahmadabad S. A study of possible role of exercise and some antioxidant supplements against coronavirus disease 2019 (COVID-19): a cytokines related perspective. Apunts Sports Med. 2020;55(207):115–117.
  • De Flora S, Balansky R, Maestra SL. Rationale for the use of N‐acetylcysteine in both prevention and adjuvant therapy of COVID‐19. Faseb J. 2020;34(10):13185–13193.
  • Palacios Chavarria A, Valdez Vázquez RR, Domínguez Cherit JG, et al. Open clinical trial of the use of antioxidants and pentoxifylline as coadjuvant measures to standard therapy to improve prognosis of patients with pneumonia and septic shock due to covid-19, 2020. https://www.researchsquare.com/article/rs-122123/latest.pdf.
  • Ellen ter BM, Dinesh Kumar N, Bouma EM, et al. Resveratrol and pterostilbene potently inhibit SARS-CoV-2 infection in vitro. bioRxiv. 2020.
  • Jovic TH, Ali SR, Ibrahim N, et al. Could vitamins help in the fight against COVID-19? Nutrients. 2020;12(9):2550.
  • Shadyro OI, Glushonok GK, Glushonok TG, et al. Quinones as free-radical fragmentation inhibitors in biologically important molecules. Free Rad. Res. 2002;36(8):859–867.
  • Shadyro OI, Kisel RM, Vysotskii VV, et al. Effects of vitamins, coenzymes and amino acids on reactions of homolytic cleavage of the O-glycoside bond in carbohydrates. Bioorg Med Chem Lett. 2006;16(18):4763–4766.
  • Shadyro OI, Sosnovskaya АА, Edimecheva IP, et al. Effects of various vitamins and coenzymes Q on reactions involving alpha-hydroxyl-containing radicals. Free Radic Res. 2005;39(7):713–718.,
  • Samovich SN, Sverdlov RL, Voitekhovich SV, et al. Effects of quinones and azoles on radiation-induced processes involving hydroxyl-containing carbon-centered radicals. Rad Phys Chem. 2018;144:308–316.
  • Ahmad A, Rehman MU, Ahmad P, et al. Covid-19 and thymoquinone: connecting the dots. Phytother Res. 2020;34(11):2786–2789.
  • Gökalp F. The chemical activity of Juglone in different phases as a protective agent. J Fluorine Chem. 2021; 242:109701.
  • Dabaghian F, Khanavi M, Zarshenas MM. Bioactive compounds with possible inhibitory activity of Angiotensin-Converting Enzyme-II; a gate to manage and prevent COVID-19. Med Hypotheses. 2020;143:109841
  • Ghaffari Agdam MH, Sharifi S, Soleimani F, et al. Anti-SARS-CoV and anti-cancer effects of emodin. Adv Herbal Med. 2019;5:42–53. http://herbmed.skums.ac.ir/article_45838_76c72ba3e986e2a3b5959dbe8577c534.pdf
  • Brinkevich SD, Shadyro OI. Effects of coenzyme Q0, ascorbic acid, and its glycoside on the radiation-induced dephosphorylation of organic phosphates in aqueous solutions. High Energy Chem. 2009;43(6):435–439.
  • Brinkevich SD, Shadyro OI. The effects of ascorbic acid on homolytic processes involving alpha-hydroxyl-containing carbon-centered radicals . Bioorg Med Chem Lett. 2008;18(24):6448–6450.
  • Hryntsevich IB, Shadyro OI. Reactions of α-hydroxyethyl radicals with flavonoids of various structures. Bioorg Med Chem Lett. 2005;15(19):4252–4255.
  • Brinkevich SD, Ostrovskaya NI, Parkhach ME, et al. Effects of curcumin and related compounds on processes involving α-hydroxyethyl radicals. Free Rad Res. 2012;46(3):295–302.,
  • Samovich SN, Brinkevich SD, Shadyro OI. Interaction of aromatic alcohols, aldehydes and acids with α-hydroxyl-containing carbon-centered radicals: a steady state radiolysis study. Rad Phys Chem. 2013;82:35–43.
  • Zahedipour F, Hosseini SA, Sathyapalan T, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res. 2020;34(11):2911–2920.
  • Babaei F, Nassiri-Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr. 2020;8(10):5215–5213.
  • Kim WY, Jo EJ, Eom JS, et al. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: propensity score-based analysis of a before-after cohort study. J Crit Care. 2018;47:211–218.,
  • Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med Drug Discov. 2020;5:100028.
  • Biancatelli RMLC, Berrill M, Catravas JD, et al. Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol. 2020;11:1451.
  • Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: new light on the healthy function of citrus fruits. Antioxidants. 2020;9(8):742.
  • Lammi C, Arnoldi A. Food‐derived antioxidants and COVID‐19. J Food Biochem. 2021;45(1):e13557.
  • Roberts N, Brown RE, Buja LM, et al. Molecular mechanisms of curcumin in COVID-19 treatment and prevention: a global health perspective. Med Res Arch. 2020;8(10).
  • Agrawal PK, Agrawal C, Blunden G. Quercetin: antiviral significance and possible COVID-19 integrative considerations. Nat Prod Commun. 2020;15(12):1934578X2097629.
  • Derosa G, Maffioli P, D'Angelo A, et al. A role for quercetin in coronavirus disease 2019 (COVID‐19). Phytother Res. 2020;35:1230–1236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.