29
Views
7
CrossRef citations to date
0
Altmetric
Articles

Sickle Red Cell–Endothelium Interactions

, &
Pages 97-111 | Received 18 Mar 2008, Published online: 10 Jul 2009

References

  • Ballas SK, Larner J, Smith ED, Surrey S, Schwartz E, Rappaport EF. Rheologic predictors of the severity of the painful sickle cell crisis. Blood 1988; 72: 1216–1223
  • Barabino GA, Liu XD, Ewenstein BM, Kaul DK. Anionic polysaccharides inhibit adhesion of sickle erythrocytes to the vascular endothelium and result in improved hemodynamic behavior. Blood 1999; 93: 1422–1429
  • Barabino GA, McIntire LV, Eskin SG, Sears DA, Udden M. Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood 1987; 70: 152–157
  • Barabino GA, McIntire LV, Eskin SG, Sears DA, Udden M. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease. Progr Clin Biol Res 1987; 240: 113–127
  • Billett HH, Kim K, Fabry ME, Nagel RL. The percentage of dense red cells does not predict incidence of sickle cell painful crisis. Blood 1986; 68: 301–303
  • Boggs DR, Hyde F, Srodes C. An unusual pattern of neutrophil kinetics in sickle cell anemia. Blood 1973; 41: 59–65
  • Bridges KR, Barabino GD, Brugnara C, Cho MR, Christoph GW, Dover G, Ewenstein BM, Golan DE, Guttmann CR, Hofrichter J, Mulkern RV, Zhang B, Eaton WA. A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood 1996; 88: 4701–4710
  • Brittain HA, Eckman JR, Swerlick RA, Howard RJ, Wick TM. Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: a potential role for platelet activation in sickle cell vaso-occlusion. Blood 1993; 81: 2137–2143
  • Brittain JE, Mlinar KJ, Anderson CS, Orringer EP, Parise LV. Activation of sickle red blood cell adhesion via integrin-associated protein/CD47-induced signal transduction. J Clin Invest 2001; 107: 1555–1562
  • Brugnara C, Bunn HF, Tosteson DC. Regulation of erythrocyte cation and water content in sickle cell anemia. Science 1986; 232: 388–390
  • Cao Z, Ferrone FA. A 50th-order reaction predicted and observed for sickle hemoglobin nucleation. J Mol Biol 1996; 256: 219–222
  • Chang J, Shi PA, Chiang EY, Frenette PS. Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion. Blood 2008; 111: 915–923
  • Charache S, Barton FB, Moore RD, Terrin ML, Steinberg MH, Dover GJ, Ballas SK, McMahon RP, Castro O, Orringer EP. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Medicine 1996; 75: 300–326
  • Chen D, Kaul DK. Rheologic and hemodynamic characteristics of red cells of mouse, rat, and human. Biorheology 1994; 31: 103–113
  • Cokic VP, Andric SA, Stojilkovic SS, Noguchi CT, Schechter AN. Hydroxyurea nitrosylates and activates soluble guanylyl cyclase in human erythroid cells. Blood 2008; 111: 1117–1123
  • Cokic VP, Smith RD, Beleslin-Cokic BB, Njoroge JM, Miller JL, Gladwin MT, Schechter AN. Hydroxyurea induces fetal hemoglobin by the nitric oxide–dependent activation of soluble guanylyl cyclase. J Clin Invest 2003; 111: 231–239
  • Eaton WA, Hofrichter J. Hemoglobin S gelation and sickle cell disease. [Review] Blood 1987; 70: 1245–1266
  • Embury SH, Matsui NM, Ramanujam S, Mayadas TN, Noguchi CT, Diwan BA, Mohandas N, Cheung AT. The contribution of endothelial cell P-selectin to the microvascular flow of mouse sickle erythrocytes in vivo. Blood 2004; 104: 3378–3385
  • Fabry ME, Nagel RL. Heterogeneity of red cells in the sickler: a characteristic with practical clinical and pathophysiological implications. Blood Cells 1982; 8: 9–15
  • Fabry ME, Suzuka SM, Weinberg RS, Lawrence C, Factor SM, Gilman JG, Costantini F, Nagel RL. Second generation knockout sickle mice: the effect of HbF. Blood 2001; 97: 410–418
  • Ferrone FA. Kinetic models and the pathophysiology of sickle cell disease. Ann N Y Acad Sci 1989; 565: 63–74
  • Finnegan EM, Barabino GA, Liu XD, Chang HY, Jonczyk A, Kaul DK. Small-molecule cyclic {alpha}v{beta}3 antagonists inhibit sickle red cell adhesion to vascular endothelium and vaso-occlusion. Am J Physiol Heart Circ Physiol 2007; 293: H1038–H1045
  • Finnegan EM, Turhan A, Golan DE, Barabino GA. Adherent leukocytes capture sickle erythrocytes in an in vitro flow model of vaso-occlusion. Am J Hematol 2007; 82: 266–275
  • Grabowski EF. Sickle erythrocytes adhere to endothelial cell monolayers (ECMs) exposed to flowing blood. Progr Clin Biol Res 1987; 240: 167–179
  • Hebbel RP. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. [Review] Blood 1991; 77: 214–237
  • Hebbel RP. Adhesive interactions of sickle erythrocytes with endothelium. [Review] J Clin Invest 1997; 100: S83–S86
  • Hebbel RP. Perspectives series: cell adhesion in vascular biology. Adhesive interactions of sickle erythrocytes with endothelium. [Review] J Clin Invest 1997; 99: 2561–2564
  • Hebbel RP. Blockade of adhesion of sickle cells to endothelium by monoclonal antibodies. N Engl J Med 2000; 342: 1910–1912
  • Hebbel RP, Boogaerts MA, Eaton JW, Steinberg MH. Erythrocyte adherence to endothelium in sickle-cell anemia. A possible determinant of disease severity. N Engl J Med 1980; 302: 992–995
  • Hebbel RP, Eaton JW, Balasingam M, Steinberg MH. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 1982; 70: 1253–1259
  • Hebbel RP, Eaton JW, Steinberg MH, White JG. Erythrocyte/endothelial interactions and the vasocclusive severity of sickle cell disease. Progr Clin Biol Res 1981; 55: 145–162
  • Hebbel RP, Eaton JW, Steinberg MH, White JG. Erythrocyte/endothelial interactions in the pathogenesis of sickle-cell disease: a “real logical” assessment. Blood Cells 1982; 8: 163–173
  • Hebbel RP, Moldow CF, Steinberg MH. Modulation of erythrocyte-endothelial interactions and the vasocclusive severity of sickling disorders. Blood 1981; 58: 947–952
  • Hebbel RP, Osarogiagbon R, Kaul D. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation 2004; 11: 129–151
  • Hebbel RP, Yamada O, Moldow CF, Jacob HS, White JG, Eaton JW. Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: possible mechanism for microvascular occlusion in sickle cell disease. J Clin Invest 1980; 65: 154–160
  • Hines PC, Zen Q, Burney SN, Shea DA, Ataga KI, Orringer EP, Telen MJ, Parise LV. Novel epinephrine and cyclic AMP-mediated activation of BCAM/Lu-dependent sickle (SS) RBC adhesion. Blood 2003; 101: 3281–3287
  • Hofrichter J, Ross PD, Eaton WA. Supersaturation in sickle cell hemoglobin solutions. Proc Natl Acad Sci U S A 1976; 73: 3035–3039
  • Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001; 409: 202–207
  • Hoover R, Rubin R, Wise G, Warren R. Adhesion of normal and sickle erythrocytes to endothelial monolayer cultures. Blood 1979; 54: 872–876
  • Joiner CH. Cation transport and volume regulation in sickle red blood cells. Am J Physiol 1993; 264: C251–C270
  • Kaul DK, Fabry ME. In vivo studies of sickle red blood cells. Microcirculation 2004; 11: 153–165
  • Kaul DK, Fabry ME, Costantini F, Rubin EM, Nagel RL. In vivo demonstration of red cell-endothelial interaction, sickling, and altered microvascular response to oxygen in the sickle transgenic mouse. J Clin Invest 1995; 96: 2845–2853
  • Kaul DK, Fabry ME, Nagel RL. Erythrocytic and vascular factors influencing the microcirculatory behavior of blood in sickle cell anemia. Ann N Y Acad Sci 1989; 565: 316–326
  • Kaul DK, Fabry ME, Nagel RL. Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications. Proc Natl Acad Sci U S A 1989; 86: 3356–3360
  • Kaul DK, Fabry ME, Windisch P, Baez S, Nagel RL. Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. J Clin Invest 1983; 72: 22–31
  • Kaul DK, Hebbel RP. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice [see comments]. J Clin Invest 2000; 106: 411–420
  • Kaul DK, Kollander R, Mahaseth H, Liu XD, Solovey A, Belcher J, Kelm RJ, Vercellotti GM, Hebbel RP. Robust vascular protective effect of hydroxamic acid derivatives in a sickle mouse model of inflammation. Microcirculation 2006; 13: 489–497
  • Kaul DK, Liu XD, Chang HY, Nagel RL, Fabry ME. Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice. J Clin Invest 2004; 114: 1136–1145
  • Kaul DK, Liu XD, Zhang X, Ma L, Hsia CJ, Nagel RL. Inhibition of sickle red cell adhesion and vaso-occlusion in the microcirculation by antioxidants. Am J Physiol Heart Circ Physiol 2006; 291: H167–H175
  • Kaul DK, Liu XD, Zhang X, Mankelow T, Parsons S, Spring F, An X, Mohandas N, Anstee D, Chasis JA. Peptides based on {alpha}V-binding domains of erythrocyte ICAM-4 inhibit sickle red cell-endothelial interactions and vaso-occlusion in the microcirculation. Am J Physiol Cell Physiol 2006; 291: C922–C930
  • Kaul DK, Tsai HM, Liu XD, Nakada MT, Nagel RL, Coller BS. Monoclonal antibodies to alphaVbeta3 (7E3 and LM609) inhibit sickle red blood cell-endothelium interactions induced by platelet-activating factor [see comments]. Blood 2000; 95: 368–374
  • Kaul DK, Tsai HM, Nagel RL, Chen D. Platelet-activating factor enhances adhesion of sickle erythrocytes to vascular endothelium: the role of vascular integrin (v(3 and von Willebrand factor. Sickle Cell Disease and Thalassemias: New Trends in Therapy (INSERM Symposium), Y Beuzard. INSERM/John Libbey Eurotext, MontrougeFrance 1995; 497–500
  • Kurose I, Argenbright LW, Wolf R, Granger DN. Oxidative stress during platelet-activating factor-induced microvascular dysfunction. Microcirculation 1996; 3: 401–410
  • La Celle PL. Alterations by leukocytes of erythrocyte flow in microchannels. Blood Cells 1986; 12: 179–189
  • Mankelow TJ, Spring FA, Parsons SF, Brady RL, Mohandas N, Chasis JA, Anstee DJ. Identification of critical amino-acid residues on the erythroid intercellular adhesion molecule-4 (ICAM-4) mediating adhesion to {alpha}V integrins. Blood 2003; 103: 1503–1508
  • Manodori AB, Matsui NM, Chen JY, Embury SH. Enhanced adherence of sickle erythrocytes to thrombin-treated endothelial cells involves interendothelial cell gap formation. Blood 1998; 92: 3445–3454
  • Matsui NM, Borsig L, Rosen SD, Yaghmai M, Varki A, Embury SH. P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood 2001; 98: 1955–1962
  • Matsui NM, Varki A, Embury SH. Heparin inhibits the flow adhesion of sickle red blood cells to P-selectin. Blood 2002; 100: 3790–3796
  • Mohandas N, Evans E. Sickle erythrocyte adherence to vascular endothelium. Morphologic correlates and the requirement for divalent cations and collagen-binding plasma proteins. J Clin Invest 1985; 76: 1605–1612
  • Ortiz A. Circulating endothelial cells in sickle cell anemia. N Engl J Med 1998; 338: 1162–1163
  • Pfaff M, Tangemann K, Muller B, Gurrath M, Muller G, Kessler H, Timpl R, Engel J. Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. J Biol Chem 1994; 269: 20233–20238
  • Platt OS. Sickle cell anemia as an inflammatory disease. J Clin Invest 2000; 106: 337–338
  • Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO, III, Schechter AN, Gladwin MT. 2002. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med 8:1383–1389.
  • Saleh AW, Duits AJ, Gerbers A, de Vries C, Hillen HF. Cytokines and soluble adhesion molecules in sickle cell anemia patients during hydroxyurea therapy. Acta Haematol 1998; 100: 26–31
  • Setty BN, Kulkarni S, Dampier CD, Stuart MJ. Fetal hemoglobin in sickle cell anemia: relationship to erythrocyte adhesion markers and adhesion. Blood 2001; 97: 2568–2573
  • Setty BN, Kulkarni S, Stuart MJ. Role of erythrocyte phosphatidylserine in sickle red cell–endothelial adhesion. Blood 2002; 99: 1564–1571
  • Smith BD, La Celle PL. Erythrocyte–endothelial cell adherence in sickle cell disorders. Blood 1986; 68: 1050–1054
  • Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP. Circulating activated endothelial cells in sickle cell anemia [see comments]. N Engl J Med 1997; 337: 1584–1590
  • Sowemimo-Coker SO, Meiselman HJ, Francis RB, Jr. 1989. Increased circulating endothelial cells in sickle cell crisis. Am J Hematol 31:263–265.
  • Space SL, Lane PA, Pickett CK, Weil JV. Nitric oxide attenuates normal and sickle red blood cell adherence to pulmonary endothelium. Am J Hematol 2000; 63: 200–204
  • Steinberg MH, Lu ZH, Barton FB, Terrin ML, Charache S, Dover GJ. Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Multicenter Study of Hydroxyurea. Blood 1997; 89: 1078–1088
  • Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA. Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist [see comments]. J Clin Invest 1999; 103: 47–54
  • Stuart MJ, Nagel RL. Sickle-cell disease. Lancet 2004; 364: 1343–1360
  • Suematsu M, Schmid-Schönbein GW, Chavez-Chavez RH, Yee TT, Tamatani T, Miyasaka M, DeLano FA, Zweifach BW. In vivo visualization of oxidative changes in microvessels during neutrophil activation. Am J Physiol 1993; 264: H881–H891
  • Sugihara K, Sugihara T, Mohandas N, Hebbel RP. Thrombospondin mediates adherence of CD36+ sickle reticulocytes to endothelial cells. Blood 1992; 80: 2634–2642
  • Sultana C, Shen Y, Rattan V, Johnson C, Kalra VK. Interaction of sickle erythrocytes with endothelial cells in the presence of endothelial cell conditioned medium induces oxidant stress leading to transendothelial migration of monocytes. Blood 1998; 92: 3924–3935
  • Swerlick RA, Eckman JR, Kumar A, Jeitler M, Wick TM. Alpha 4 beta 1-integrin expression on sickle reticulocytes: vascular cell adhesion molecule-1-dependent binding to endothelium. Blood 1993; 82: 1891–1899
  • Turhan A, Jenab P, Bruhns P, Ravetch JV, Coller BS, Frenette PS. Intravenous immune globulin prevents venular vaso-occlusion in sickle cell mice by inhibiting leukocyte adhesion and the interactions between sickle erythrocytes and adherent leukocytes. Blood 2004; 103: 2397–2400
  • Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A 2002; 99: 3047–3051
  • Villagra J, Shiva S, Hunter LA, Machado RF, Gladwin MT, Kato GJ. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood 2007; 110: 2166–2172
  • Wick TM, Moake JL, Udden MM, Eskin SG, Sears DA, McIntire LV. Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow. J Clin Invest 1987; 80: 905–910
  • Wood KC, Hebbel RP, Granger DN. Endothelial cell P-selectin mediates a proinflammatory and prothrombogenic phenotype in cerebral venules of sickle cell transgenic mice. Am J Physiol Heart Circ Physiol 2004; 286: H1608–H1614
  • Zennadi R, Hines PC, De Castro LM, Cartron JP, Parise LV, Telen MJ. Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW-alphavbeta3 interactions. Blood 2004; 104: 3774–3781
  • Zennadi R, Moeller BJ, Whalen EJ, Batchvarova M, Xu K, Shan S, Delahunty M, Dewhirst MW, Telen MJ. Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Blood 2007; 110: 2708–2717

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.