384
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Oxidative damage in the liver and brain of the rats exposed to frequency-dependent radiofrequency electromagnetic exposure: biochemical and histopathological evidence

ORCID Icon, &
Pages 535-546 | Received 05 Jun 2021, Accepted 05 Aug 2021, Published online: 27 Aug 2021

References

  • Belyaev I, Dean A, Eger H, et al. EUROPAEM EMF guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Rev Environ Health. 2016;31(3):363–397.
  • GSMA. GSMA. https://wwwGsmaCom. 2020.
  • Limiting FOR, To E, Fields E. Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). 2020.
  • Miller AB, Morgan LL, Udasin I, et al. Cancer epidemiology update, following the 2011 IARC evaluation of radiofrequency electromagnetic fields (monograph 102). Environ Res. 2018;167:673–683.
  • Sharma A, Shrivastava S, Shukla S. Exposure of radiofrequency electromagnetic radiation on biochemical and pathological alterations. Neurol India. 2020;68(5):1092–1100.
  • Yokus B, Cakir DU, Akdag MZ, et al. Oxidative DNA damage in rats exposed to extremely low frequency electro magnetic fields. Free Radic Res. 2005;39(3):317–323.
  • Lewicka M, Henrykowska GA, Pacholski K, et al. The effect of electromagnetic radiation emitted by display screens on cell oxygen metabolism - in vitro studies. Arch Med Sci. 2015;11(6):1330–1339.
  • Özorak A, Nazıroğlu M, Çelik Ö, et al. Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol Trace Elem Res. 2013;156(1-3):221–229.
  • Holovská K, Almášiová V, Cigánková V, et al. Structural and ultrastructural study of rat liver influenced by electromagnetic radiation. J Toxicol Environ Health A. 2015;78(6):353–356.
  • Koyu A, Ozguner F, Yilmaz H, et al. The protective effect of caffeic acid phenethyl ester (CAPE) on oxidative stress in rat liver exposed to the 900 MHz electromagnetic field. Toxicol Ind Health. 2009;25(6):429–434.
  • Belpomme D, Hardell L, Belyaev I, et al. Thermal and non-thermal health effects of low intensity non-ionizing radiation: an international perspective. Environ Pollut. 2018;242(Pt A):643–658.
  • Salford LG, Brun AE, Eberhardt JL, et al. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect. 2003;111(7):881–883.
  • Çetin H, Nazıroğlu M, Çelik Ö, et al. Liver antioxidant stores protect the brain from electromagnetic radiation (900 and 1800MHz)-induced oxidative stress in rats during pregnancy and the development of offspring. J Matern Neonatal Med. 2014;27(18):1915–1921.
  • Raichle ME, Gusnard DA. Appraising the brain's energy budget. Proc Natl Acad Sci USA. 2002;99(16):10237–10239.
  • Devrim E, Ergüder IB, Kılıçoğlu B, et al. Effects of electromagnetic radiation use on oxidant/antioxidant status and DNA turn-over enzyme activities in erythrocytes and heart, kidney, liver, and ovary tissues from rats: Possible protective role of vitamin C. Toxicol Mech Methods. 2008;18(9):679–683.
  • Achudume AC, Onibere B, Aina F. Bioeffects of electromagnetic base station on glutathione reductase, lipid peroxidation and total cholesterol in different tissues of wistar rats. Biol Med. 2009;1:33–38.
  • Alkis ME, Bilgin HM, Akpolat V, MZA, et al. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med. 2019;38(1):32–47.
  • De La Monte SM, Longato L, Tong M, et al. Insulin resistance and neurodegeneration: Roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Curr Opin Investig Drugs. 2009;10(10):1049–1060.
  • Sharma A, Sharma S, Shrivastava S, et al. Mobile phone induced cognitive and neurochemical consequences. J Chem Neuroanat. 2019;102:101684.
  • Panagopoulos DJ, Johansson O, Carlo GL. Evaluation of specific absorption rate as a dosimetric quantity for electromagnetic fields bioeffects. PLoS One. 2013;8(6):e62663.
  • Riley V. Adaptation of orbital bleeding technic to rapid serial blood studies. Proc Soc Exp Biol Med. 1960;104:751–754.
  • Asatoor A, King EJ. Estimation of blood glucose. Bio Chem J. 1954;XIIV:56.
  • Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28(1):56–63.
  • Hissin and l Hilf. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anall Biochem.1976;226:214–226.
  • Sharma SK, Murti CRK. Production of lipid peroxides by brain. J Neurochem. 1968;15(2):147–149.
  • Aebi H. Catalase in: method in enzymatic analysis. New York: Acdemic Press; 1984. p. 673–684.
  • Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–3175.
  • Seth PK, Tangri KK. Biochemical effects of some newer salicylic acid congeners. J Pharm Pharmacol. 1966;18(12):831–833.
  • Ellman GL, Courtney KD, Andres V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.
  • Tayarani I, Cloez I, Clkment M, et al. Antioxidant Enzymes and Related Trace Elements in Aging Brain Capillaries and Choroid Plexus. 1989.
  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158–169.
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–7139.
  • Askar MA, Sumathy K, Baquer NZ. Regulation and properties of purified glucose-6-phosphate dehydrogenase from rat brain. Indian J Biochem Biophys. 1996;33(6):512–518.
  • Longa EZ, Weinstein PR, Carlson S, et al. Reversible Middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91.
  • Fritz R, Snedecor GW, Cochran WG. Rohr BA 1972. Size and sex segregation of offshore hake, Merluc-cius albidus (Mitchill) in the Gulf of Mexico. Assoc. Southeast. Biol. Bull. 1977;19(2):96. Fishery Bulletin. 1977;75(1):158.
  • Carlberg M, Hardell L. Evaluation of mobile phone and cordless phone use and glioma risk using the bradford hill viewpoints from 1965 on association or causation. Biomed Res Int. 2017;2017:9218486.
  • Ragy MM. Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats. Electromagn Biol Med. 2015;34(4):279–284.
  • Gerardi G, De Ninno A, Prosdocimi M, et al. Effects of electromagnetic fields of low frequency and low intensity on rat metabolism. BioMag Res Technol. 2008;6(1):3–8.
  • Lerchl A, Krüger H, Niehaus M, et al. Effects of mobile phone electromagnetic fields at nonthermal SAR values on melatonin and body weight of djungarian hamsters (phodopus sungorus). J Pineal Res. 2008;44(3):267–272.
  • Alghamdi MS, El-Ghazaly NA. Effects of exposure to electromagnetic field on of some hematological parameters in mice. OJMC. 2012;02(02):30–42.
  • Hod EA. Red blood cells products. In: Transfusion medicine and hemostasis. 2019. p. 199–203.
  • Omar SM, Nasr M, Rafla DA. Transdermal patches loaded with L-cysteine HCL as a strategy for protection from mobile phone emitting electromagnetic radiation hazards. Saudi Pharm J. 2019;27(1):112–125.
  • Topsakal S, Ozmen O, Cicek E, et al. The ameliorative effect of gallic acid on pancreas lesions induced by 2.45 GHz electromagnetic radiation (Wi-Fi) in young rats. J Radiat Res Appl Sci. 2017;10(3):233–240.
  • Kuyvenhoven JP, Meinders AE. Oxidative stress and diabetes mellitus pathogenesis of long-term complications. Eur J Intern Med. 1999;10(1):9–19.
  • Kula B, Sobczak A, Grabowska-Bochenek R, et al. Effect of electromagnetic field on serum biochemical parameters in steelworkers. Jrnl of Occup Health. 1999;41(3):177–180.
  • Rakshit S, Nirala SK, Bhadauria M. Gallic acid protects from acute multiorgan injury induced by lipopolysaccharide and D-galactosamine. Curr Pharm Biotechnol. 2020;21(14):1489–1504.
  • Arnell H, Fischler B. Laboratory evaluation of hepatobiliary disease. Pediatr Hepatol Liver Transplant. 2019;57–66.
  • Moussa S. A. Oxidative stress in rats exposed to microwave radiation. Rom J Biophys. 2009;19:149–158.
  • Ronco C, Chawla LS. Glomerular Filtration Rate, Renal Functional Reserve, and Kidney Stress Testing. 3rd ed. 2019.
  • Ly J, Marticorena R, Donnelly S. Red blood cell survival in chronic renal failure. Am J Kidney Dis. 2004;44(4):715–719.
  • Rakshit S, Shukla P, Verma A, et al. Protective role of rutin against combined exposure to lipopolysaccharide and D-galactosamine-induced dysfunctions in liver, kidney, and brain : Hematological, biochemical, and histological evidences. J Food Biochem. 2021;21(2):1–17.
  • Ozgur E, Kismali G, Guler G, et al. Effects of prenatal and postnatal exposure to GSM-Like radiofrequency on blood chemistry and oxidative stress in infant rabbits, an experimental study. Cell Biochem Biophys. 2013;67(2):743–751.
  • Çelik Ö, Kahya MC, Nazıroğlu M. Oxidative stress of brain and liver is increased by Wi-Fi (2.45 GHz) exposure of rats during pregnancy and the development of newborns. J Chem Neuroanat. 2016;75:134–139.
  • Shahin S, Singh VP, Shukla RK, et al. 2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in mice, mus musculus. Appl Biochem Biotechnol. 2013;169(5):1727–1751.
  • Megha K, Deshmukh PS, Banerjee BD, et al. Microwave radiation induced oxidative stress, cognitive impairment and inflammation in brain of fischer rats. Indian J Exp Biol. 2012;50(12):889–896.
  • Kesari KK, Kumar S, Behari J. 900-MHz microwave radiation promotes oxidation in rat brain. Electromagn Biol Med. 2011;30(4):219–234.
  • Liu H, Wu J, Yao JY, et al. The role of oxidative stress in decreased acetylcholinesterase activity at the neuromuscular junction of the diaphragm during sepsis. Oxid Med Cell Longev. 2017;2017:9718615.
  • Chauhan P, Verma HN, Sisodia R, et al. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of wistar rats. Electromagn Biol Med. 2017;36:20–30.
  • D’Silva MH, Swer RT, Anbalagan J, et al. Effect of radiofrequency radiation emitted from 2G and 3G cell phone on developing liver of chick embryo – a comparative study. J Clin Diagnostic Res. 2017;11:AC05–AC09.
  • Moradpour R, Shokri M, Abedian S, et al. The protective effect of melatonin on liver damage induced by mobile phone radiation in mice model. Int J Radiat Res. 2020;18:133–141.
  • Metodiewa D, Kośka C. Reactive oxygen species and reactive nitrogen species: Relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res. 2000;1(3):197–233.
  • Jones EA, Weissenborn K. Neurology and the liver. J Neurol Neurosurg Psychiatry. 1997;63(3):279–293.
  • Nho K, Kueider-Paisley A, Ahmad S, Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium, et al. Association of altered liver enzymes with alzheimer disease diagnosis, cognition, neuroimaging measures, and cerebrospinal fluid biomarkers. JAMA Netw Open. 2019;2(7):e197978.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.