146
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel diselenide attenuates the carrageenan-induced inflammation by reducing neutrophil infiltration and the resulting tissue damage in mice

, , , , , , , , , , , , , , , , , & show all
Received 08 Nov 2023, Accepted 06 Feb 2024, Published online: 08 Apr 2024

References

  • Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation. Nat Immunol. 2017;18(8):826–831. doi:10.1038/ni.3790.
  • Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and neutrophil function. Annu Rev Biochem. 2016;85(1):765–792. doi:10.1146/annurev-biochem-060815-014442.
  • Babior BM. NADPH oxidase. Curr Opin Immunol. 2004;16(1):42–47. doi:10.1016/j.coi.2003.12.001.
  • Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598–625. doi:10.1189/jlb.1204697.
  • Davies MJ. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention overview of the action of myeloperoxidase and other heme peroxidases. J Clin Biochem Nutr. 2011;48(1):8–19. doi:10.3164/jcbn.11.
  • Nauseef WM. Myeloperoxidase in human neutrophil host defence. Cell Microbiol. 2014;16(8):1146–1155. doi:10.1111/cmi.12312.
  • Peskin AV, Winterbourn CC. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med. 2001;30(5):572–579. doi:10.1016/S0891-5849(00)00506-2.
  • Woods AA, Linton SM, Davies MJ. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem J. 2003;370(Pt 2):729–735. doi:10.1042/BJ20021710.
  • Cai H, Chuang CY, Vanichkitrungruang S, et al. Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells. Free Radic Biol Med. 2019;134:516–526. doi:10.1016/j.freeradbiomed.2019.01.044.
  • Panasenko OM, Briviba K, Klotz LO, et al. Oxidative modification and nitration of human low-density lipoproteins by the reaction of hypochlorous acid with nitrite. Arch Biochem Biophys. 1997;343(2):254–259. doi:10.1006/abbi.1997.0171.
  • Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703(2):93–109. doi:10.1016/j.bbapap.2004.08.007.
  • Davies MJ. Protein oxidation and peroxidation. Biochem J. 2016;473(7):805–825. doi:10.1042/BJ20151227.
  • Cheng D, Talib J, Stanley CP, et al. Inhibition of MPO (myeloperoxidase) attenuates endothelial dysfunction in mouse models of vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39(7):1448–1457. doi:10.1161/ATVBAHA.119.312725.
  • Nussbaum C, Klinke A, Adam M, et al. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal. 2013;18(6):692–713. doi:10.1089/ars.2012.4783.
  • Rosales-Corral S, Tan DX, Manchester L, et al. Diabetes and alzheimer disease, two overlapping pathologies with the same background: oxidative stress. Oxid Med Cell Longev. 2015;2015:985845. doi:10.1155/2015/985845.
  • Teng N, Maghzal GJ, Talib J, et al. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep. 2017;22(2):51–73. doi:10.1080/13510002.2016.1256119.
  • Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278–286. doi:10.1038/nchembio.85.
  • Zhang J, Wang X, Vikash V, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965. doi:10.1155/2016/4350965.
  • Murer SB, Aeberli I, Braegger CP, et al. Antioxidant supplements reduced oxidative stress and stabilized liver function tests but did not reduce inflammation in a randomized controlled trial in obese children and adolescents. J Nutr. 2014;144(2):193–201. doi:10.3945/jn.113.185561.
  • Reich HJ, Hondal RJ. Why nature chose selenium. ACS Chem Biol. 2016;11(4):821–841. doi:10.1021/acschembio.6b00031.
  • Payne NC, Geissler A, Button A, et al. Comparison of the redox chemistry of sulfur- and selenium-containing analogs of uracil. Free Radic Biol Med. 2017;104:249–261. doi:10.1016/j.freeradbiomed.2017.01.028.
  • McKenzie RC, Rafferty TS, Beckett GJ. Selenium: an essential element for immune function. Immunol Today. 1998;19(8):342–345. doi:10.1016/S0167-5699(98)01294-8.
  • Wang N, Tan HY, Li S, et al. Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant. Oxid Med Cell Longev. 2017;2017:7478523. doi:10.1155/2017/7478523.
  • Nettleford SK, Prabhu KS. Selenium and selenoproteins in gut inflammation—a review. Antioxidants. 2018;7(3):36. doi:10.3390/antiox7030036.
  • Shchedrina VA, Zhang Y, Labunskyy VM, et al. Structure – function relations, physiological roles, antioxid. Antioxid Redox Signal. 2010;12(7):839–849. doi:10.1089/ars.2009.2865.
  • Comasseto JV. Selenium and tellurium chemistry: historical background. J. Braz. Chem. Soc. 2010;21(11):2027–2031. doi:10.1590/S0103-50532010001100003.
  • Luchese C, Prigol M, Duarte MMMF, et al. Diphenyl diselenide reduces inflammation in the mouse model of pleurisy induced by carrageenan: reduction of pro-inflammatory markers and reactive species levels. Inflamm Res. 2012;61(10):1117–1124. doi:10.1007/s00011-012-0504-0.
  • Storkey C, Pattison DI, Ignasiak MT, et al. Kinetics of reaction of peroxynitrite with selenium- and sulfur-containing compounds: absolute rate constants and assessment of biological significance. Free Radic Biol Med. 2015;89:1049–1056. doi:10.1016/j.freeradbiomed.2015.10.424.
  • Petronilho F, Florentino D, Silvestre F, et al. Ebselen attenuates lung injury in experimental model of carrageenan-induced pleurisy in rats. Inflammation. 2015;38(4):1394–1400. doi:10.1007/s10753-015-0113-5.
  • Borges VC, Rocha JBT, Nogueira CW. Effect of diphenyl diselenide, diphenyl ditelluride and ebselen on cerebral Na+, K+-ATPase activity in rats. Toxicology. 2005;215(3):191–197. doi:10.1016/j.tox.2005.07.002.
  • Cotgreave IA, Duddy SK, Kass GEN, et al. Studies on the anti-inflammatory activity of ebselen. Biochem Pharmacol. 1989;38(4):649–656. doi:10.1016/0006-2952(89)90211-6.
  • Smith S, Min J, Ganesh T, et al. Ebselen and congeners inhibit NADPH-oxidase 2 (Nox2)- dependent superoxide generation by interrupting the binding of regulatory subunits. Chem. Biol. 2012;22:752–763. doi:10.1038/jid.2014.371.
  • Altenhöfer S, Radermacher KA, Kleikers PWM, et al. Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal. 2015;23(5):406–427. doi:10.1089/ars.2013.5814.
  • Nakamura Y, Feng Q, Kumagai T, et al. Ebselen, a glutathione peroxidase mimetic seleno-organic compound, as a multifunctional antioxidant. Implication for inflammation-associated carcinogenesis. J Biol Chem. 2002;277(4):2687–2694. doi:10.1074/jbc.M109641200.
  • Carroll L, Pattison DI, Fu S, et al. Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants: second-order rate constants and implications for biological damage. Free Radic Biol Med. 2015;84:279–288. doi:10.1016/j.freeradbiomed.2015.03.029.
  • Carroll L, Pattison DI, Fu S, et al. Catalytic oxidant scavenging by selenium-containing compounds: reduction of selenoxides and N-chloramines by thiols and redox enzymes. Redox Biol. 2017;12:872–882. doi:10.1016/j.redox.2017.04.023.
  • Pinatto-Botelho M, da Silva R, Archilha M, et al. Diethyl selenodiglycolate: an eco-friendly synthetic antioxidant with potential application to inflammatory disorders. J Braz Chem Soc. 2020;00:1–10. doi:10.21577/0103-5053.20200009.
  • Reis AS, Vogt AG, Pinz MP, et al. Modulation of COX-2, INF-ɣ, glutamatergic and opioid systems contributes to antinociceptive, anti-inflammatory and anti-hyperalgesic effects of bis(3-amino-2-pyridine) diselenide. Chem Biol Interact. 2019;311:108790. doi:10.1016/j.cbi.2019.108790.
  • Pinz M, Reis AS, Duarte V, et al. 4-Phenylselenyl-7-chloroquinoline, a new quinoline derivative containing selenium, has potential antinociceptive and anti-inflammatory actions. Eur J Pharmacol. 2016;780:122–128. doi:10.1016/j.ejphar.2016.03.039.
  • Storkey C, Davies MJ, Pattison DI. Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach. Free Radic Biol Med. 2014;73:60–66. doi:10.1016/j.freeradbiomed.2014.04.024.
  • Gonçalves AC. Síntese e aplicação de sondas fluorescentes na detecção de cátions e ânions [thesis]. São Paulo, Instituto de Química. 2018. Universidade de São Paulo; 2018. doi:10.11606/T.46.2019.tde-22032019-151654.
  • Queiroz RF, Vaz SM, Augusto O. Inhibition of the chlorinating activity of myeloperoxidase by tempol: revisiting the kinetics and mechanisms. Biochem J. 2011;439(3):423–431. doi:10.1042/BJ20110555.
  • Kettle AJ, Winterbourn CC. Assays for the chlorination activity of myeloperoxidase. Methods Enzymol. 1994;233:502–512. doi:10.1016/S0076-6879(94)33056-5.
  • Penna TC, Cervi G, Rodrigues-Oliveira AF, et al. Development of a photoinduced fragmentation ion trap for infrared multiple photon dissociation spectroscopy. Rapid Commun Mass Spectrom. 2020;34:1–12. doi:10.1002/rcm.8635.
  • Ribeiro FWM, Rodrigues-Oliveira AF, Correra TC. Benzoxazine formation mechanism evaluation by direct observation of reaction intermediates. J Phys Chem A. 2019;123(38):8179–8187. doi:10.1021/acs.jpca.9b05065.
  • Takats Z, Kobliha V, Sevcik K, et al. Characterization of DESI-FTICR mass spectrometry – from ECD to accurate mass tissue analysis. J. Mass Spectrom. 2008;43(2):196–203. doi:10.1002/jms.1285.
  • English D, Andersen BR. Single-step separation of red blood cells, granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J Immunol Methods. 1974;5(3):249–252. doi:10.1016/0022-1759(74)90109-4.
  • Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2001;. doi:10.1002/0471142735.ima03bs21.
  • Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962;115(3):453–466. doi:10.1084/jem.115.3.453.
  • Zigmond S. Leucocyte locomotion and chemotaxis. Antibiot. Chemother. 1974;19:179–190. doi:10.1084/jem.137.2.387.
  • Pick E, Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211–226. doi:10.1016/0022-1759(81)90138-1.
  • Belmokhtar CA, Hillion J, Ségal-Bendirdjian E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene. 2001;20(26):3354–3362. doi:10.1038/sj.onc.1204436.
  • Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2006;1(3):1458–1461. doi:10.1038/nprot.2006.238.
  • Nunes BS, Rensonnet NS, Dal-Secco D, et al. Lectin extracted from Canavalia grandiflora seeds presents potential anti-inflammatory and analgesic effects. Naunyn Schmiedebergs Arch Pharmacol. 2009;379(6):609–616. doi:10.1007/s00210-009-0397-9.
  • Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids, anal. Anal Biochem. 1982;126(1):131–138. doi:10.1016/0003-2697(82)90118-X.
  • Suzuki K, Ota H, Sasagawa S, et al. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem. 1983;132(2):345–352. doi:10.1016/0003-2697(83)90019-2.
  • Pulli B, Ali M, Forghani R, et al. Measuring myeloperoxidase activity in biological samples. PLoS One. 2013;8(7):e67976. doi:10.1371/journal.pone.0067976.
  • Kettle AJ, Gedye CA, Hampton MB, et al. Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochem J. 1995;308(Pt 2):559–563. doi:10.1042/bj3080559.
  • Draper HH, Squires EJ, Mahmoodi H, et al. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med. 1993;15(4):353–363. doi:10.1016/0891-5849(93)90035-S.
  • Posadas I, Bucci M, Roviezzo F, et al. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol. 2004;142(2):331–338. doi:10.1038/sj.bjp.0705650.
  • Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol. 2003;225:115–121. doi:10.1385/1-59259-374-7:115.
  • Cruz MP, Andrade CMF, Silva KO, et al. Antinoceptive and anti-inflammatory activities of the ethanolic extract, fractions and flavones isolated from mimosa tenuiflora (Willd.) Poir (Leguminosae). PLoS One. 2016;11(3):e0150839. doi:10.1371/journal.pone.0150839.
  • De Moura RS, Ferreira TS, Lopes AA, et al. Effects of Euterpe oleracea Mart. (AÇAÍ) extract in acute lung inflammation induced by cigarette smoke in the mouse. Phytomedicine. 2012;19(3–4):262–269. doi:10.1016/j.phymed.2011.11.004.
  • da Silva DA, Correia TML, Pereira R, et al. Tempol reduces inflammation and oxidative damage in cigarette smoke-exposed mice by decreasing neutrophil infiltration and activating the Nrf2 pathway. Chem Biol Interact. 2020;329:109210. doi:10.1016/j.cbi.2020.109210.
  • Kim JW, Ku SK, Kim KY, et al. Schisandrae fructus supplementation ameliorates sciatic neurectomy-induced muscle atrophy in mice. Oxid Med Cell Longev. 2015;2015:872428. doi:10.1155/2015/872428.
  • Sakai T, Inoue S, Takei M, et al. Activated inflammatory cells participate in thrombus size through tissue factor and plasminogen activator inhibitor-1 in acute coronary syndrome: immunohistochemical analysis. Thromb Res. 2011;127(5):443–449. doi:10.1016/j.thromres.2011.02.001.
  • Lhullier C, Horta PA, Falkenberg M. Avaliação de extratos de macroalgas bênticas do Litoral catarinense utilizando o teste de letalidade Para artemia salina. Rev. bras. farmacogn. 2006;16(2):158–163. doi:10.1590/S0102-695X2006000200005.
  • Roh SS, Ku SK. Mouse single oral dose toxicity study of DHU001, a polyherbal formula. Toxicol Res. 2010;26(1):53–59. doi:10.5487/TR.2010.26.1.053.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4–17. doi:10.1016/j.addr.2012.09.019.
  • Banerjee P, Eckert AO, Schrey AK, et al. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–W263. doi:10.1093/nar/gky318.
  • Storkey C, Pattison DI, White JM, et al. Preventing protein oxidation with sugars: scavenging of hypohalous acids by 5-selenopyranose and 4-selenofuranose derivatives. Chem Res Toxicol. 2012;25(11):2589–2599. doi:10.1021/tx3003593.
  • Ribaudo G, Bellanda M, Menegazzo I, et al. Mechanistic insight into the oxidation of organic phenylselenides by H 2 O 2. Chemistry. 2017;23(10):2405–2422. doi:10.1002/chem.201604915.
  • Vlasova II, Sokolov AV, Arnhold J. The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase. J Inorg Biochem. 2012;106(1):76–83. doi:10.1016/j.jinorgbio.2011.09.018.
  • Damas J, Bourdon V, Remacle-Volon G, et al. Kinins and peritoneal exudates induced by carrageenin and zymosan in rats. Br J Pharmacol. 1990;101(2):418–422. doi:10.1111/j.1476-5381.1990.tb12724.x.
  • Abdulkhaleq LA, Assi MA, Abdullah R, et al. The crucial roles of inflammatory mediators in inflammation: a review. Vet World. 2018;11(5):627–635. doi:10.14202/vetworld.2018.627-635.
  • Yang CF, Shen HM, Ong CN. Protective effect of ebselen against hydrogen peroxide-induced cytotoxicity and DNA damage in HepG2 cells. Biochem Pharmacol. 1999;57(3):273–279. doi:10.1016/S0006-2952(98)00299-8.
  • Araki T, Kitaoka H. The mechanism of reaction of ebselen with superoxide in aprotic solvents as examined by cyclic voltammetry and ESR. Chem Pharm Bull (Tokyo). 2001;49(5):541–545. doi:10.1248/cpb.49.541.
  • El-Ghazaly MA, Fadel N, Rashed E, et al. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats El-Ghazaly. Can J Physiol Pharmacol. 2017;95(2):101–110. doi:10.1139/cjpp-2016-0183.
  • Casaril AM, Ignasiak MT, Chuang CY, et al. Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radic Biol Med. 2017;113:395–405. doi:10.1016/j.freeradbiomed.2017.10.344.
  • Nogueira CW, Quinhones EB, Jung EAC, et al. Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm Res. 2003;52(2):56–63. doi:10.1007/s000110300001.
  • Liu Y, Jiao X, Teng X, et al. Antagonistic effect of selenium on lead-induced inflammatory injury through inhibiting the nuclear factor-κB signaling pathway and stimulating selenoproteins in chicken hearts. RSC Adv. 2017;7(40):24878–24884. doi:10.1039/C7RA00034K.
  • Brigelius-Flohé R, Kipp AP. Selenium in the redox regulation of the Nrf2 and the Wnt pathway. Methods Enzymol. 2013:527:65–86. doi:10.1016/B978-0-12-405882-8.00004-0.
  • Pan D, Liu J, Zeng X, et al. Immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. Lactis. Food Agric Immunol. 2015;26(2):248–259. doi:10.1080/09540105.2014.894000.
  • Kanski J, Drake J, Aksenova M, et al. Antioxidant activity of the organotellurium compound 3-[4-(N, N-dimethylamino)benzenetellurenyl]propanesulfonic acid against oxidative stress in synaptosomal ­membrane systems and neuronal cultures. Brain Res. 2001;911(1):12–21. doi:10.1016/S0006-8993(01)02541-0.
  • Kuchibhotla P, Rao BD. A methodology for fast scheduling of partitioned systolic algorithms. J VLSI Sig Proc. 1995;10(2):111–126. doi:10.1007/BF02407030.
  • Skaff O, Pattison DI, Morgan PE, et al. Selenium-containing amino acids are targets for myeloperoxidase-derived hypothiocyanous acid: ­determination of absolute rate constants and implications for biological damage. Biochem J. 2012;441(1):305–316. doi:10.1042/BJ20101762.
  • Flouda K, Gammelgaard B, Davies MJ, et al. Modulation of hypochlorous acid (HOCl) induced damage to vascular smooth muscle cells by thiocyanate and selenium analogues. Redox Biol. 2021;41:101873. doi:10.1016/j.redox.2021.101873.
  • Pattison D, Davies M. Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem. 2006;13(27):3271–3290. doi:10.2174/092986706778773095.
  • Folkes LK, Candeias LP, Wardman P. Kinetics and mechanisms of hypochlorous acid reactions. Arch Biochem Biophys. 1995;323(1):120–126. doi:10.1006/abbi.1995.0017.
  • Sands KN, Burman AL, Ansah-Asamoah E, et al. Chemistry related to the catalytic cycle of the antioxidant ebselen. Molecules. 2023;28(9):3732. doi:10.3390/molecules28093732.
  • Uemura S. Oxidation of sulfur, selenium, and tellurium. Compr Org Synth Second Ed. 2014;7:837–879. doi:10.1016/B978-0-08-097742-3.00734-5.
  • Suryo Rahmanto A, Davies MJ. Catalytic activity of selenomethionine in removing amino acid, peptide, and protein hydroperoxides. Free Radic Biol Med. 2011;51(12):2288–2299. doi:10.1016/j.freeradbiomed.2011.09.027.
  • Davies MJ. Myeloperoxidase: mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory ­diseases. Pharmacol Ther. 2021;218:107685. doi:10.1016/j.pharmthera.2020.107685.
  • Patil KR, Mahajan UB, Unger BS, et al. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci. 2019;20(18):4367. doi:10.3390/ijms20184367.
  • de Almeida Junior S. In vivo methods for the evaluation of anti-inflammatory and antinoceptive potential. Brazilian J. Pain. 2019;2(4):386–389. doi:10.5935/2595-0118.20190070.
  • Liu ZG. Molecular mechanism of TNF signaling and beyond. Cell Res. 2005;15(1):24–27. doi:10.1038/sj.cr.7290259.
  • Mackay BF, Loetscher H, Stueber D, et al. Tumor necrosis factor (TNF-c∼)-induced cell adhesion to human endothelial cells is under dominant control of one TNT receptor type, TNF-R55, 177. 1993.
  • Queiroz RF, Jordão AK, Cunha AC, et al. Nitroxides attenuate carrageenan-induced inflammation in rat paws by reducing neutrophil infiltration and the resulting myeloperoxidase-mediated damage. Free Radic Biol Med. 2012;53(10):1942–1953. doi:10.1016/j.freeradbiomed.2012.09.001.
  • Vieira AT, Silveira KD, Arruda MCC, et al. Treatment with Selemax®, a selenium-enriched yeast, ameliorates experimental arthritis in rats and mice. Br J Nutr. 2012;108(10):1829–1838. doi:10.1017/S0007114512000013.
  • Wu D. Signaling mechanisms for regulation of chemotaxis. Cell Res. 2005;15(1):52–56. doi:10.1038/sj.cr.7290265.
  • Zhang XW, Wang Y, Liu Q, et al. Redundant function of macrophage inflammatory protein-2 and KC in tumor necrosis factor-α-induced extravasation of neutrophils in vivo. Eur J Pharmacol. 2001;427(3):277–283. doi:10.1016/S0014-2999(01)01235-3.
  • Aller MA, Arias JL, Arias JI, et al. The inflammatory response recapitulates phylogeny through trophic mechanisms to the injured tissue. Med Hypotheses. 2007;68(1):202–209. doi:10.1016/j.mehy.2006.07.004.
  • Hattori H, Subramanian KK, Sakai J, et al. Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. Proc Natl Acad Sci U S A. 2010;107(8):3546–3551. doi:10.1073/pnas.0914351107.
  • Sanmartín C, Plano D, Sharma AK, et al. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci. 2012;13(8):9649–9672. doi:10.3390/ijms13089649.
  • Kim D, Haynes CL. The role of p38 MAPK in neutrophil functions: single cell chemotaxis and surface marker expression. Analyst. 2014;14:220–227. doi:10.1039/b000000x/Kim.
  • Santi C, Scimmi C, Sancineto L. Ebselen and analogues: pharmacological properties and synthetic strategies for their preparation. Molecules. 2021;26(14):4230. doi:10.3390/molecules26144230.
  • Ibrahim M, Muhammad N, Ibrahim M, et al. Acute oral toxicity and antioxidant studies of an amine-based diselenide. BMC Complement Altern Med. 2019;19(1):1–6. doi:10.1186/s12906-019-2489-5.
  • de Bem AF, de Lima Portella R, Perottoni J, et al. Changes in biochemical parameters in rabbits blood after oral exposure to diphenyl diselenide for long periods. Chem Biol Interact. 2006;162(1):1–10. doi:10.1016/j.cbi.2006.04.005.
  • Griffiths JC, Matulka RA, Power R. Acute and subchronic toxicity studies on Sel-Plex®, a standardized, registered high-selenium yeast. Int J Toxicol. 2006;25(6):465–476. doi:10.1080/10915810600959626.
  • Nogueira CW, Rocha JBT. Diphenyl diselenide a janus-faced molecule. J. Braz. Chem. Soc. 2010;21(11):2055–2071. doi:10.1590/S0103-50532010001100006.
  • Kade IJ, Teixeira JB. Pharmacology of Organoselenium Compounds: emphasis on Puzzling Mechanistic Switching from Their Glutathione Peroxidase Mimic in Vivo. Biokemistri. 2012;24:1–14.
  • Arnhold J. The dual role of myeloperoxidase in immune response. Int J Mol Sci. 2020;21(21):8057. doi:10.3390/ijms21218057.
  • Parker H, Winterbourn CC. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol. 2012;3:424. doi:10.3389/fimmu.2012.00424.
  • Filep JG. Targeting neutrophils for promoting the resolution of inflammation. Front Immunol. 2022;13:866747. doi:10.3389/fimmu.2022.866747.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.