284
Views
33
CrossRef citations to date
0
Altmetric
Review Article

New Natural Noncannabinoid Ligands for Cannabinoid Type-2 (CB2) Receptors

, &
Pages 709-730 | Published online: 10 Oct 2008

REFERENCES

  • Devane W A, Dysarz F A, Johnson M R, Melvin L S, Howlett A C. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988; 34: 605–613
  • Howlett A C, Bidaut-Russell M, Devane W A, Melvin L S, Johnson M R, Herkenham M. The cannabinoid receptor: Biochemical, anatomical and behavioral characterization. Trends Neurosci 1990; 13: 420–423
  • Herkenham M, Lynn A B, Little M D, Johnson M R, Melvin L S, de Costa B R, Rice K C. Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 1990; 87: 1932–1936
  • Herkenham M, Lynn A B, Johnson M R, Melvin L S, de Costa B R, Rice K C. Characterization and localization of cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. J Neurosci 1991; 11: 563–583
  • Mailleux P, Vanderhaeghen J J. Localization of cannabinoid receptor in the human developing and adult basal ganglia. Higher levels in the striatonigral neurons. Neurosci Lett 1992; 148: 173–176
  • Munro S, Thomas K L, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365: 61–65
  • Cabral G A, Marciano-Cabral F. Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol 2005; 78: 1192–1197
  • Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 2005; 168: 299–325
  • Gong J P, Onaivi E S, Ishiguro H, Liu Q R, Tagliaferro P A, Brusco A, Uhl G R. Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain. Brain Res 2006; 1071: 10–23
  • Howlett A C, Barth F, Bonner T I, Cabral G, Casellas P, Devane W A, Felder C C, Herkenham M, Mackie K, Martin B R, Mechoulam R, Pertwee R G. International Union of Pharmacology, XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002; 54: 161–202
  • Howlett A C. Cannabinoid receptor signalling. Handb Exp Pharmacol 2005; 168: 53–79
  • Devane W A, Hanus L, Breuer A, Pertwee R G, Stevenson L A, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258: 1946–1949
  • Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz J C, Piomelli D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994; 372: 686–691
  • Thomas B F, Adams I B, Mascarella S W, Martin B R, Razdan R K. Structure-activity analysis of anandamide analogs: Relationship to a cannabinoid pharmacophore. J Med Chem 1996; 39: 471–479
  • Ligresti A, Cascio M G, Di Marzo V. Endocannabinoid metabolic pathways and enzymes. Curr Drug Targets CNS Neurol Disord 2005; 4: 615–623
  • Mechoulam R, Fride E, Di Marzo V. Endocannabinoids. Eur J Pharmacol 1998; 359: 1–18
  • Klein T W, Newton C, Larsen K, Lu L, Perkins I, Nong L, Friedman H. The cannabinoid system and immune modulation. J Leukoc Biol 2003; 74: 486–496
  • Kogan N M, Mechoulam R. The chemistry of endocannabinoids. J Endocrinol Invest 2006; 29: 3–14
  • Appendino G, Minassi A, Berton L, Moriello A S, Cascio M G, De Petrocellis L, Di Marzo V. Oxyhomologues of anandamide and related endolipids: chemoselective synthesis and biological activity. J Med Chem 2006; 49: 2333–2338
  • Appendino G, Cascio M G, Bacchiega S, Moriello A S, Minassi A, Thomas A, Ross R, Pertwee R, De Petrocellis L, Di Marzo V. First “hybrid” ligands of vanilloid TRPV1 and cannabinoid CB2 receptors and non-polyunsaturated fatty acid-derived CB2-selective ligands. FEBS Lett 2006; 580: 568–574
  • Mahadevan A, Razdan R K. Further advances in the synthesis of endocannabinoid-related ligands. AAPS J 2005; 7: E496–502
  • Lambert D M, Fowler C J. The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications. J Med Chem 2005; 48: 5059–5087
  • Mackie K. Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 2006; 46: 101–122
  • Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 2004; 3: 771–784
  • Alberich Jorda M, Rayman N, Tas M, Verbakel S E, Battista N, van Lom K, Lowenberg B, Maccarrone M, Delwel R. The peripheral cannabinoid receptor CB2, frequently expressed on AML blasts, either induces a neutrophilic differentiation block or confers abnormal migration properties in a ligand-dependent manner. Blood 2004; 104: 526–534
  • Sarfaraz S, Afaq F, Adhami V M, Mukhtar H. Cannabinoid receptor as a novel target for the treatment of prostate cancer. Cancer Res 2005; 65: 1635–1641
  • McKallip R J, Lombard C, Fisher M, Martin B R, Ryu S, Grant S, Nagarkatti P S, Nagarkatti M. Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. Blood 2002; 100: 627–634
  • http://www.pharmoscorp.com/development/cannabinor.htmlCB-2 Selective Program: Cannabinor. Pharmos Web Site. Available at, Accessed June 23, 2006
  • Lavon I, Sheinin T, Meilin S, Biton E, Weksler A, Efroni G, Bar-Joseph A, Fink G, Avraham A. A novel synthetic cannabinoid derivative inhibits inflammatory liver damage via negative cytokine regulation. Mol Pharmacol 2003; 64: 1334–1341
  • Reggio P H. Cannabinoid receptors and their ligands: ligand-ligand and ligand-receptor modeling approaches. Handb Exp Pharmacol 2005; 168: 247–281
  • Hohmann A G, Suplita R L, Bolton N M, Neely M H, Fegley D, Mangieri R, Krey J F, Walker J M, Holmes P V, Crystal J D, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D. An endocannabinoid mechanism for stress-induced analgesia. Nature 2005; 435: 1108–1112
  • Hohmann A G, Farthing J N, Zvonok A M, Makriyannis A. Selective activation of cannabinoid CB2 receptors suppresses hyperalgesia evoked by intradermal capsaicin. J Pharmacol Exp Ther 2004; 308: 446–453
  • Ibrahim M M, Deng H, Zvonok A, Cockayne D A, Kwan J, Mata H P, Vanderah T W, Lai J, Porreca F, Makriyannis A, Malan T P, Jr. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci USA 2003; 100: 10529–10533
  • Ibrahim M M, Rude M L, Stagg N J, Mata H P, Lai J, Vanderah T W, Porreca F, Buckley N E, Makriyannis A, Malan T P, Jr. CB2 cannabinoid receptor mediation of antinociception. Pain 2006; 122: 36–42
  • Malan T P, Jr., Ibrahim M M, Deng H, Liu Q, Mata H P, Vanderah T, Porreca F, Makriyannis A. CB2 cannabinoid receptor-mediated peripheral antinociception. Pain 2001; 93: 239–245
  • Ibrahim M M, Porreca F, Lai J, Albrecht P J, Rice F L, Khodorova A, Davar G, Makriyannis A, Vanderah T W, Mata H P, Malan T P, Jr. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci USA 2005; 102: 3093–3098
  • Wotherspoon G, Fox A, McIntyre P, Colley S, Bevan S, Winter J. Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience 2005; 135: 235–245
  • Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, Tam J, Attar-Namdar M, Kram V, Shohami E, Mechoulam R, Zimmer A, Bab I. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci USA 2006; 103: 696–701
  • Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U, Essig J, Erxlebe E, Bab I, Kubisch C, de Vernejoul M C, Zimmer A. Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 2005; 14: 3389–3396
  • Idris A I, van't Hof R J, Greig I R, Ridge S A, Baker D, Ross R A, Ralston S H. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 2005; 11: 774–779
  • Steffens S, Veillard N R, Arnaud C, Pelli G, Burger F, Staub C, Karsak M, Zimmer A, Frossard J L, Mach F. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 2005; 434: 782–786
  • Ramirez B G, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos M L. Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 2005; 25: 1904–1913
  • Benito C, Kim W K, Chavarria I, Hillard C J, Mackie K, Tolon R M, Williams K, Romero J. A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J Neurosci 2005; 25: 2530–2536
  • Adam J, Cowley P M, Kiyoi T, Morrison A J, Mort C JW. Recent progress in cannabinoid research. Progr Med Chem 2006; 44: 208–313
  • Griffin G, Wray E J, Tao Q, McAllister S D, Rorrer W K, Aung M M, Martin B R, Abood M E. Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central nervous system. Eur J Pharmacol 1999; 377: 117–125
  • Pertwee R, Griffin G, Fernando S, Li X, Hill A, Makriyannis A. AM630, a competitive cannabinoid receptor antagonist. Life Sci 1995; 56: 1949–1955
  • Huffman J W. CB2 receptor ligands. Mini Rev Med Chem 2005; 5: 641–649
  • Rhee M H, Kim S K. SR144528 as inverse agonist of CB2 cannabinoid receptor. J Vet Sci 2002; 3: 179–184
  • Raduner S, Majewska A, Chen J Z, Xie X Q, Hamon J, Faller B, Altmann K H, Gertsch J. Alkylamides from Echinacea are a new class of cannabinomimetics. Cannabinoid type 2 receptor-dependent and-independent immunomodulatory effects. J Biol Chem 2006; 281: 14192–14206
  • Iwamura H, Suzuki H, Ueda Y, Kaya T, Inaba T. In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J Pharmacol Exp Ther 2001; 296: 420–425
  • Ueda Y, Miyagawa N, Matsui T, Kaya T, Iwamura H. Involvement of cannabinoid CB2 receptor-mediated response and efficacy of cannabinoid CB2 receptor inverse agonist, JTE-907, in cutaneous inflammation in mice. Eur J Pharmacol 2005; 520: 164–171
  • Pertwee R, Griffin G, Fernando S, Li X, Hill A, Makriyannis A. AM630, a competitive cannabinoid receptor antagonist. Life Sci 1995; 56: 1949–1955
  • Chapman K D. Occurrence, metabolism, and prospective functions of N-acylethanolamines in plants. Prog Lipid Res 2004; 43: 302–327
  • Ramirez-Chavez E, Lopez-Bucio J, Herrera-Estrella L, Molina-Torres J. Alkamides isolated from plants promote growth and alter root development in Arabidopsis. Plant Physiol 2004; 134: 1058–1068
  • Molina-Torres J, Salazar-Cabrera C J, Armenta-Salinas C, Ramirez-Chavez E. Fungistatic and bacteriostatic activities of alkamides from Heliopsis longipes roots: affinin and reduced amides. J Agric Food Chem 2004; 52: 4700–4704
  • Lait C G, Alborn H T, Teal P E, Tumlinson J H. 3rd. Rapid biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta. Proc Natl Acad Sci USA 2003; 100: 7027–7032
  • Chapman K D, Venables B, Markovic R, Blair R W, Jr., Bettinger C. N-Acylethanolamines in seeds. Quantification of molecular species and their degradation upon imbibition. Plant Physiol 1999; 120: 1157–1164
  • Di Marzo V, Sepe N, De Petrocellis L, Berger A, Crozier G, Fride E, Mechoulam R. Trick or treat from food endocannabinoids?. Nature 1998; 396: 636–637
  • Cravatt B F, Lichtman A H. Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr Opin Chem Biol 2003; 7: 469–475
  • Gertsch J, Schoop R, Kuenzle U, Suter A. Echinacea alkylamides modulate TNF-alpha gene expression via cannabinoid receptor CB2 and multiple signal transduction pathways. FEBS Lett 2004; 577: 563–569
  • Woelkart K, Xu W, Pei Y, Makriyannis A, Picone R P, Bauer R. The endocannabinoid system as a target for alkamides from Echinacea angustifolia roots. Planta Med 2005; 71: 701–705
  • Muller-Jakic B, Breu W, Probstle A, Redl K, Greger H, Bauer R. In vitro inhibition of cyclooxygenase and 5-lipoxygenase by alkamides from Echinacea and Achillea species. Planta Med 1994; 60: 37–40
  • Greger H. Comparative Phytochemistry of Alkamides. Elsevier, New York 1988
  • Bryant B P, Mezine I. Alkylamides that produce tingling paresthesia activate tactile and thermal trigeminal neurons. Brain Res 1999; 842: 452–460
  • Lin S, Khanolkar A D, Fan P, Goutopoulos A, Qin C, Papahadjis D, Makriyannis A. Novel analogues of arachidonylethanolamide (anandamide): Affinities for the CB1 and CB2 cannabinoid receptors and metabolic stability. J Med Chem 1998; 41: 5353–5361
  • Woelkart K, Koidl C, Grisold A, Gangemi J D, Turner R B, Marth E, Bauer R. Bioavailability and pharmacokinetics of alkamides from the roots of Echinacea angustifolia in humans. J Clin Pharmacol 2005; 45: 683–689
  • Matthias A, Addison R S, Penman K G, Dickinson R G, Bone K M, Lehmann R P. Echinacea alkamide disposition and pharmacokinetics in humans after tablet ingestion. Life Sci 2005; 77: 2018–2029
  • Lipinski C A, Lombardo F, Dominy B W, Feeney P J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46: 3–26
  • Sugiura T, Kondo S, Kishimoto S, Miyashita T, Nakane S, Kodaka T, Suhara Y, Takayama H, Waku K. Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem 2000; 275: 605–612
  • Zoratti C, Kipmen-Korgun D, Osibow K, Malli R, Graier W F. Anandamide initiates Ca2+ signaling via CB2 receptor linked to phospholipase C in calf pulmonary endothelial cells. Br J Pharmacol 2003; 140: 1351–1362
  • Rao G K, Zhang W, Kaminski N E. Cannabinoid receptor-mediated regulation of intracellular calcium by delta9-tetrahydrocannabinol in resting T cells. J Leukoc Biol 2004; 75: 884–892
  • Rao G K, Kaminski N E. Cannabinoid-mediated elevation of intracellular calcium: a structure-activity relationship. J Pharmacol Exp Ther 2006; 317: 820–829
  • Chen Y, Fu T, Tao T, Yang J, Chang Y, Wang M, Kim L, Qu L, Cassady J, Scalzo R, Wang X. Macrophage activating effects of new alkamides from the roots of Echinacea species. J Nat Prod 2005; 68: 773–776
  • Baldwin G C, Tashkin D P, Buckley D M, Park A N, Dubinett S M, Roth M D. Marijuana and cocaine impair alveolar macrophage function and cytokine production. Am J Respir Crit Care Med 1997; 156: 1606–1613
  • Klein T W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 2005; 5: 400–411
  • Klein T W, Newton C, Widen R, Friedman H. Delta 9-tetrahydrocannabinol injection induces cytokine-mediated mortality of mice infected with Legionella pneumophila. J Pharmacol Exp Ther 1993; 267: 635–640
  • Kishimoto S, Kobayashi Y, Oka S, Gokoh M, Waku K, Sugiura T. 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces accelerated production of chemokines in HL-60 cells. J Biochem 2004; 135: 517–524
  • Sasagawa M, Cech N B, Gray D E, Elmer G W, Wenner C A. Echinacea alkylamides inhibit interleukin-2 production by Jurkat T cells. Int Immunopharmacol 2006; 6: 1214–1221

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.