1,281
Views
13
CrossRef citations to date
0
Altmetric
Research Article

An α-tocopheryl succinate enzyme-based nanoassembly for cancer imaging and therapy

&
Pages 738-749 | Received 13 Jan 2018, Accepted 26 Feb 2018, Published online: 08 Mar 2018

References

  • Aminlari L, Hashemi MM, Aminlari M. (2014). Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods. J Food Sci 79:R1077–90.
  • Angulo-Molina A, Reyes-Leyva J, López-Malo A, et al. (2014). The role of alpha tocopheryl succinate (α-TOS) as a potential anticancer agent. Nutr Cancer 66:167–76.
  • Arnaudov LN, de Vries R. (2005). Thermally induced fibrillar aggregation of hen egg white lysozyme. Biophys J 88:515–26.
  • Bae YH, Park K. (2011). Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205.
  • Byeon HJ, Thao le Q, Lee S, et al. (2016). Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release 225:301–13.
  • Canfield RE. (1963). The amino acid sequence of egg white lysozyme. J Biol Chem 238:2698–707.
  • Cho HJ, Balakrishnan P, Chung SJ, et al. (2011). Evaluation of protein stability and in vitro permeation of lyophilized polysaccharides-based microparticles for intranasal protein delivery. Int J Pharm 416:77–84.
  • Danhier F, Feron O, Préat V. (2010). To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–46.
  • Danhier F, Ansorena E, Silva JM, et al. (2012). PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–22.
  • Elsadek B, Kratz F. (2012). Impact of albumin on drug delivery-new applications on the horizon. J Control Release 157:4–28.
  • Elzoghby AO, Samy WM, Elgindy NA. (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157:168–82.
  • Farmer TB, Caprioli RM. (1991). Assessing the multimeric states of proteins: studies using laser desorption mass spectrometry. Biol Mass Spectrom 20:796–800.
  • Gradishar WJ. (2006). Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7:1041–53.
  • Gruber J, Staniek K, Krewenka C, et al. (2014). Tocopheramine succinate and tocopheryl succinate: mechanism of mitochondrial inhibition and superoxide radical production. Bioorg Med Chem 22:684–91.
  • Hawkins MJ, Soon-Shiong P, Desai N. (2008). Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:876–85.
  • Jeong JY, Hong EH, Lee SY, et al. (2017). Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Acta Biomater 53:414–26.
  • Kanai K, Kikuchi E, Mikami S, et al. (2010). Vitamin E succinate induced apoptosis and enhanced chemosensitivity to paclitaxel in human bladder cancer cells in vitro and in vivo. Cancer Sci 101:216–23.
  • Kemp JA, Shim MS, Heo CY, et al. (2016). “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 98:3–18.
  • Kim HJ, Kim A, Miyata K, et al. (2016). Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev 104:61–77.
  • Laemmli UK. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–5.
  • Lammers T, Kiessling F, Hennink WE, et al. (2012). Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161:175–87.
  • Lee JJ, Lee SY, Park JH, et al. (2016). Cholesterol-modified poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery. Int J Pharm 509:483–91.
  • Lee SY, Lee JJ, Nam SY, et al. (2017a). Fabrication of polymer matrix-free nanocomposites based on Angelica gigas Nakai extract and their application to breast cancer therapy. Colloids Surf B Biointerfaces 159:781–90.
  • Lee SY, Park JH, Ko SH, et al. (2017b). Mussel-inspired hyaluronic acid derivative nanostructures for improved tumor targeting and penetration. ACS Appl Mater Interfaces 9:22308–20.
  • Li Z, Tan BH. (2014). Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Mater Sci Eng C Mater Biol Appl 45:620–34.
  • Li Z, Xu W, Zhang C, et al. (2015). Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Int J Biol Macromol 75:166–72.
  • Liu G, Tsai HI, Zeng X, et al. (2017). Phosphorylcholine-based stealthy nanocapsules enabling tumor microenvironment-responsive doxorubicin release for tumor suppression. Theranostics 7:1192–203.
  • Lin L, Xu W, Liang H, et al. (2015). Construction of pH-sensitive lysozyme/pectin nanogel for tumor methotrexate delivery. Colloids Surf B Biointerfaces 126:459–66.
  • Lin TY, Koshland DE. Jr. (1969). Carboxyl group modification and the activity of lysozyme. J Biol Chem 244:505–8.
  • Liu L, Bi Y, Zhou M, et al. (2017). Biomimetic human serum albumin nanoparticle for efficiently targeting therapy to metastatic breast cancers. ACS Appl Mater Interfaces 9:7424–35.
  • Maeda H, Wu J, Sawa T, et al. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–84.
  • Mahanta S, Paul S, Srivastava A, et al. (2015). Stable self-assembled nanostructured hen egg white lysozyme exhibits strong anti-proliferative activity against breast cancer cells. Colloids Surf B Biointerfaces 130:237–45.
  • Mallick A, More P, Syed MM, et al. (2016). Nanoparticle-mediated mitochondrial damage induces apoptosis in cancer. ACS Appl Mater Interfaces 8:13218–31.
  • Masuda T, Ide N, Kitabatake N. (2005). Structure-sweetness relationship in egg white lysozyme: role of lysine and arginine residues on the elicitation of lysozyme sweetness. Chem Senses 30:667–81.
  • Matsumura Y, Maeda H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46:6387–92.
  • Muddineti OS, Kumari P, Ghosh B, et al. (2017). d-α-Tocopheryl succinate/phosphatidyl ethanolamine conjugated amphiphilic polymer-based nanomicellar system for the efficient delivery of curcumin and to overcome multiple drug resistance in cancer. ACS Appl Mater Interfaces 9:16778–92.
  • Ow SY, Dunstan DE. (2013). The effect of concentration, temperature and stirring on hen egg white lysozyme amyloid formation. Soft Matter 9:9692–701.
  • Palao-Suay R, Martín-Saavedra FM, Rosa Aguilar M, et al. (2017). Photothermal and photodynamic activity of polymeric nanoparticles based on α-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. Acta Biomater 57:70–84.
  • Prasad KN, Kumar B, Yan XD, et al. (2003). Alpha-tocopheryl succinate, the most effective form of vitamin E for adjuvant cancer treatment: a review. J Am Coll Nutr 22:108–17.
  • Price NC. (2000). Conformational issues in the characterization of proteins. Biotechnol Appl Biochem 31:29–40.
  • Qu Q, Ma X, Zhao Y. (2016). Anticancer effect of α-tocopheryl succinate delivered by mitochondria-targeted mesoporous silica nanoparticles. ACS Appl Mater Interfaces 8:34261–9.
  • Shim T, Lim C, Hoang NH, et al. (2017). Recent advance of pH-sensitive nanocarriers targeting solid tumors. J Pharm Invest 47:383–94.
  • Song J, Yang X, Yang Z, et al. (2017). Rational design of branched nanoporous gold nanoshells with enhanced physico-optical properties for optical imaging and cancer therapy. ACS Nano 11:6102–13.
  • Tao W, Zhang J, Zeng X, et al. (2015). Blended nanoparticle system based on miscible structurally similar polymers: A safe, simple, targeted, and surprisingly high efficiency vehicle for cancer therapy. Adv Health Mater 4:1203–14.
  • Tran TH, Thapa RK, Nguyen HT, et al. (2016). Combined phototherapy in anti-cancer treatment: therapeutics design and perspectives. J Pharm Invest. 46:505–17.
  • Wang K, Zhang C, Bao J, et al. (2016). Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci Rep 6:26064.
  • Yoon IS, Park JH, Kang HJ, et al. (2015). Poly(D,L-lactic acid)-glycerol-based nanoparticles for curcumin delivery. Int J Pharm 488:70–7.
  • Zemser M, Friedman M, Katzhendler J, et al. (1994). Relationship between functional properties and structure of ovalbumin. J Protein Chem 13:261–74.
  • Zeng X, Tao W, Mei L, et al. (2013). Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 34:6058–67.
  • Zeng X, Tao W, Wang Z, et al. (2015). Docetaxel-loaded nanoparticles of dendritic amphiphilic block copolymer H40-PLA-b-TPGS for cancer treatment. Part Part Syst Charact 32:112–22.
  • Zhang H, Huang S, Yang X, et al. (2014). Current research on hyaluronic acid-drug bioconjugates. Eur J Med Chem 86:310–7.
  • Zhang L, Liu Y, Liu G, et al. (2016). Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Res 9:2424–32.