244
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Regulation of G Protein-Coupled Receptor Signaling by A-Kinase Anchoring Proteins

, &
Pages 631-646 | Published online: 10 Oct 2008

REFERENCES

  • Taylor S S, Buechler J A, Yonemoto W. cAMP-dependent protein kinase: Framework for a diverse family of regulatory enzymes. Annu Rev Biochem 1990; 59: 971–1005
  • Scott J D. Cyclic nucleotide-dependent protein kinases. Pharmacol Ther 1991; 50: 123–145
  • Francis S H, Corbin J D. Structure and function of cyclic nuleotide-dependent protein kinases. Annu Rev Physiol 1994; 56: 237–272
  • Scott J D, Carr D W. Subcellular localization of the type II cAMP-dependent protein kinase. News Phys Sci 1992; 7: 143–148
  • Colledge M, Scott J D. AKAPs: From structure to function. Trends Cell Biol 1999; 9: 216–221
  • Wong W, Scott J D. AKAP signalling complexes: Focal points in space and time. Nat Rev Mol Cell Biol 2004; 12: 959–970
  • Michel J J, Scott J D. AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol 2002; 42: 235–257
  • Carr D W, Stofko-Hahn R E, Fraser I DC, Bishop S M, Acott T S, Brennan R G, Scott J D. Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 1991; 266: 14188–14192
  • Hausken Z E, Coghlan V M, Hasting C AS, Reimann E M, Scott J D, Type I I. regulatory subunit (RII) of the cAMP dependent protein kinase interaction with A-kinase anchor proteins requires isoleucines 3 and 5. J Biol Chem 1994; 269: 24245–24251
  • Newlon M G, Roy M, Hausken Z E, Scott J D, Jennings P A. The A-kinase anchoring domain of type IIa cAMP-dependent protein kinase is highly helical. J Biol Chem 1997; 272: 23637–23644
  • Newlon M G, Roy M, Morikis D, Hausken Z E, Coghlan V, Scott J D, Jennings P A. The molecular basis for protein kinase A anchoring revealed by solution NMR. Nat Struct Biol 1999; 6: 222–227
  • Diviani D, Scott J D. AKAP signaling complexes at the cytoskeleton. J Cell Sci 2001; 114: 1431–1437
  • Malbon C C, Tao J, Wang H Y. AKAPs (A-kinase anchoring proteins) and molecules that compose their G-protein-coupled receptor signalling complexes. Biochem J 2004; 379: 1–9
  • Dodge K, Scott J D. AKAP79 and the evolution of the AKAP model. FEBS Lett 2000; 476: 58–61
  • Coghlan V M, Perrino B A, Howard M, Langeberg L K, Hicks J B, Gallatin W M, Scott J D. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 1995; 267: 108–112
  • Klauck T M, Faux M C, Labudda K, Langeberg L K, Jaken S, Scott J D. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 1996; 271: 1589–1592
  • Colledge M, Dean R A, Scott G K, Langeberg L K, Huganir R L, Scott J D. Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 2000; 27: 107–119
  • Tavalin S J, Colledge M, Hell J W, Langeberg L K, Huganir R L, Scott J D. Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J Neurosci 2002; 22: 3044–3051
  • Gao T, Yatani A, Dell'Acqua M L, Sako H, Green S A, Dascal N, Scott J D, Hosey M M. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997; 19: 185–196
  • Hoshi N, Zhang J S, Omaki M, Takeuchi T, Yokoyama S, Wanaverbecq N, Langeberg L K, Yoneda Y, Scott J D, Brown D A, Higashida H. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci 2003; 6: 564–571
  • Dell'Acqua M L, Faux M C, Thorburn J, Thorburn A, Scott J D. Membrane-targeting sequences on AKAP79 bind phosphatidylinositol-4,5-bisphosphate. EMBO J 1998; 17: 2246–2260
  • Fraser I, Cong M, Kim J, Rollins E, Daaka Y, Lefkowitz R, Scott J. Assembly of an AKAP/β2-adrenergic receptor signaling complex facilitates receptor phosphorylation and signaling. Curr Biol 2000; 10: 409–412
  • Cong M, Perry S J, Lin F T, Fraser I D, Hu L A, Chen W, Pitcher J A, Scott J D, Lefkowitz R J. Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. J Biol Chem 2001; 22: 22–30
  • Daaka Y, Luttrell L M, Lefkowitz R J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997; 390: 88–91
  • Zou Y, Komuro I, Yamazaki T, Kudoh S, Uozumi H, Kadowaki T, Yazaki Y. Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J Biol Chem 1999; 274: 9760–9770
  • Luo X, Zeng W, Xu X, Popov S, Davignon I, Wilkie T M, Mumby S M, Muallem S. Alternate coupling of receptors to Gs and Gi in pancreatic and submandibular gland cells. J Biol Chem 1999; 274: 17684–17690
  • Freedman N J, Lefkowitz R J. Desensitization of G protein-coupled receptors. Recent Prog Horm Res 1996; 51: 319–351
  • Lefkowitz R J. G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J Biol Chem 1998; 273: 18677–18680
  • Gordon T, Grove B, Loftus J C, O'Toole T, McMillan R, Lindstrom J, Ginsberg M H. Molecular cloning and preliminary characterization of a novel cytoplasmic antigen recognized by myasthenia gravis sera. J Clin Invest 1992; 90: 992–999
  • Nauert J B, Klauck T M, Langeberg L K, Scott J D. Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffold protein. Curr Biol 1997; 7: 52–62
  • Wang H, Tao J, Shumay E, Malbon C C. G-protein-coupled receptor-associated A-kinase anchoring proteins: AKAP79 and AKAP250 (gravin). Eur J Cell Biol 2006; 85: 643–650
  • Shih M, Lin F, Scott J D, Wang H Y, Malbon C C. Dynamic complexes of β2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J Biol Chem 1999; 274: 1588–1595
  • Lin F, Wang H, Malbon C C. Gravin-mediated formation of signaling complexes in β2-adrenergic receptor desensitization and resensitization. J Biol Chem 2000; 275: 19025–19034
  • Fan G, Shumay E, Wang H, Malbon C C. The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the β2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization. J Biol Chem 2001; 276: 24005–24014
  • Tao J, Wang H Y, Malbon C C. Protein kinase A regulates AKAP250 (gravin) scaffold binding to the β2-adrenergic receptor. EMBO J 2003; 22: 6419–6429
  • Vijayaraghavan S, Liberty G A, Mohan J, Winfrey V P, Olson G E, Carr D W. Isolation and molecular characterization of AKAP110, a novel, sperm-specific protein kinase A-anchoring protein. Mol Endocrinol 1999; 13: 705–717
  • Luconi M, Carloni V, Marra F, Ferruzzi P, Forti G, Baldi E. Increased phosphorylation of AKAP by inhibition of phosphatidylinositol 3-kinase enhances human sperm motility through tail recruitment of protein kinase A. J Cell Sci 2004; 117: 1235–1246
  • Niu J, Vaiskunaite R, Suzuki N, Kozasa T, Carr D W, Dulin N, Voyno-Yasenetskaya T A. Interaction of heterotrimeric G13 protein with an A-kinase-anchoring protein 110 (AKAP110) mediates cAMP-independent PKA activation. Curr Biol 2001; 11: 1686–1690
  • Dulin N O, Niu J, Browning D D, Ye R D, Voyno-Yasenetskaya T. Cyclic AMP-independent activation of protein kinase A by vasoactive peptides. J Biol Chem 2001; 276: 20827–20830
  • Diviani D, Soderling J, Scott J D. AKAP-Lbc anchors protein kinase A and nucleates Gα12-selective Rho-mediated stress fiber formation. J Biol Chem 2001; 276: 44247–44257
  • Klussmann E, Edemir B, Pepperle B, Tamma G, Henn V, Klauschenz E, Hundsrucker C, Maric K, Rosenthal W. Ht31: The first protein kinase A anchoring protein to integrate protein kinase A and Rho signaling. FEBS Lett 2001; 507: 264–268
  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420: 629–635
  • Zheng Y. Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 2001; 26: 724–732
  • Sah V P, Seasholtz T M, Sagi S A, Brown J H. The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol 2000; 40: 459–489
  • Booden M A, Siderovski D P, Der C J. Leukemia-associated Rho guanine nucleotide exchange factor promotes Gαq-coupled activation of RhoA. Mol Cell Biol 2002; 22: 4053–4061
  • Fukuhara S, Murga C, Zohar M, Igishi T, Gutkind J S. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem 1999; 274: 5868–5879
  • Fukuhara S, Chikumi H, Gutkind J S. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G12 family to Rho. FEBS Lett 2000; 485: 183–188
  • Hart M J, Jiang X, Kozasa T, Roscoe W, Singer W D, Gilman A G, Sternweis P C, Bollag G. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13. Science 1998; 280: 2112–2114
  • Kozasa T, Jiang X, Hart M J, Sternweis P M, Singer W D, Gilman A G, Bollag G, Sternweis P C. p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13. Science 1998; 280: 2109–2111
  • Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 1996; 15: 510–519
  • Ellerbroek S M, Wennerberg K, Burridge K. Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 2003; 278: 19023–19031
  • Manganello J M, Huang J S, Kozasa T, Voyno-Yasenetskaya T A, Le Breton G C. Protein kinase A-mediated phosphorylation of the Gα13 switch I region alters the Gαβγ13-G protein-coupled receptor complex and inhibits Rho activation. J Biol Chem 2003; 278: 124–130
  • Diviani D, Abuin L, Cotecchia S, Pansier L. Anchoring of both PKA and 14-3-3 inhibits the Rho-GEF activity of the AKAP-Lbc signaling complex. EMBO J 2004; 23: 2811–2820
  • Jin J, Smith F D, Stark C, Wells C D, Fawcett J P, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett J R, Langeberg L K, Scott J D, Pawson T. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 2004; 14: 1436–1450
  • Baisamy L, Jurisch N, Diviani D. Leucine zipper-mediated homo-oligomerization regulates the Rho-GEF activity of AKAP-Lbc. J Biol Chem 2005; 280: 15405–15412
  • Carnegie G K, Smith F D, McConnachie G, Langeberg L K, Scott J D. AKAP-Lbc nucleates a protein kinase D activation scaffold. Mol Cell 2004; 15: 889–899
  • Oliveria S F, Gomez L L, Dell'Acqua M L. Imaging kinase–AKAP79–phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J Cell Biol 2003; 160: 101–112
  • Yamaguchi Y, Katoh H, Mori K, Negishi M. Gα12 and Gα13 interact with Ser/Thr protein phosphatase type 5 and stimulate its phosphatase activity. Curr Biol 2003; 12: 1353–1358

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.