149
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Effect of Dominant-Negative Epidermal Growth Factor Receptors on Cardiomyocyte Hypertrophy

, , , , &
Pages 659-677 | Published online: 10 Oct 2008

REFERENCES

  • The World Health Report 2003: Shaping the Future. World Health Organization, Geneva 2003; 1–193
  • Solomon S D, Zelenkofske S, McMurray J J, Finn P V, Velazquez E, Ertl G, Harsanyi A, Rouleau J L, Maggioni A, Kober L, White H, Van de Werf F, Pieper K, Califf R M, Pfeffer M A. Sudden death in patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. N Engl J Med 2005; 352: 2581–2588
  • Hannan R D, Jenkins A, Jenkins A K, Brandenburger Y. Cardiac hypertrophy: A matter of translation. Clin Exp Pharmacol Physiol 2003; 30: 517–527
  • Frey N, Olson E N. Cardiac hypertrophy: The good, the bad, and the ugly. Annu Rev Physiol 2003; 65: 45–79
  • Shah B H, Catt K J. A central role of EGF receptor transactivation in angiotensin II–induced cardiac hypertrophy. Trends Pharmacol Sci 2003; 24: 239–244
  • Thomas W G, Brandenburger Y, Autelitano D J, Pham T, Qian H, Hannan R D. Adenoviral-directed expression of the type 1A angiotensin receptor promotes cardiomyocyte hypertrophy via transactivation of the epidermal growth factor receptor. Circ Res 2002; 90: 135–142
  • Paradis P, Dali-Youcef N, Paradis F W, Thibault G, Nemer M. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA 2000; 97: 931–936
  • Dostal D E, Baker K M. Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart. Mediation by the AT1 receptor. Am J Hypertens 1992; 5: 276–280
  • Baker K M, Aceto J F. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 1990; 259: H610–618
  • Schunkert H, Jackson B, Tang S S, Schoen F J, Smits J F, Apstein C S, Lorell B H. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Circulation 1993; 87: 1328–1339
  • Meggs L G, Coupet J, Huang H, Cheng W, Li P, Capasso J M, Homcy C J, Anversa P. Regulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ Res 1993; 72: 1149–1162
  • Baker K M, Chernin M I, Wixson S K, Aceto J F. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 1990; 259: H324–332
  • De Rosa M L, Cardace P, Rossi M, Baiano A, de Cristofaro A. Comparative effects of chronic ACE inhibition and AT1 receptor blocked losartan on cardiac hypertrophy and renal function in hypertensive patients. J Hum Hypertens 2002; 16: 133–140
  • Thurmann P A. Angiotensin II antagonism and the heart: Valsartan in left ventricular hypertrophy. Cardiology 1999; 91: 3–7, Suppl 1
  • Kang P M, Landau A J, Eberhardt R T, Frishman W H. Angiotensin II receptor antagonists: A new approach to blockade of the renin-angiotensin system. Am Heart J 1994; 127: 1388–1401
  • De Gasparo M, Catt K J, Inagami T, Wright J W, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2000; 52: 415–472
  • Thomas W G. Regulation of angiotensin II type 1 (AT1) receptor function. Regul Pept 1999; 79: 9–23
  • Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 1999; 402: 884–888
  • Daub H, Weiss F U, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 1996; 379: 557–560
  • Yahata Y, Shirakata Y, Tokumaru S, Yang L, Dai X, Tohyama M, Tsuda T, Sayama K, Iwai M, Horiuchi M, Hashimoto K. A novel function of angiotensin II in skin wound healing: Induction of fibroblast and keratinocyte migration by angiotensin II via heparin-binding epidermal growth factor (EGF)-like growth factor-mediated EGF receptor transactivation. J Biol Chem 2006; 281: 13209–13216
  • Gschwind A, Hart S, Fischer O M, Ullrich A. TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J 2003; 22: 2411–2421
  • Lin J, Freeman M R. Transactivation of ErbB1 and ErbB2 receptors by angiotensin II in normal human prostate stromal cells. Prostate 2003; 54: 1–7
  • Saito S, Frank G D, Motley E D, Dempsey P J, Utsunomiya H, Inagami T, Eguchi S. Metalloprotease inhibitor blocks angiotensin II-induced migration through inhibition of epidermal growth factor receptor transactivation. Biochem Biophys Res Commun 2002; 294: 1023–1029
  • Hao L, Du M, Lopez-Campistrous A, Fernandez-Patron C. Agonist-induced activation of matrix metalloproteinase-7 promotes vasoconstriction through the epidermal growth factor-receptor pathway. Circ Res 2004; 94: 68–76
  • Holbro T, Hynes N E. ErbB receptors: Directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 2004; 44: 195–217
  • Burgess A W, Cho H S, Eigenbrot C, Ferguson K M, Garrett T P, Leahy D J, Lemmon M A, Sliwkowski M X, Ward C W, Yokoyama S. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 2003; 12: 541–552
  • Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103: 211–225
  • Olayioye M A, Neve R M, Lane H A, Hynes N E. The ErbB signaling network: Receptor heterodimerization in development and cancer. EMBO J 2000; 19: 3159–3167
  • Hurwitz D R, Emanuel S L, Nathan M H, Sarver N, Ullrich A, Felder S, Lax I, Schlessinger J. EGF induces increased ligand binding affinity and dimerization of soluble epidermal growth factor (EGF) receptor extracellular domain. J Biol Chem 1991; 266: 22035–22043
  • Jones J T, Akita R W, Sliwkowski M X. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett 1999; 447: 227–231
  • Shi W, Chen H, Sun J, Buckley S, Zhao J, Anderson K D, Williams R G, Warburton D. TACE is required for fetal murine cardiac development and modeling. Dev Biol 2003; 261: 371–380
  • Iwamoto R, Yamazaki S, Asakura M, Takashima S, Hasuwa H, Miyado K, Adachi S, Kitakaze M, Hashimoto K, Raab G, Nanba D, Higashiyama S, Hori M, Klagsbrun M, Mekada E. Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc Natl Acad Sci USA 2003; 100: 3221–3226
  • Ozcelik C, Erdmann B, Pilz B, Wettschureck N, Britsch S, Hubner N, Chien K R, Birchmeier C, Garratt A N. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci USA 2002; 99: 8880–8885
  • Erickson S L, O'Shea K S, Ghaboosi N, Loverro L, Frantz G, Bauer M, Lu L H, Moore M W. ErbB3 is required for normal cerebellar and cardiac development: A comparison with ErbB2-and heregulin-deficient mice. Development 1997; 124: 4999–5011
  • Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature 1995; 378: 386–390
  • Slamon D J, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792
  • Rodrigues S, Attoub S, Nguyen Q D, Bruyneel E, Rodrigue C M, Westley B R, May F E, Thim L, Mareel M, Emami S, Gespach C. Selective abrogation of the proinvasive activity of the trefoil peptides pS2 and spasmolytic polypeptide by disruption of the EGF receptor signaling pathways in kidney and colonic cancer cells. Oncogene 2003; 22: 4488–4497
  • Redemann N, Holzmann B, von Ruden T, Wagner E F, Schlessinger J, Ullrich A. Anti-oncogenic activity of signalling-defective epidermal growth factor receptor mutants. Mol Cell Biol 1992; 12: 491–498
  • He T C, Zhou S, da Costa L T, Yu J, Kinzler K W, Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514
  • Iwaki K, Sukhatme V P, Shubeita H E, Chien K R. α-and β-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an α1-mediated response. J Biol Chem 1990; 265: 13809–13817
  • Levitzki A, Gazit A. Tyrosine kinase inhibition: An approach to drug development. Science 1995; 267: 1782–1788
  • Osherov N, Levitzki A. Epidermal-growth-factor-dependent activation of the src-family kinases. Eur J Biochem 1994; 225: 1047–1053
  • Matsui T, Li L, del Monte F, Fukui Y, Franke T F, Hajjar R J, Rosenzweig A. Adenoviral gene transfer of activated phosphatidylinositol 3′-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 1999; 100: 2373–2379
  • Andreev J, Galisteo M L, Kranenburg O, Logan S K, Chiu E S, Okigaki M, Cary L A, Moolenaar W H, Schlessinger J. Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J Biol Chem 2001; 276: 20130–20135
  • Drube S, Stirnweiss J, Valkova C, Liebmann C. Ligand-independent and EGF receptor-supported transactivation: Lessons from β2-adrenergic receptor signalling. Cell Signal 2006, (Epub ahead of print)
  • Lautrette A, Li S, Alili R, Sunnarborg S W, Burtin M, Lee D C, Friedlander G, Terzi F. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: A new therapeutic approach. Nat Med 2005; 11: 867–874
  • Buteau J, Foisy S, Joly E, Prentki M. Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 2003; 52: 124–132
  • Janes P W, Saha N, Barton W A, Kolev M V, Wimmer-Kleikamp S H, Nievergall E, Blobel C P, Himanen J P, Lackmann M, Nikolov D B. Adam meets Eph: An ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123: 291–304
  • Tikhomirov O, Carpenter G. Ligand-induced, p38-dependent apoptosis in cells expressing high levels of epidermal growth factor receptor and ErbB-2. J Biol Chem 2004; 279: 12988–12996
  • Giani C, Casalini P, Pupa S M, De Vecchi R, Ardini E, Colnaghi M I, Giordano A, Menard S. Increased expression of c-erbB-2 in hormone-dependent breast cancer cells inhibits cell growth and induces differentiation. Oncogene 1998; 17: 425–432
  • Crone S A, Zhao Y Y, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson K L, Chen J, Kahn R, Condorelli G, Ross J, Jr, Chien K R, Lee K F. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 2002; 8: 459–465
  • Garrett T P, McKern N M, Lou M, Elleman T C, Adams T E, Lovrecz G O, Kofler M, Jorissen R N, Nice E C, Burgess A W, Ward C W. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 2003; 11: 495–505
  • Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim J H, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 2002; 110: 775–787
  • Garrett T P, McKern N M, Lou M, Elleman T C, Adams T E, Lovrecz G O, Zhu H J, Walker F, Frenkel M J, Hoyne P A, Jorissen R N, Nice E C, Burgess A W, Ward C W. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 2002; 110: 763–773
  • Sako Y, Ichinose J, Morimatsu M, Ohta K, Uyemura T. Optical bioimaging: from living tissue to a single molecule: Single-molecule visualization of cell signaling processes of epidermal growth factor receptor. J Pharmacol Sci 2003; 93: 253–258
  • Sako Y, Minoghchi S, Yanagida T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2000; 2: 168–172
  • Huang G C, Ouyang X, Epstein R J. Proxy activation of protein ErbB2 by heterologous ligands implies a heterotetrameric mode of receptor tyrosine kinase interaction. Biochem J 1998; 331: 113–119
  • Clayton A H, Walker F, Orchard S G, Henderson C, Fuchs D, Rothacker J, Nice E C, Burgess A W. Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis. J Biol Chem 2005; 280: 30392–30399
  • Sharpe S, Barber K R, Grant C W. Interaction between ErbB-1 and ErbB-2 transmembrane domains in bilayer membranes. FEBS Lett 2002; 519: 103–107
  • Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon W Y, Beguinot L, Geiger B, Yarden Y. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 1998; 12: 3663–3674
  • Lill N L, Douillard P, Awwad R A, Ota S, Lupher M L, Jr, Miyake S, Meissner-Lula N, Hsu V W, Band H. The evolutionarily conserved N-terminal region of Cbl is sufficient to enhance down-regulation of the epidermal growth factor receptor. J Biol Chem 2000; 275: 367–377
  • Thien C B, Walker F, Langdon W Y. RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol Cell 2001; 7: 355–365
  • Baulida J, Kraus M H, Alimandi M, Di Fiore P P, Carpenter G. All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 1996; 271: 5251–5257

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.