4,711
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Nanocrystals based pulmonary inhalation delivery system: advance and challenge

, , , , , , & show all
Pages 637-651 | Received 03 Jan 2022, Accepted 01 Feb 2022, Published online: 21 Feb 2022

References

  • Abd Elwakil MM, Mabrouk MT, Helmy MW, et al. (2018). Inhalable lactoferrin–chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine 13:2015–35.
  • Abdelbary AA, Al-Mahallawi AM, Abdelrahim ME, et al. (2015). Preparation, optimization, and in vitro simulated inhalation delivery of carvedilol nanoparticles loaded on a coarse carrier intended for pulmonary administration. Int J Nanomedicine 10:6339–53.
  • Alblas ABvO, Linden-Schrever B, Furth R. (1981). Origin and kinetics of pulmonary macrophages during an inflammatory reaction induced by intravenous administration of heat-killed bacillus Calmette–Guérin. J Exp Med 154:235–52.
  • Alhajj N, O'Reilly NJ, Cathcart H. (2021). Designing enhanced spray dried particles for inhalation: a review of the impact of excipients and processing parameters on particle properties. Powder Technol 384:313–31.
  • Ali H, York P, Ali A, et al. (2011). Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 149:175–81.
  • Al-Obaidi H, Granger A, Hibbard T, et al. (2021). Pulmonary drug delivery of antimicrobials and anticancer drugs using solid dispersions. Pharmaceutics 13:1056.
  • Araújo F, Martins C, Azevedo C, et al. (2018). Chemical modification of drug molecules as strategy to reduce interactions with mucus. Adv Drug Deliv Rev 124:98–106.
  • Arick DQ, Choi YH, Kim HC, et al. (2015). Effects of nanoparticles on the mechanical functioning of the lung. Adv Colloid Interface Sci 225:218–28.
  • Bansil R, Turner BS. (2006). Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci 11:164–70.
  • Basu A, Guti S, Kundu S, et al. (2020). Oral andrographolide nanocrystals protect liver from paracetamol induced injury in mice. J Drug Deliv Sci Technol 55:101406.
  • Bhavna , Ahmad FJ, Khar RK, et al. (2009). Techniques to develop and characterize nanosized formulation for salbutamol sulfate. J Mater Sci Mater Med 20:S71–S6.
  • Button B, Cai LH, Ehre C, et al. (2012). A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337:937–41.
  • Chang D, Ma Y, Cao G, et al. (2018). Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol 46:1018–24.
  • Chen Y, Gui Y, Luo Y, et al. (2021). Design and evaluation of inhalable nanocrystals embedded microparticles with enhanced redispersibility and bioavailability for breviscapine. Powder Technol 377:128–38.
  • Chiang PC, Alsup JW, Lai Y, et al. (2009). Evaluation of aerosol delivery of nanosuspension for pre-clinical pulmonary drug delivery. Nanoscale Res Lett 4:254–61.
  • Cipolla D, Wu H, Eastman S, et al. (2016). Tuning ciprofloxacin release profiles from liposomally encapsulated nanocrystalline drug. Pharm Res 33:2748–62.
  • Costabile G, D’Angelo I, Rampioni G, et al. (2015). Toward repositioning niclosamide for antivirulence therapy of Pseudomonas aeruginosa lung infections: development of inhalable formulations through nanosuspension technology. Mol Pharm 12:237–58.
  • Costabile G, Provenzano R, Azzalin A, et al. (2020). PEGylated mucus-penetrating nanocrystals for lung delivery of a new FtsZ inhibitor against Burkholderia cenocepacia infection. Nanomedicine 23:102113.
  • de Kruijf W, Ehrhardt C. (2017). Inhalation delivery of complex drugs—the next steps. Curr Opin Pharmacol 36:52–7.
  • Ding J, Takamoto DY, von Nahmen A, et al. (2001). Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys J 80:2262–72.
  • Du J, Li X, Zhao H, et al. (2015). Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm 495:738–49.
  • Duggirala NK, Perry ML, Almarsson O, et al. (2016). Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun 52:640–55.
  • Eerikäinen H, Watanabe W, Kauppinen EI, et al. (2003). Aerosol flow reactor method for synthesis of drug nanoparticles. Eur J Pharm Biopharm 55:357–60.
  • El-Gendy N, Gorman EM, Munson EJ, et al. (2009). Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci 98:2731–46.
  • Elsayed I, AbouGhaly MH. (2016). Inhalable nanocomposite microparticles: preparation, characterization and factors affecting formulation. Expert Opin Drug Deliv 13:207–22.
  • Elsayed MMA, Shalash AO. (2018). Modeling the performance of carrier-based dry powder inhalation formulations: where are we, and how to get there? J Control Release 279:251–61.
  • Gao L, Zhang D, Chen M. (2008). Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 10:845–62.
  • Gao L, Liu G, Ma J, et al. (2012). Drug nanocrystals: in vivo performances. J Control Release 160:418–30.
  • García-Díaz M, Birch D, Wan F, et al. (2018). The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv Drug Deliv Rev 124:107–24.
  • Goerke J. (1998). Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta 1408:79–89.
  • Gonda I. (2006). Systemic delivery of drugs to humans via inhalation. J Aerosol Med 19:47–53.
  • He Y, Liang Y, Mak JCW, et al. (2020). Size effect of curcumin nanocrystals on dissolution, airway mucosa penetration, lung tissue distribution and absorption by pulmonary delivery. Colloids Surf B Biointerfaces 186:110703.
  • Hu G, Jiao B, Shi X, et al. (2013). Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona. ACS Nano 7:10525–33.
  • Huang G, Xie J, Shuai S, et al. (2021). Nose-to-brain delivery of drug nanocrystals by using Ca2+ responsive deacetylated gellan gum based in situ-nanogel. Int J Pharm 594:120182.
  • Jakubowska E, Lulek J. (2021). The application of freeze-drying as a production method of drug nanocrystals and solid dispersions—a review. J Drug Deliv Sci Technol 62:102357.
  • Jermain SV, Brough C, Williams RO. (2018). Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – an update. Int J Pharm 535:379–92.
  • Johnson M, Bao H, Helms M, et al. (2006). Functional ion channels in pulmonary alveolar type I cells support a role for type I cells in lung ion transport. Proc Natl Acad Sci U S A 103:4964–9.
  • Kannan R, Xu Q, Kambhampati S. (2013). Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol 20:26–37.
  • Kraft WK, Steiger B, Beussink D, et al. (2004). The pharmacokinetics of nebulized nanocrystal budesonide suspension in healthy volunteers. J Clin Pharmacol 44:67–72.
  • Laaksonen T, Liu P, Rahikkala A, et al. (2011). Intact nanoparticulate indomethacin in fast-dissolving carrier particles by combined wet milling and aerosol flow reactor methods. Pharm Res 28:2403–11.
  • Lee WH, Loo CY, Traini D, et al. (2015). Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opin Drug Deliv 12:1009–26.
  • Lei Y, Kong Y, Sui H, et al. (2016). Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation. Drug Deliv Transl Res 6:519–25.
  • Li Y, Wang D, Lu S, et al. (2018). Pramipexole nanocrystals for transdermal permeation: characterization and its enhancement micro-mechanism. Eur J Pharm Sci 124:80–8.
  • Liao Q, Yip L, Chow MYT, et al. (2019). Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. Int J Pharm 560:144–54.
  • Ling X, Shen Y, Sun CM, et al. (2014). Current progress on pulmonary drug delivery. J Pharm Res 33:711–3.
  • Liu Q, Guan J, Qin L, et al. (2020). Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today 25:150–9.
  • Liu Q, Guan J, Sun Z, et al. (2019). Influence of stabilizer type and concentration on the lung deposition and retention of resveratrol nanosuspension-in-microparticles. Int J Pharm 569:118562.
  • Liu T, Han M, Tian F, et al. (2018). Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: in vitro and in vivo evaluation. Carbohydr Polym 181:1143–52.
  • Liu T, Yao G, Zhang X, et al. (2018). Systematical investigation of different drug nanocrystal technologies to produce fast dissolving meloxicam tablets. AAPS PharmSciTech 19:783–91.
  • Liu Y, Liu W, Xiong S, et al. (2020). Highly stabilized nanocrystals delivering ginkgolide B in protecting against the Parkinson's disease. Int J Pharm 577:119053.
  • Loira-Pastoriza C, Todoroff J, Vanbever R. (2014). Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 75:81–91.
  • Lu Y, Zhao D, Li N, et al. (2018). Research advances of controlled release formulations for pulmonary delivery. J Pharm Res 37:469–72.
  • Luo Y, Zhang Z, Huang G, et al. (2020). Roles of maltodextrin and inulin as matrix formers on particle performance of inhalable drug nanocrystal-embedded microparticles. Carbohydr Polym 235:115937.
  • Malamatari M, Taylor KMG, Malamataris S, et al. (2018). Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today 23:534–47.
  • Manca ML, Lai F, Pireddu R, et al. (2020). Impact of nanosizing on dermal delivery and antioxidant activity of quercetin nanocrystals. J Drug Deliv Sci Technol 55:101482.
  • Mangal S, Gao W, Li T, et al. (2017). Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 38:782–97.
  • Mansour HM, Rhee YS, Wu X. (2009). Nanomedicine in pulmonary delivery. Int J Nanomedicine 4:299–319.
  • Mehanna MM, Mohyeldin SM, Elgindy NA. (2019). Rifampicin-carbohydrate spray-dried nanocomposite: a futuristic multiparticulate platform for pulmonary delivery. Int J Nanomedicine 14:9089–112.
  • Müller R, Shegokar R, Gohla S, et al. (2011). Nanocrystals: production, cellular drug delivery, current and future products. Fundam Biomed Technol 5:411–32.
  • Muralidharan P, Malapit M, Mallory E, et al. (2015). Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine 11:1189–99.
  • Ni R, Zhao J, Liu Q, et al. (2017). Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur J Pharm Sci 99:137–46.
  • Oberdörster G, Ferin J, Lehnert BE. (1994). Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102:173–9.
  • Oberdörster G, Oberdörster E, Oberdörster J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–39.
  • Onoue S, Aoki Y, Kawabata Y, et al. (2011). Development of inhalable nanocrystalline solid dispersion of tranilast for airway inflammatory diseases. J Pharm Sci 100:622–33.
  • Ordonez SR, Veldhuizen EJA, van Eijk M, et al. (2017). Role of soluble innate effector molecules in pulmonary defense against fungal pathogens. Front Microbiol 8:2098.
  • Ostrander KD, Bosch HW, Bondanza DM. (1999). An in-vitro assessment of a NANOCRYSTAL beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization. Eur J Pharm Biopharm 48:207–15.
  • Patton JS, Byron PR. (2007). Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–74.
  • Pawar VK, Singh Y, Meher JG, et al. (2014). Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release 183:51–66.
  • Pelikh O, Eckert RW, Pinnapireddy SR, et al. (2021). Hair follicle targeting with curcumin nanocrystals: influence of the formulation properties on the penetration efficacy. J Control Release 329:598–613.
  • Perez-Gil J, Weaver TE. (2010). Pulmonary surfactant pathophysiology: current models and open questions. Physiology 25:132–41.
  • Pomázi A, Buttini F, Ambrus R, et al. (2013). Effect of polymers for aerosolization properties of mannitol-based microcomposites containing meloxicam. Eur Polym J 49:2518–27.
  • Praphakar RA, Shakila H, Azger Dusthackeer VN, et al. (2018). A mannose-conjugated multi-layered polymeric nanocarrier system for controlled and targeted release on alveolar macrophages. Polym Chem 9:668.
  • Raula J, Rahikkala A, Halkola T, et al. (2013). Coated particle assemblies for the concomitant pulmonary administration of budesonide and salbutamol sulphate. Int J Pharm 441:248–54.
  • Roa WH, Azarmi S, Al-Hallak MH, et al. (2011). Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release 150:49–55.
  • Rogueda PG, Traini D. (2007). The nanoscale in pulmonary delivery. Part 1: deposition, fate, toxicology and effects. Expert Opin Drug Deliv 4:595–606.
  • Rossi I, Sonvico F, McConville JT, et al. (2018). Nebulized coenzyme Q10 nanosuspensions: a versatile approach for pulmonary antioxidant therapy. Eur J Pharm Sci 113:159–70.
  • Rouse JJ, Whateley TL, Thomas M, et al. (2007). Controlled drug delivery to the lung: influence of hyaluronic acid solution conformation on its adsorption to hydrophobic drug particles. Int J Pharm 330:175–82.
  • Rundfeldt C, Steckel H, Scherliess H, et al. (2013). Inhalable highly concentrated itraconazole nanosuspension for the treatment of bronchopulmonary aspergillosis. Eur J Pharm Biopharm 83:44–53.
  • Sanders N, Rudolph C, Braeckmans K, et al. (2009). Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev 61:115–27.
  • Shirley M. (2019). Amikacin liposome inhalation suspension: a review in Mycobacterium avium complex lung disease. Drugs 79:555–62.
  • Sinha B, Müller RH, Möschwitzer JP. (2013). Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm 453:126–41.
  • Siow CR, Wan Sia Heng P, Chan LW. (2016). Application of freeze-drying in the development of oral drug delivery systems. Expert Opin Drug Deliv 13:1595–608.
  • O' Donnell KP, Smyth HDC. (2011). Macro- and microstructure of the airways for drug delivery. In: Smyth H, Hickey A, eds. Controlled pulmonary drug delivery. Advances in Delivery Science and Technology. Springer, New York, NY, 1–19.
  • Song S, Guo J, Li H. (2013). Preparation of a high-efficiency nebulizer of betamethasone dipropionate by high pressure microfluidization. Journal of Controlled Release 172:e66.
  • Sou T, Orlando L, McIntosh MP, et al. (2011). Investigating the interactions of amino acid components on a mannitol-based spray-dried powder formulation for pulmonary delivery: a design of experiment approach. Int J Pharm 421:220–9.
  • Sung JC, Pulliam BL, Edwards DA. (2007). Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–70.
  • Tanaka R, Hattori Y, Otsuka M, et al. (2020). Application of spray freeze drying to theophylline–oxalic acid cocrystal engineering for inhaled dry powder technology. Drug Dev Ind Pharm 46:179–87.
  • Tao L, Müller R, Mschwitzer JP. (2016). Systematical investigation of a combinative particle size reduction technology for production of resveratrol nanosuspensions. AAPS PharmSciTech 18:1–9.
  • Thakkar S, Shah V, Misra M, et al. (2017). Nanocrystal based drug delivery system: conventional and current scenario. Recent Pat Nanotechnol 11:130–45.
  • Torvela T, Lähde A, Mönkäre J, et al. (2011). Low-temperature aerosol flow reactor method for preparation of surface stabilized pharmaceutical nanocarriers. J Aerosol Sci 42:645–56.
  • Wang J, Yang Y, Yu M, et al. (2018). Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels. J Mech Phys Solids 112:431–57.
  • Wei S, Xie J, Luo Y, et al. (2018). Hyaluronic acid based nanocrystals hydrogels for enhanced topical delivery of drug: a case study. Carbohydr Polym 202:64–71.
  • Whitsett JA, Weaver TE. (2002). Hydrophobic surfactant proteins in lung function and disease. N Engl J Med 347:2141–8.
  • Wüstneck R, Perez-Gil J, Wüstneck N, et al. (2005). Interfacial properties of pulmonary surfactant layers. Adv Colloid Interface Sci 117:33–58.
  • Xing Y, Lu P, Xue Z, et al. (2020). Nano-strategies for improving the bioavailability of inhaled pharmaceutical formulations. Mini Rev Med Chem 20:1258–71.
  • Xiong S, Liu W, Zhou Y, et al. (2020). Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian J Pharm Sci 15:518–28.
  • Yamasaki K, Kwok PC, Fukushige K, et al. (2011). Enhanced dissolution of inhalable cyclosporine nano-matrix particles with mannitol as matrix former. Int J Pharm 420:34–42.
  • Yang MY, Chan JG, Chan HK. (2014). Pulmonary drug delivery by powder aerosols. J Control Release 193:228–40.
  • Yang W, Johnston KP, Williams RO 3rd. (2010). Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur J Pharm Biopharm 75:33–41.
  • Yang W, Peters JI, Williams RO. (2008). Inhaled nanoparticles—a current review. Int J Pharm 356:239–47.
  • Yu Q, Wu X, Zhu Q, et al. (2018). Enhanced transdermal delivery of meloxicam by nanocrystals: preparation, in vitro and in vivo evaluation. Asian J Pharm Sci 13:518–26.
  • Yu SH, Possmayer F. (2003). Lipid compositional analysis of pulmonary surfactant monolayers and monolayer-associated reservoirs. J Lipid Res 44:621–9.
  • Yue PF, Liu Y, Xie J, et al. (2018). Review and prospect on preparation technology of drug nanocrystals in the past thirty years. Acta Pharm Sin B 53:529–37.
  • Zheng JY, Bosch HW. (1997). Sterile filtration of nanocrystal drug formulations. Drug Dev Ind Pharm 23:1087–93.