10,929
Views
62
CrossRef citations to date
0
Altmetric
Research Articles

Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges

, , , , , , , & show all
Pages 1142-1149 | Received 25 Jan 2022, Accepted 21 Mar 2022, Published online: 06 Apr 2022

References

  • Alfatama M, Lim LY, Wong TW. (2018). Alginate-C18 conjugate nanoparticles loaded in tripolyphosphate-cross-linked chitosan-oleic acid conjugate-coated calcium alginate beads as oral insulin carrier. Mol Pharm 15:3369–82.
  • ALQuadeib BT, Eltahir EK, Alagili MF. (2020). The oral administration of lidocaine HCl biodegradable microspheres: formulation and optimization. Int J Nanomed 15:857–69.
  • Aluani D, Tzankova V, Kondeva-Burdina M, et al. (2017). Еvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int J Biol Macromol 103:771–82.
  • Anderson DS, Patchin ES, Silva RM, et al. (2015). Influence of particle size on persistence and clearance of aerosolized silver nanoparticles in the rat lung. Toxicol Sci 144:366–81.
  • Bhunchu S, Rojsitthisak P. (2014). Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy. Pharmazie 69:563–70.
  • Calvo P, Remuán-López C, Vila-Jato JL, Alonso MJ. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–32.
  • Ceylan O, Karakus H, Cicek H. (2021). Design and in vitro antibiofilm activity of propolis diffusion-controlled biopolymers. Biotechnol Appl Biochem 68:789–800.
  • Chambin O, Dupuis G, Champion D, et al. (2006). Colon-specific drug delivery: Influence of solution reticulation properties upon pectin beads performance. Int J Pharm 321:86–93.
  • Chen MC, Sonaje K, Chen KJ, Sung HW. (2011). A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials 32:9826–38.
  • Chen T, Li S, Zhu W, et al. (2019). Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J Microencapsul 36:96–107.
  • Chen X, Ren Y, Feng Y, et al. (2019). Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity. Int J Pharm 562:23–30.
  • Chen X, Zhao X, Wang G. (2020). Review on marine carbohydrate-based gold nanoparticles represented by alginate and chitosan for biomedical application. Carbohydr Polym 244:116311.
  • Chu JS, Wang ZJ. (2020). Protocol optimization for renal mass detection and characterization. Radiol Clin North Am 58:851–73.
  • Dos Santos AM, Carvalho SG, Meneguin AB, et al. (2021). Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: Challenges, advances and future perspectives. J Control Release 334:353–66.
  • Ensign LM, Cone R, Hanes J. (2012). Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64:557–70.
  • Glavas Dodov M, Calis S, Crcarevska MS, et al. (2009). Wheat germ agglutinin-conjugated chitosan-Ca-alginate microparticles for local colon delivery of 5-FU: development and in vitro characterization. Int J Pharm 381:166–75.
  • Glavas-Dodov M, Steffansen B, Crcarevska MS, Geskovski N, et al. (2013). Wheat germ agglutinin-functionalised crosslinked polyelectrolyte microparticles for local colon delivery of 5-FU: in vitro efficacy and in vivo gastrointestinal distribution. J Microencapsul 30:643–56.
  • Haddadzadegan S, Dorkoosh F, Bernkop-Schnurch A. (2022). Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based nanocarriers. Adv Drug Delivery Rev 182:114097.
  • Hagras NA, Mogahed N, Sheta E, et al. (2022). The powerful synergistic effect of spiramycin/propolis loaded chitosan/alginate nanoparticles on acute murine toxoplasmosis. PLoS Negl Trop Dis 16:e0010268.
  • Janardhanam LSL, Indukuri VV, Verma P, Dusane AC, et al. (2020). Functionalized layer-by-layer assembled film with directional 5-fluorouracil release to target colon cancer. Mater Sci Eng C Mater Biol Appl 115:111118.
  • Jindal AB. (2017). The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm 532:450–65.
  • Jo DH, Kim JH, Lee TG, Kim JH. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed Nanotechnol Biol Med 11:1603–11.
  • Kato Y, Ozawa S, Miyamoto C, et al. (2013). Acidic extracellular microenvironment and cancer. Cancer Cell Int 13:89.
  • Keppler K, Humpf HU. (2005). Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem 13:5195–205.
  • Khorshidian N, Mahboubi A, Kalantari N, et al. (2019). Chitosan-coated alginate microcapsules loaded with herbal galactagogue extract: formulation optimization and characterization. Iran J Pharm Res 18:1180–95.
  • Kobayashi T, Siegmund B, Le Berre C, et al. (2020). Ulcerative colitis. Nat Rev Dis Primers 6:74.
  • Kumar P, Mishra B. (2008). Colon targeted drug delivery systems--an overview. Curr Drug Deliv 5:186–98.
  • Kyzioł A, Mazgała A, Michna J, et al. (2017). Preparation and characterization of alginate/chitosan formulations for ciprofloxacin-controlled delivery. J Biomater Appl 32:162–74.
  • Lang X, Wang T, Sun M, et al. (2020). Advances and applications of chitosan-based nanomaterials as oral delivery carriers: a review. Int J Biol Macromol 154:433–45.
  • Lanjhiyana SK, Bajpayee P, Kesavan K, et al. (2013). Chitosan-sodium alginate blended polyelectrolyte complexes as potential multiparticulate carrier system: colon-targeted delivery and gamma scintigraphic imaging. Expert Opin Drug Deliv 10:5–15.
  • Li J, Wu H, Jiang K, Liu Y, et al. (2021). Alginate calcium microbeads containing chitosan nanoparticles for controlled insulin release. Appl Biochem Biotechnol 193:463–78.
  • Li P, Nielsen HM, Fano M, Müllertz A. (2013). Preparation and characterization of insulin-surfactant complexes for loading into lipid-based drug delivery systems. J Pharm Sci 102:2689–98.
  • Li S, Jin M, Wu Y, et al. (2021). An efficient enzyme-triggered controlled release system for colon-targeted oral delivery to combat dextran sodium sulfate (DSS)-induced colitis in mice. Drug Deliv 28:1120–31.
  • Li W, Li W, Wan Y, et al. (2022). Preparation, characterization and releasing property of antibacterial nano-capsules composed of ε-PL-EGCG and sodium alginate-chitosan. Int J Biol Macromol 204:652–60.
  • Li YJ, Teng BH, Zhao YH, et al. (2019). [Preparation and evaluation of carboxymethyl chitosan/sodium alginate hydrogel for cartilage tissue engineering]. Hua Xi Kou Qiang Yi Xue Za Zhi 37:253–9.
  • Ling K, Wu H, Neish AS, Champion JA. (2019). Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. J Control Release 295:174–86.
  • Lopes M, Shrestha N, Correia A, et al. (2016). Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J Control Release 232:29–41.
  • Manivasagan P, Bharathiraja S, Bui NQ, et al. (2016). Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int J Biol Macromol 91:578–88.
  • Mao Y, Zhao M, Ge Y, Fan J. (2016). Novel alginate-chitosan composite microspheres for implant delivery of vancomycin and in vivo evaluation. Chem Biol Drug Des 88:434–40.
  • Mukhopadhyay P, Chakraborty S, Bhattacharya S, et al. (2015). pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol 72:640–8.
  • Naeem M, Awan UA, Subhan F, et al. (2020). Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Arch Pharm Res 43:153–69.
  • Naskar S, Koutsu K, Sharma S. (2019). Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J Drug Targeting 27:379–93.
  • Nunthanid J, Huanbutta K, Luangtana-Anan M, et al. (2008). Development of time-, pH-, and enzyme-controlled colonic drug delivery using spray-dried chitosan acetate and hydroxypropyl methylcellulose. Eur J Pharm Biopharm 68:253–9.
  • Oshi MA, Lee J, Naeem M, et al. (2020). Curcumin nanocrystal/pH-responsive polyelectrolyte multilayer core-shell nanoparticles for inflammation-targeted alleviation of ulcerative colitis. Biomacromolecules 21:3571–81.
  • Renukuntla J, Vadlapudi AD, Patel A, et al. (2013). Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447:75–93.
  • Rostami N, Nikkhoo A, Khazaei-Poul Y, et al. (2020). Coinhibition of S1PR1 and GP130 by siRNA-loaded alginate-conjugated trimethyl chitosan nanoparticles robustly blocks development of cancer cells. J Cell Physiol 235:9702–17.
  • Segal JP, LeBlanc JF, Hart AL. (2021). Ulcerative colitis: an update. Clin Med (Lond) 21:135–9.
  • Segale L, Giovannelli L, Mannina P, Pattarino F. (2016). Calcium alginate and calcium alginate-chitosan beads containing celecoxib solubilized in a self-emulsifying phase. Scientifica 2016:5062706.
  • Shinde UA, Shete JN, Nair HA, Singh KH. (2014). Design and characterization of chitosan-alginate microspheres for ocular delivery of azelastine. Pharm Dev Technol 19:813–23.
  • Sinha P, Udhumansha U, Rathnam G, et al. (2018). Capecitabine encapsulated chitosan succinate-sodium alginate macromolecular complex beads for colon cancer targeted delivery: in vitro evaluation. Int J Biol Macromol 117:840–50.
  • Suarato G, Li W, Meng Y. (2016). Role of pH-responsiveness in the design of chitosan-based cancer nanotherapeutics: a review. Biointerphases 11:04B201. 04b201.
  • Sudhakar S, Chandran SV, Selvamurugan N, Nazeer RA. (2020). Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int J Biol Macromol 150:281–8.
  • Taemeh MA, Shiravandi A, Korayem MA, Daemi H. (2020). Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr Polym 228:115419.
  • Venkatesan J, Lee JY, Kang DS, et al. (2017). Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 98:515–25.
  • Verma A, Sharma S, Gupta PK, et al. (2016). Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: A mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater 31:288–300.
  • Wen P, Hu TG, Li L, et al. (2018). A colon-specific delivery system for quercetin with enhanced cancer prevention based on co-axial electrospinning. Food Funct 9:5999–6009.
  • Wong TW. (2010). Design of oral insulin delivery systems. J Drug Target 18:79–92.
  • Wu Y, Li S, Jin M, et al. (2021). Preparation of MSZ hydrogel and its treatment of colitis. Front Pharmacol 12:706401.
  • Xu W, Su W, Xue Z, et al. (2021). Research on preparation of 5-ASA colon-specific hydrogel delivery system without crosslinking agent by mechanochemical method. Pharm Res 38:693–706.
  • Yoncheva K, Benbassat N, Zaharieva MM, et al. (2021). Improvement of the antimicrobial activity of oregano oil by encapsulation in chitosan-alginate nanoparticles. Molecules 26:7017.
  • You X, Kang Y, Hollett G, et al. (2016). Polymeric nanoparticles for colon cancer therapy: overview and perspectives. J Mater Chem B 4:7779–92.
  • Yu CY, Yin BC, Zhang W, et al. (2009). Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids Surf B Biointerfaces 68:245–9.
  • Yu S, Xu X, Feng J, et al. (2019). Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 560:282–93.
  • Yu X, Wen T, Cao P, et al. (2019). Alginate-chitosan coated layered double hydroxide nanocomposites for enhanced oral vaccine delivery. J Colloid Interface Sci 556:258–65.
  • Yue X, Yan B, Wang S, et al. (2020). Preparation of pH-responsive alginate-chitosan microspheres for L-valine loading and their effects on the A40926 production. Curr Microbiol 77:1016–23.
  • Zhang L, Qin H, Li J, et al. (2018). Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery. J Mater Chem B 6:7451–61.
  • Zhang X, Cheng H, Dong W, et al. (2018). Design and intestinal mucus penetration mechanism of core-shell nanocomplex. J Control Release 272:29–38.
  • Zhou X, Liu Y, Wang X, et al. (2020). Effect of particle size on the cellular uptake and anti-inflammatory activity of oral nanotherapeutics. Colloids Surf B Biointerfaces 187:110880.