1,445
Views
1,094
CrossRef citations to date
0
Altmetric
Original Article

Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress

&
Pages 273-300 | Received 17 Mar 1999, Published online: 07 Jul 2009

References

  • Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and MedicineThird edition. Clarendon Press, Oxford 1999
  • Colton C., Zakhari S. Role of free radicals in alcohol-induced tissue injury. Oxidants, Antioxidants and Free Radicals, S.I. Baskin, H. Salem. Taylor and Francis, Washington and London 1997; 259–271, In
  • Acworth I.N., McCabe D.R., Maher T.J. The analysis of free radicals, their reaction products, and antioxidants. Oxidants, Antioxidants and Free Radicals, S.I. Baskin, H. Salem. Taylor and Francis, Washington and London 1997; 23–77, In
  • Meister A. Glutathione metabolism and its selective modification. The Journal of Biological Chemistry 1988; 263: 17 205–17 208
  • Richman P.G., Meister A. Regulation of γ-glutamylcysteine synthetase by nonallosteric feedback inhibition by glutathione. The Journal of Biological Chemistry 1975; 250: 1422–1426
  • Yan N., Meister A. Amino acid sequence of rat kidney γ-glutamylcysteine synthetase. The Journal of Biological Chemistry 1990; 265: 1588–1593
  • Huang C.-S., Chang L.-S., Anderson M.E., Meister A. Catalytic and regulatory properties of the heavy subunit of rat kidney γ-glutamylcysteine synthetase. The Journal of Biological Chemistry 1993; 268: 19 675–19 680
  • C.-S. Huang, M.E. Anderson, A. Meister. Amino acid sequence and function of the light subunit of rat kidney γ-glutamylcysteine synthetase. The Journal of Biological Chemistry 1993; 268: 20 578–20 583
  • Gipp J.J., Bailey H.H., Mulcahy R.T. Cloning and sequencing of the cDNA for the light subunit of human liver γ-glutamylcysteine synthetase and relative mRNA levels for heavy and light subunits in human normal tissues. Biochemical and Biophysical Research Communications 1995; 206: 584–589
  • Tipnis S.R., Blake D.G., Shepherd A.G., McLellan L.I. Over-expression of the regulatory subunit of γ-glutamylcysteine synthetase in HeLa cells increase γ-glutamylcysteine synthetase activity and confers drug-resistance. Biochemical Journal 1999; 337: 559–566
  • Galloway D.C., Blake D.G., Shepherd A.G., McLellan L.I. Regulation of human γ-glutamylcysteine synthetase: co-ordinate induction of the catalytic and regulatory subunits in HepG2 cells. Biochemical Journal 1997; 328: 99–104
  • Mulcahy R.T., Wartman M.A., Bailey H.H., Gipp J.J. Constitutive and β-naphthoflavone-induced expression of the human γ-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. The Journal of Biological Chemistry 1997; 272: 7445–7454
  • Tian L., Shi M.M., Forman H.J. Increased transcription of the regulatory subunit of γ-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress or glutathione depletion. Archives of Biochemistry and Biophysics 1997; 342: 126–133
  • Sekhar K.R., Long M., Long J., Xu Z.-Q., Summar M.L., Freeman M.L. Alteration of transcriptional and post-transcriptional expression of gamma-glutamyl-cysteine synthetase by diethylmaleate. Radiation Research 1997; 147: 592–597
  • Moinova H.R., Mulcahy R.T. An electrophile responsive element (EpRE) regulates β-naphthoflavone induction of the human γ-glutamylcysteine synthetase regulatory subunit gene. The Journal of Biological Chemistry 1998; 273: 14 683–14 689
  • Galloway D.C., McLellan L.I. Inducible expression of the γ-glutamylcysteine synthetase light subunit by t-butylhydroquinone in HepG2 cells is not dependent on an antioxidant-responsive element. Biochemical Journal 1998; 336: 535–539
  • Huang C.-S., He W., Meister A., Anderson M.E. Amino acid sequence of rat kidney glutathione synthetase. Proceedings of the National Academy of Science USA 1995; 92: 1232–1236
  • Keppler D., Leier I., Jedlitschky G., König J. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2. Chemico-Biological Interactions 1998; 111-112: 153–161
  • Mills G.C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. The Journal of Biological Chemistry 1957; 229: 189–197
  • Esworthy R.S., Ho Y.S., Chu F.-F. The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse. Archives of Biochemistry and Biophysics 1997; 340: 59–63
  • Ho Y.-S., Magnenat J.-L., Bronson R.T., Cao J., Gargano M., Sugawara M., Funk C.D. Mice defficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. The Journal of Biological Chemistry 1997; 272: 16 644–16 651
  • de Haan J.B., Bladier C., Griffiths P., Kelner M., O'Shea R.D., Cheung N.S., Bronson R.T., Silvestro M.J., Wild S., Zheng S.S., Beart P.M., Hertzog P.J., Kola I. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. The Journal of Biological Chemistry 1998; 273: 22 528–22 536
  • Beck M.A., Esworthy R.S., Ho Y.-S., Chu F.-F. Glutathione peroxidase protects mice from viral-induced myocarditis. The FASEB Journal 1998; 12: 1143–1149
  • Jornot L., Junod A.F. Hyperoxia, unlike phorbol ester, induces glutathione peroxidase through a protein kinase C-independent mechanism. Biochemical Journal 1997; 326: 117–123
  • Hayes J.D., Judah D.J., McLellan L.I., Kerr L.A., Peacock S.D., Neal G.E. Ethoxyquin-induced resistance to aflatoxin B1 in the rat is associated with the expression of a novel Alpha-class glutathione S-transferase subunit, Yc2, which possesses high catalytic activity for aflatoxin B1-8,9-epoxide. Biochemical Journal 1991; 279: 385–398
  • McLellan L.I., Judah D.J., Neal G.E., Hayes J.D. Regulation of aflatoxin B1-metabolising aldehyde reductase and glutathione S-transferase by chemoprotectors. Biochemical Journal 1994; 300: 117–124
  • Arai M., Imai H., Koumura T., Yoshida M., Emoto K., Umeda M., Chiba N., Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. The Journal of Biological Chemistry 1999; 274: 4924–4933
  • Pushpa-Rekha T.R., Burdsall A.L., Oleksa L.M., Chisolm G.M., Driscoll D.M. Rat phospholipid hydroperoxide glutathione peroxidase. The Journal of Biological Chemistry 1995; 270: 26 993–26 999
  • Chu F.-F., Doroshow J.H., Esworthy R.S. Expression, characterisation, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. The Journal of Biological Chemistry 1993; 268: 2571–2576
  • Esworthy R.S., Swiderek K.M., Ho Y.-S., Chu F.-F. Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine. Biochimica et Biophysica Acta 1998; 1381: 213–226
  • Avissar N., Ornt D.B., Yagil Y., Horowitz S., Watkins R.H., Kerl E.A., Takahashi K., Palmer I.S., Cohen H.J. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. American Journal of Physiology 1994; 266: C367–C375, (Cell Physiology 35)
  • Björnstedt M., Xue J., Huang W., Åkesson B., Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. The Journal of Biological Chemistry 1994; 269: 29 382–29 384
  • Maser R.L., Magenheimer B.S., Calvet J.P. Mouse plasma glutathione peroxidase. The Journal of Biological Chemistry 1994; 269: 27 066–27 073
  • Okamura N., Iwaki Y., Hiramoto S., Tamba M., Bannai S., Sugita Y., Syntin P., Dacheux F., Dacheux J.-L. Molecular cloning and characterisation of the epidiymisspecific glutathione peroxidase-like protein secreted in the porcine epididymal fluid. Biochimica et Biophysica Acta 1997; 1336: 99–109
  • Hall L., Williams K., Perry A.C.F., Frayne J., Jury J.A. The majority of human glutathione peroxidase type 5 (GPXS) transcripts are incorrectly spliced: implications for the role of GPX5 in the male reproductive tract. Biochemical Journal 1998; 333: 5–9
  • Saito Y., Hayashi T., Tanaka A., Watanabe Y., Susuki M., Saito E., Takahashi K. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. The Journal of Biological Chemistry 1999; 274: 2866–2871
  • Munz B., Frank S., Hübner G., Olsen E., Werner S. A novel type of glutathione peroxidase: expression and regulation during wound repair. Biochemical Journal 1997; 326: 579–585
  • Shichi H., Demar J.C. Non-selenium glutathione peroxidase without glutathione S-transferase activity from bovine ciliary body. Experimental Eye Research 1990; 50: 513–520
  • Singh A.K., Shichi H. A novel glutathione peroxidase in bovine eye. The Journal of Biological Chemistry 1998; 273: 26 171–26 178
  • Kang S.W., Baines I.C., Rhee S.G. Characterisation of a mammalian peroxiredoxin that contains one conserved cysteine. The Journal of Biological Chemistry 1998; 273: 6303–6311
  • Hayes J.D., Pulford D.J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Reviews in Biochemistry and Molecular Biology 1995; 30: 445–600
  • Armstrong R.N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chemical Research Toxicology 1997; 10: 2–18
  • Trush M.A., Kensler T.W. An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radical Biology and Medicine 1991; 10: 201–209
  • Burgess J.R., Chow N.-W.I., Reddy C.C., Tu C.-P.D. Amino acid substitutions in the human glutathione S-transferases confer different specificities in the prostaglandin endoperoxide conversion pathway. Biochemical and Biophysical Research Communications 1989; 158: 497–502
  • Kanaoka Y., Ago H., Inagaki E., Nanayama T., Miyano M., Kikuno R., Fujii Y., Eguchi N., Toh H., Urade Y., Hayaishi O. Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell 1997; 90: 1085–1095
  • Jakobsson P.-J., Mancini J.A., Riendeau D., Ford-Hutchinson A.W. Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. The Journal of Biological Chemistry 1997; 272: 22 934–22 939
  • Listowsky I., Abramovitz M., Homma H., Niitsu Y. Intracellular binding and transport of hormones and xenobiotics by glutathione S-transferases. Drug Metabolism Reviews 1988; 19: 305–318
  • Abramovitz M., Wong E., Cox M.E., Richardson C.D., Li C., Vickers P.J. 5-lipoxygenase-activating protein stimulates the utilization of arachidonic acid by 5-lipoxygenase. European Journal of Biochemistry 1993; 215: 105–111
  • Hayes J.D., Judah D.J., McLellan L.I., Neal G.E. Contributions of the glutathione S-transferases to the mechanisms of resistance to aflatoxin B1. Pharmacology and Therapeutics 1991; 50: 443–472
  • Perito B., Allocati N., Casalone E., Masulli M., Dragani B., Polsinelli M., Aceto A., Di Ilio C. Molecularcloning and overexpression of a glutathione transferase gene from proteus-mirabilis. Biochemical Journal 1996; 318: 157–162
  • Danielson U.H., Esterbauer H., Mannervik B. Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalysed by mammalian glutathione transferases. Biochemical Journal 1987; 247: 707–713
  • Hubatsch I., Ridderström M., Mannervik B. Human glutathione transferase A4-4: an Alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochemical Journal 1998; 330: 175–179
  • Zollner H., Schaur R.J., Esterbauer H. Biological activities of 4-hydroxyalkenals. Oxidative Stress: Oxidants and Antioxidants, H. Sies. Academic Press, London and New York 1991; 337–369, In
  • Alary J., Bravais F., Cravedi J.-P., Debrauwer L., Rao D., Bories G. Mercapturic acid conjugates as urinary end metabolites of the lipid-peroxidation product 4-hydroxy-2-nonenal in the rat. Chemical Research in Toxicology 1995; 8: 34–39
  • Meyer D.J., Ketterer B. 5α,6α-Epoxy-cholestan-3β-ol (cholesterol α-oxide): a specific substrate for rat liver glutathione transferase B. FEBS Letters 1982; 150: 499–502
  • Ansari G.A.S., Smith L.L. Cholesterol epoxides: formation and measurement. Methods in Enzymology 1990; 186: 438–443
  • Berhane K., Widersten M., Engström Å., Kozarich J.W., Mannervik B. Detoxication of base propenals and other α,β-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proceedings of the National Academy of Sciences USA 1994; 91: 1480–1484
  • Klaassen C.D. Casarett and Doull's Toxicology: The Basic Science of PoisonsFifth edition. McGraw-Hill, London and New York 1996
  • Mosialou E., Piemonte F., Andersson C., Vos R.M., van Bladeren P.J., Morgenstern R. Microsomal glutathione transferase: Lipid-derived substrates and lipid dependence. Archives of Biochemistry and Biophysics 1995; 320: 210–216
  • Hiratsuka A., Yamane H., Yamazaki S., Ozawa N., Watabe T. Subunit Ya-specific glutathione peroxidase activity towards cholesterol 7-hydroperoxides of glutathione S-transferases in cytosols from rat liver and skin. The Journal of Biological Chemistry 1997; 272: 4763–4769
  • Ketterer B., Meyer D.J., Taylor J.B., Pemble S., Coles B., Fraser G. GSTs and protection against oxidative stress. Glutathione S-Transferases and Drug Resistance, J.D. Hayes, C.B. Pickett, T.J. Mantle. Taylor and Francis, Bristol 1990; 97–109, In
  • Tan K.H., Meyer D.J., Belin J., Ketterer B. Inhibition of microsomal lipid peroxidation by glutathione and glutathione transferases B and AA. Role of endogenous phospholipase A2. Biochemical Journal 1984; 220: 243–252
  • van Kuijk F.J.G.M., Sevanian A., Handelman G.J., Dratz E.A. A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. Trends in Biochemical Sciences 1987; 12: 31–34
  • Hurst R., Bao Y., Jemth P., Mannervik B., Williamson G. Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases. Biochemical Journal 1998; 332: 97–100
  • Singhal S.S., Saxena M., Ahmad H., Awasthi S., Haque A.K., Awasthi Y.C. Glutathione S-transferases of human lung: characterization and evaluation of the protective role of the α-class isozymes against lipid peroxidation. Archives of Biochemistry and Biophysics 1992; 299: 232–241
  • Mosialou E., Ekström G., Adang A.E.P., Morgenstern R. Evidence that rat liver microsomal glutathione transferase is responsible for glutathione-dependent protection against lipid peroxidation. Biochemical Pharmacology 1993; 45: 1645–1651
  • Reiter R., Wendel A. Selenium and drug metabolism — III. Relation of glutathione-peroxidase and other hepatic enzyme modulations to dietary supplements. Biochemical Pharmacology 1985; 34: 2287–2290
  • McLeod R., Ellis E.M., Arthur J.R., Neal G.E., Judah D.J., Manson M.M., Hayes J.D. Protection conferred by selenium deficiency against aflatoxin B1 in the rat is associated with the hepatic expression of an aldo-keto reductase and a glutathione S-transferase subunit that metabolise the mycotoxin. Cancer Research 1997; 57: 4257–4266
  • Cullis P.M., Jones G.D.D., Symons M.C.R., Lea J.S. Electron transfer from protein to DNA in irradiated chromatin. Nature 1987; 330: 773–774
  • Bao Y., Jemth P., Mannervik B., Williamson G. Reduction of thymine hydroperoxide by phospholipid hydroperoxide glutathione peroxide and glutathione transferases. FEBS Letters 1997; 410: 210–212
  • Barzilay G., Walker L.J., Rothwell D.G., Hickson I.D. Role of HAP1 protein in repair of oxidative DNA damage and regulation of transcription factors. British Journal of Cancer 1996; 74(Suppl. XXVII)S145–S150
  • Okuno H., Akahori A., Sato H., Xanthoudakis S., Curran T., Iba H. Escape from redox regulation enhances the transforming activity of Fos. Oncogene 1993; 8: 695–701
  • Sherratt P.J., Manson M.M., Thomson A.M., Hissink E.A.M., Neal G.E., vanBladeren P.J., Green T., Hayes J.D. Increased bioactivation of dihaloalkanes in rat liver due to induction of class Theta glutathione S-transferase T1-1. Biochemical Journal 1998; 335: 619–630
  • Baez S., Segura-Aguilar J., Widersten M., Johansson A.-S., Mannervik B. Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochemical Journal 1997; 324: 25–28
  • Cavalieri E.L., Stack D.E., Devanesan P.D., Todorovic R., Dwivedy I., Higginbotham S., Johansson S.L., Patil K.D., Gross M.L., Gooden J.K., Ramanathan R., Cerny R.L., Rogan E.G. Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proceedings of the National Academy of Sciences USA 1997; 94: 10 937–10 942
  • Jakobsson P.-J., Morgenstern R., Mancini J., Ford-Hutchinson A., Persson B. Common structural features of MAPEG — a widespread superfamily of membrane associated preteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Science 1999; 8: 1–4
  • Björnstedt R., Stenberg G., Widersten M., Board P.G., Sinning I., Jones T.A., Mannervik B. Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1-1. Journal of Molecular Biology 1995; 247: 765–773
  • Board P.G. Identification of cDNAs encoding two human Alpha class glutathione transferases (GSTA3 and GSTA4) and the heterologous expression of GSTA4-4. Biochemical Journal 1998; 330: 827–831
  • Desmots F., Rauch C., Henry C., Guillouzo A., Morel F. Genomic organization, 5′-flanking region and chromosomal localization of the human glutathione transferase A4 gene. Biochemical Journal 1998; 336: 437–442
  • Xu S.-j., Wang Y.-p., Roe B., Pearson W.R. Characterization of the human class Mu-glutathione-S-transferase gene-cluster and the GSTM1 deletion. Journal of Biological Chemistry 1998; 273: 3517–3527
  • Rossjohn J., Feil S.C., Wilce M.C.J., Sexton J.L., Spithill T.W., Parker M.W. Crystallization, structural determination and analysis of a novel parasite vaccine candidate: fasciola-hepatica glutathione S-transferase. Journal of Molecular Biology 1997; 273: 857–872
  • Rowe J.D., Patskovsky Y.V., Patskovska L.N., Novikova E., Listowsky I. Rationale for reclassification of a distinctive subdivision of mammalian class Mu glutathione S-transferases that are primarily expressed in testis. The Journal of Biological Chemistry 1998; 273: 9593–9601
  • Oakley A.J., Lo Bello M., Battistoni A., Ricci G., Rossjohn J., Villar H.O., Parker M.W. The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. Journal of Molecular Biology 1997; 274: 84–100
  • Johansson A.-S., Stenberg G., Widersten M., Mannervik B. Structure-activity relationships and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105. Journal of Molecular Biology 1998; 278: 687–698
  • Thomson A.M., Meyer D.J., Hayes J.D. Sequence, catalytic properties and expression of chicken glutathione-dependent prostaglandin D2 synthase, a novel class Sigma glutathione S-transferase. Biochemical Journal 1998; 333: 317–325
  • Mahmud I., Ueda N., Yamaguchi H., Yamashita R., Yamamoto S., Kanaoka Y., Urade Y., Hayaishi O. Prostaglandin D synthase in human megakaryoblastic cells. The Journal of Biological Chemistry 1997; 272: 28 263–28 266
  • Pemble S., Schroeder K.R., Spencer S.R., Meyer D.J., Hallier E., Bolt H.M., Ketterer B., Taylor J.B. Human glutathione S-transferase Theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochemical Journal 1994; 300: 271–276
  • Rossjohn J., McKinstry W.J., Oakley A.J., Verger D., Flanagan J., Chelvanayagam G., Tan K.-L., Board P.G., Parker M.W. Human thetaclass glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active-site. Structure 1998; 6: 309–322
  • Board P.G., Baker R.T., Chelvanayagam G., Jermiin L.S. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochemical Journal 1997; 328: 929–935
  • Pemble S.E., Wardle A.F., Taylor J.B. Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochemical Journal 1996; 319: 749–754
  • Kodym R., Calkins P., Story M. The cloning and characterization of a new stress response protein. A mammalian member of a family of Θ class glutathione S-transferase-like proteins. The Journal of Biological Chemistry 1999; 274: 5131–5137
  • Retief J.D., Lynch K.R., Pearson W.R. Panning for genes — a visual strategy for identifying novel gene orthologs and paralogs. Genome Research 1999; 9: 373–382
  • Blocki F.A., Ellis L.B.M., Wackett L.P. MIF proteins are theta-class glutathione S-transferase homologs. Protein Science 1993; 2: 2095–2102
  • Droog F. Plant glutathione S-transferases, a tale of Theta and Tau. Journal of Plant Growth Regulation 1997; 16: 95–107
  • Dixon D.P., Cummins I., Cole D.J., Edwards R. Glutathione-mediated detoxification systems in plants. Current Opinion in Plant Biology 1998; 1: 258–266
  • Toung Y.-P.S., Hsieh T.-s., Tu C.-P.D. The glutathione S-transferase D genes. A divergently organized, intronless gene family in Drosophila melanogaster. The Journal of Biological Chemistry 1993; 268: 9737–9746
  • Tang A.H., Tu C.-P.D. Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. The Journal of Biological Chemistry 1994; 269: 27 876–27 884
  • Rossjohn J., Polekhina G., Feil S.C., Allocati N., Masulli M., Di Ilio C., Parker M.W. A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. Structure 1998; 6: 721–734
  • DeJong J.L., Morgenstern R., Jörnvall H., DePierre J.W., Tu C.-P.D. Gene expression of rat and human microsomal glutathione S-transferase. The Journal of Biological Chemistry 1988; 263: 8430–8436
  • Hebert H., Schmidt-Krey I., Morgenstern R., Murata K., Hirai T., Mitsuoka K., Fujiyoshi Y. The 3.0 Å projection structure of microsomal glutathione transferase as determined by electron crystallography of p21212 two-dimensional crystals. Journal of Molecular Biology 1997; 271: 751–758
  • Jakobsson P.-J., Mancini J.A., Ford-Hutchinson A.W. Identification and characterization of a novel human microsomal glutathione S-transferase with leukotriene C4 synthase activity and significant sequence identity to 5- lipoxygenase-activating protein and leukotriene C4 synthase. The Journal of Biological Chemistry 196; 271: 22 203–22 210
  • Nicholson D.W., Ali A., Vaillancourt J.P., Calaycay J.R., Mumford R.A., Zamboni R.J., Ford-Hutchinson A.W. Purification to homogeneity and the N-terminal sequence of human leukotriene C4 synthase: a homodimeric glutathione S-transferase composed of 18-kDa subunits. Proceedings of the National Academy of Science USA 1993; 90: 2015–2019
  • Penrose J.F., Spector J., Baldasaro M., Xu K., Boyce J., Arm J.P., Austen K.F., Lam B.K. Molecular cloning of the gene for human leukotriene C4 synthase. Organization, nucleotide sequence, and chromosomal localization to 5q35. The Journal of Biological Chemistry 1996; 271: 11 356–11 361
  • Dixon R.A.F., Diehl R.E., Opas E., Rands E., Vickers P.J., Evans J.F., Gillard J.W., Miller D.K. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 1990; 343: 282–284
  • Polyak K., Xia Y., Zweier J.L., Kinzler K.W., Vogelstein B. A model for p53-induced apoptosis. Nature 1997; 389: 300–305
  • Ricci G., Caccuri A.M., Lo Bello M., Pastore A., Piemonte F., Federici G. Colorimetric and fluorometric assays of glutathione transferase based on 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Analytical Biochemistry 1994; 218: 463–465
  • Jernström B., Funk M., Frank H., Mannervik B., Seidel A. Glutathione S-transferase A1-1 catalyzed conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons with glutathione. Carcinogenesis 1996; 17: 1491–1498
  • Johnson W.W., Ueng Y.-F., Widersten M., Mannervik B., Hayes J.D., Sherratt P.J., Ketterer B., Guengerich F.P. Conjugation of highly reactive aflatoxin B1exo-8,9-epoxide catalysed by rat and human glutathione transferases: Estimation of kinetic parameters. Biochemistry 1997; 36: 3056–3060
  • Sundberg K., Wildersten M., Seidel A., Mannervik B., Jernström B. Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferases M1-1 and P1-1. Chemical Research in Toxicology 1997; 10: 1221–1227
  • Sherratt P.J., Pulford D.J., Harrison D.J., Green T., Hayes J.D. Evidence that human class Theta glutathione S-transferase T1-1 can catalyse the activation of dichloromethane, a liver and lung carcinogen in the mouse. Comparison of the tissue distribution of GSTT1-1 with that of classes Alpha, Mu and Pi GST in human. Biochemical Journal 1997; 326: 837–846
  • Jemth P., Mannervik B. Kinetic characterization of recombinant human glutathione transferase T1-1, a polymorphic detoxication enzyme. Archives of Biochemistry and Biophysics 1997; 348: 247–254
  • Tan K.-L., Chelvanayagam G., Parker M.W., Board P.G. Mutagenesis of the active-site of the human Theta-class glutathione transferase GSTT2-2 — catalysis with different substrates involves different residues. Biochemical Journal 1996; 319: 315–321
  • Marrs K.A., Alfenito M.R., Lloyd A.M., Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 1995; 375: 397–400
  • Tong Z., Board P.G., Anders M.W. Glutathione transferase Zeta catalyzes the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochemical Journal 1998; 331: 371–374
  • Fernández-Cañón J.M., Peñalva M.A. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. The Journal of Biological Chemistry 1998; 273: 329–337
  • Tong Z., Board P.G., Anders M.W. Glutathione transferase Zeta-catalysed biotransformation of dichloroacetic acid and other α-haloacids. Chemical Research in Toxicology 1998; 11: 1332–1338
  • Blackburn A.C., Woollatt E., Sutherland G.R., Board P.G. Characterization and chromosomal location of the gene GSTZ1 encoding the human Zeta class glutathione transferase and maleylacetoacetate isomerase. Cytogenetics and Cell Genetics 1999; 83: 109–114
  • Zimniak L., Awasthi S., Srivastava S.K., Zimniak P. Increased resistance to oxidative stress in transfected cultured-cells overexpressing glutathione S-transferase mgsta4-4. Toxicology and Applied Pharmacology 1997; 143: 221–229
  • Christophersen B.O. The inhibitory effect of reduced glutathione on the lipid peroxidation of the microsomal fraction and mitochondria. Biochemical Journal 1968; 106: 515–522
  • Bannenberg G., Dahlén S.-E., Luijerink M., Lundqvist G., Morgenstern R. Leukotriene C4 is a tight-binding inhibitor of microsomal glutathione transferase-1: effects of leukotriene pathway modifiers. The Journal of Biological Chemistry 1999; 274: 1994–1999
  • Hayes J.D., Ellis E.M., Neal G.E., Harrison D.J., Manson M.M. Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress. Cellular Responses to Stress, C.P. Downes, C.R. Wolf, D.P. Lane. Portland Press, London 1999; 141–168, In Biochemical Society Symposium, 64
  • Fukuda A., Nakamura Y., Ohigashi H., Osawa T., Uchida K. Cellular response to the redox active lipid peroxidation products: induction of glutathione S-transferase P by 4-hydroxy-2-nonenal. Biochemical and Biophysical Research Communications 1997; 236: 505–509
  • Watabe T., Hiratsuka A., Yamane H., Yamazaki S., Ozawa N. Rat skin glutathione S-transferases: age-dependent accumulation of the toxic steroids, cholesterol 7-hydroperoxides, by deficiency of A1-2 and A1-3 and marked expression of A4-4 by UVB irradiation in the skin. International Workshop on Glutathione Transferases. Rome 1997, O16
  • Marrs K.A. The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology and Plant Molecular Biology 1996; 47: 127–158
  • Gorsky L.D., Koop D.R., Coon M.J. On the stoichiometry of the oxidase of monooxygenase reactions catalysed by liver microsomal cytochrome P-450. Products of oxygen reduction. The Journal of Biological Chemistry 1984; 259: 6812–6817
  • Tindberg N., Ingelman-Sundberg M. Cytochrome P-450 and oxygen toxicity. Oxygen-dependent induction of ethanol-inducible cytochrome P-450 (IIE1) in rat liver and lung. Biochemistry 1989; 28: 4499–4504
  • Park J.-Y.K., Shigenaga M.K., Ames B.N. Induction of cytochrome P4501A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin or indolo(3,2-b)carbazole is associated with oxidative DNA damage. Proceedings of the National Academy of Sciences USA 1996; 93: 2322–2327
  • Talalay P., De Long M.J., Prochaska H.J. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proceedings of the National Academy of Sciences USA 1988; 85: 8261–8265
  • Rushmore T.H., Morton M.R., Pickett C.B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. The Journal of Biological Chemistry 1991; 266: 11 632–11 639
  • Nguyen T., Rushmore T.H., Pickett C.B. Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. Analysis of the antioxidant response element and its activation by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. The Journal of Biological Chemistry 1994; 269: 13 656–13 662
  • Wasserman W.W., Fahl W.E. Functional antioxidant responsive elements. Proceedings of the National Academy of Sciences USA 1997; 94: 5361–5366
  • Venugopal R., Jaiswal A.K. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proceedings of the National Academy of Sciences USA 1996; 93: 14 960–14 965
  • Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I., Yamamoto M., Nabeshima Y.-i. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and Biophysical Research Communications 1997; 236: 313–322
  • Knebel A., Rahmsdorf H.J., Ullrich A., Herrlich P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. The EMBO Journal 1996; 15: 5314–5325
  • Yu R., Jiao J.-J., Duh J.-L., Tan T.-H., Kong A.-N.T. Phenethyl isothiocyanate, a natural chemopreventive agent, activates c-Jun N-terminal kinase 1. Cancer Research 1996; 56: 2954–2959
  • Yu R., Jiao J.-J., Duh J.-L., Gudehithlu K., Tan T.-H., Kong A.-N.T. Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the regulation of antioxidant responsive element-mediated phase II enzyme gene expression. Carcinogenesis 1997; 18: 451–456
  • Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J.D., Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes and Development 1999; 13: 76–86
  • Nguyen T., Pickett C.B. Regulation of rat glutathione S-transferase Ya subunit gene expression. DNA-protein interaction at the antioxidant responsive element. The Journal of Biological Chemistry 1992; 267: 13 535–13 539
  • Liu S., Pickett C.B. The rat liver glutathione S-transferase Ya subunit gene: characterization of the binding properties of a nuclear protein from HepG2 cells that has high affinity for the antioxidant response element. Biochemistry 1996; 35: 11 517–11 521
  • Luna L., Johnsen Ø., Skartlien A.H., Pedeutour F., Turc-Carel C., Prydz H., Kolstø A.-B. Molecular cloning of a putative novel human bZIP transcription factor on chromosome 17q22. Genomics 1994; 22: 553–562
  • Johnsen Ø., Skammelsrud N., Luna L., Nishizawa M., Prydz H., Kolstø A.-B. Small Maf proteins interact with the human transcription factor TCF11/Nrf1/LCR-F1. Nucleic Acids Research 1996; 24: 4289–4297
  • Okuda A., Imagawa M., Maeda Y., Sakai M., Muramatsu M. Structural and functional analysis of an enhancer GPEI having a phorbol 12-O-tetradecanoate 13-acetate responsive element-like sequence found in the rat glutathione transferase P gene. The Journal of Biological Chemistry 1989; 264: 16 919–16 926
  • Muramatsu M., Hisatake K., Suzuki T. International Workshop on Glutathione Transferases, L1. RomeItaly 1997, In (abstract)
  • Paulson K.E., Darnell J.E., Jr., Rushmore T., Pickett C.B. Analysis of the upstream elements of the xenobiotic compound-inducible and positionally regulated glutathione S-transferase Ya gene. Molecular and Cellular Biology 1990; 10: 1841–1852
  • Morel F., Fardel O., Meyer D.J., Langouet S., Gilmore K.S., Meunier B., Tu C.-P.D., Kensler T.W., Ketterer B., Guillouzo A. Preferential increase of glutathione S-transferase class α transcripts in cultured human hepatocytes by phenobarbital, 3-methylcholanthrene, and dithiolethiones. Cancer Research 1993; 53: 231–234
  • Honkakoski P., Zelko I., Sueyoshi T., Negishi M. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Molecular and Cellular Biology 1998; 18: 5652–5658
  • Falkner K.C., Rushmore T.H., Linder M.W., Prough R.A. Negative regulation of the rat glutathione S-transferase A2 gene by glucocorticoids involves a canonical glucocorticoid consensus sequence. Molecular Pharmacology 1998; 53: 1016–1026
  • Bennett C.F., Spector D.L., Yeoman L.C. Nonhistone protein BA is a glutathione S-transferase localized to interchromatinic regions of the cell nucleus. The Journal of Cell Biology 1986; 102: 600–609
  • Adler V., Yin Z., Fuchs S.Y., Benezra M., Rosario L., Tew K.D., Pincus M.R., Sardana M., Henderson C.J., Wolf C.R., Davis R.J., Ronai Z. Regulation of JNK signaling by GSTp. The EMBO Journal 1999; 18: 1321–1334
  • Meyer D.J. Significance of an unusually low Km for glutathione in glutathione transferases of the α, μ and π classes. Xenobiotica 1993; 23: 823–834
  • Cole S.P.C., Bhardwaj G., Gerlach J.H., Mackie J.E., Grant C.E., Almquist K.C., Stewart A.J., Kurz E.U., Duncan A.M.V., Deeley R.G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258: 1650–1654
  • Zaman G.J.R., Cnubben N.H.P., van Bladeren P.J., Evers R., Borst P. Transport of the glutathione conjugate of ethacrynic acid by the human multidrug resistance protein MRP. FEBS Letters 1996; 391: 126–130
  • Loe D.W., Stewart R.K., Massey T.E., Deeley R.G., Cole S.P.C. ATP-dependent transport of aflatoxin B1 and its glutathione conjugates by the product of the Multidrug Resistance Protein (MRP) gene. Molecular Pharmacology 1997; 51: 1034–1041
  • Evers R., Cnubben N.H.P., Wijnholds J., van Deemter L., van Bladeren P.J., Borst P. Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein 1. FEBS Letters 1997; 419: 112–116
  • Twentyman P., Bagrij T. The influence of glutathione metabolism on multidrug resistance in MRP-overexpressing cells. Drug Resistance Updates 1998; 1: 121–127
  • Loe D.W., Deeley R.G., Cole S.P.C. Characterisation of vincristine transport by the Mr 190,000 multidrug resistance protein (MRP): evidence for contransport with reduced glutathione. Cancer Research 1998; 58: 5130–5136
  • Morrow C.S., Smitherman P.K., Diah S.K., Schneider E., Townsend A.J. Coordinated action of glutathione S-transferases (GSTs) and Multidrug Resistance Protein 1 (MRP1) in antineoplastic drug detoxification. The Journal of Biological Chemistry 1998; 273: 201 14–20 120
  • Morrow C.S., Diah S., Smitherman P.K., Schneider E., Townsend A.J. Multidrug resistance protein and glutathione S-transferase P1-1 act in synergy to confer protection from 4-nitroquinoline 1-oxide toxicity. Carcinogenesis 1998; 19: 109–115
  • Cnubben N.H.P., Rommens A.J.M., Oudshoorn M.J., van Bladeren P.J. Glutathione-dependent biotransformation of the alkylating drug thiotepa and transport of its metabolite monoglutathionylthiotepa in human MCF-7 breast cancer cells. Cancer Research 1998; 58: 4616–4623
  • Kool M., de Haas M., Scheffer G.L., Scheper R.J., van Eijk M.J.T., Juijn J.A., Baas F., Borst P. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Research 1997; 57: 3537–3547
  • Kuo M.T., Bao J.J., Curley S.A., Ikeguchi M., Johnston D.A., Ishikawa T. Frequent coordinated overexpression of the MRP/GS-X pump and γ-glutamylcysteine synthetase genes in human colorectal cancer. Cancer Research 1996; 56: 3642–3644
  • Ishikawa T., Bao J.-J., Yamane Y., Akimaru K., Frindich K., Wright C.D., Kuo M.T. Coordinated induction of MRP/GS-X pump and γ-glutamylcysteine synthetase by heavy metals in human leukemia cells. The Journal of Biological Chemistry 1996; 271: 14 981–14 988
  • Ogretmen B., Bahadori H.R., McCauley M.D., Boylan A., Green M.R., Safa A.R. Co-ordinated over-expression of the MRP and γ-glutamylcysteine synthetase genes, but not MDR1, correlates with doxorubicin resistance in human malignant mesothelioma cell lines. International Journal of Cancer 1998; 75: 757–761
  • Kuo M.T., Bao J.-J., Furuichi M., Yamane Y., Gomi A., Savaraj N., Masuzawa T., Ishikawa T. Frequent coexpression of MRP/GS-X pump and γ-glutamylcysteine synthetase mRNA in drug-resistant cells, untreated tumour cells, and normal mouse tissues. Biochemical Pharmacology 1998; 55: 605–615
  • Yamane Y., Furuichi M., Song R., Van NT., Mulcahy R.T., Ishikawa T., Kuo M.T. Expression of multidrug resistance protein/GS-X pump and γ-glutamylcysteine synthetase genes is regulated by oxidative stress. The Journal of Biological Chemistry 1998; 273: 31 075–31 085
  • Yao K.-S., Godwin A.K., Johnson S.W., Ozols R.F., O'Dwyer P.J., Hamilton T.C. Evidence for altered regulation of γ-glutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Research 1995; 55: 4367–4374
  • Rahman I., Antonicelli F., MacNee W. Molecular mechanism of the regulation of glutathione synthesis by tumour necrosis factor-α and dexamethasone in human alveolar epithelial cells. The Journal of Biological Chemistry 1999; 274: 5088–5096
  • Schreck R., Rieber P., Baeuerle P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1. The EMBO Journal 1991; 10: 2247–2258
  • Wang Q., Beck W.T. Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild-type p53. Cancer Research 1998; 58: 5762–5769
  • Lee K., Belinsky M.G., Bell D.W., Testa J.R., Kruh G.D. Isolation of MOAT-B, a widely expressed multidrug resistance-associated protein/canalicular multi-specific organic anion transporter-related transporter. Cancer Research 1998; 58: 2741–2747
  • Grant C.E., Valdimarsson G., Hipfner D.R., Almquist K.C., Cole S.P.C., Deeley R.G. Overexpression of Multidrug Resistance-associated Protein (MRP) increases resistance to natural product drugs. Cancer Research 1994; 54: 357–361
  • Cole S.P.C., Sparks K.E., Fraser K., Loe D.W., Grant C.E., Wilson G.M., Deeley R.G. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Research 1994; 54: 5902–5910
  • Keppler D., König J. Expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver. FASEB Journal 1997; 11: 509–516
  • Taniguchi K., Wada M., Kohno K., Nakamura T., Kawabe T., Kawakami M., Kagotani K., Okumura K., Akiyama S.-I., Kuwano M. A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Research 1996; 56: 4124–4129
  • Ishikawa T., Li Z.-S., Lu Y.-P., Rea P.A. The GS-X pump in plant, yeast, and animal cells: structure, function, and gene expression. Bioscience Reports 1997; 17: 189–207
  • Ishikawa T., Ali-Osman F. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. The Journal of Biological Chemistry 1993; 268: 20 116–20 125
  • Kool M., van der Linden M., de Haas M., Baas F., Borst P. Expression of human MRP6, a homologue of the Multidrug Resistance Protein gene MRP1, in tissues and cancer cells. Cancer Research 1999; 59: 175–182

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.