943
Views
104
CrossRef citations to date
0
Altmetric
Research Article

G Protein-Coupled Receptors in and on the Cell Nucleus: A New Signaling Paradigm?

, , &
Pages 15-28 | Published online: 10 Oct 2008

REFERENCES

  • Lefkowitz R J, Rajagopal K, Whalen E J. New roles for β -arrestins in cell signaling: not just for seven-transmembrane receptors. Molecular Cell 2006; 24(5)643–652
  • Shenoy S K, Drake M T, Nelson C D, Houtz D A, Xiao K, Madabushi S, Reiter E, Premont R T, Lichtarge O, Lefkowitz R J. β -arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. The Journal of Biological Chemistry 2006; 281(2)1261–1273
  • Shenoy S K, Lefkowitz R J. Angiotensin II-stimulated signaling through G proteins and β -arrestin. Sci STKE 2005; 2005(311), cm14
  • Gesty-Palmer D, Chen M, Reiter E, Ahn S, Nelson C D, Wang S, Eckhardt A E, Cowan C L, Spurney R F, Luttrell L M, Lefkowitz R J. Distinct β -arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. The Journal of Biological Chemistry 2006; 281(16)10856–10864
  • Smith N J, Luttrell L M. Signal switching, crosstalk, arrestin scaffolds: novel G protein-coupled receptor signaling in cardiovascular disease. Hypertension 2006; 48(2)173–179
  • Jones K A, Borowsky B, Tamm J A, Craig D A, Durkin M M, Dai M, Yao W J, Johnson M, Gunwaldsen C, Huang L Y, Tang C, Shen Q, Salon J A, Morse K, Laz T, Smith K E, Nagarathnam D, Noble S A, Branchek T A, Gerald C. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 1998; 396(6712)674–679
  • Ng G Y, Clark J, Coulombe N, Ethier N, Hebert T E, Sullivan R, Kargman S, Chateauneuf A, Tsukamoto N, McDonald T, Whiting P, Mezey E, Johnson M P, Liu Q, Kolakowski L F, Jr., Evans J F, Bonner T I, O'Neill G P. Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. The Journal of Biological Chemistry 1999; 274(12)7607–7610
  • White J H, Wise A, Main M J, Green A, Fraser N J, Disney G H, Barnes A A, Emson P, Foord S M, Marshall F H. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 1998; 396(6712)679–682
  • Margeta-Mitrovic M, Jan Y N, Jan L Y. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 2000; 27(1)97–106
  • Towers S, Princivalle A, Billinton A, Edmunds M, Bettler B, Urban L, Castro-Lopes J, Bowery N G. GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. Eur J Neurosci 2000; 12(9)3201–3210
  • Fritschy J M, Sidler C, Parpan F, Gassmann M, Kaupmann K, Bettler B, Benke D. Independent maturation of the GABA(B) receptor subunits GABA(B1) and GABA(B2) during postnatal development in rodent brain. J Comp Neurol 2004; 477(3)235–252
  • Ritter B, Ochojski M, Kuhn T, Schwarzacher S W, Zhang W. Subcellular vesicular aggregations of GABAB R1a and R1b receptors increase with age in neurons of the developing mouse brain. Cell Tissue Res 2005; 319(2)181–189
  • Revankar C M, Cimino D F, Sklar L A, Arterburn J B, Prossnitz E R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 2005; 307(5715)1625–1630
  • Jamora C, Yamanouye N, Van Lint J, Laudenslager J, Vandenheede J R, Faulkner D J, Malhotra V. Gβ γ -mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 1999; 98(1)59–68
  • Diaz Anel A M, Malhotra V. PKCε is required for β 1γ 2/β 3γ 2- and PKD-mediated transport to the cell surface and the organization of the Golgi apparatus. The Journal of Cell Biology 2005; 169(1)83–91
  • Diaz Anel A M, Phospholipase C. β 3 is a key component in the Gβ γ /PKCε /PKD-mediated regulation of trans-Golgi network to plasma membrane transport. The Biochemical Journal 2007; 406(1)157–165
  • Rebois R V, Robitaille M, Gales C, Dupre D J, Baragli A, Trieu P, Ethier N, Bouvier M, Hebert T E. Heterotrimeric Gproteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. Journal of Cell Science 2006; 119: 2807–2818, (Pt 13)
  • Zhu T, Gobeil F, Vazquez-Tello A, Leduc M, Rihakova L, Bossolasco M, Bkaily G, Peri K, Varma D R, Orvoine R, Chemtob S. Intracrine signaling through lipid mediators and their cognate nuclear G-protein-coupled receptors: a paradigm based on PGE2, PAF, LPA1 receptors. Canadian Journal of Physiology and Pharmacology 2006; 84(3–4)377–391
  • Gobeil F, Fortier A, Zhu T, Bossolasco M, Leduc M, Grandbois M, Heveker N, Bkaily G, Chemtob S, Barbaz D. G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Canadian Journal of Physiology and Pharmacology 2006; 84(3–4)287–297
  • Gobeil F J, Bernier S G, Vazquez-Tello A, Brault S, Beauchamp M H, Quiniou C, Marrache A M, Checchin D, Sennlaub F, Hou X, Nader M, Bkaily G, Ribeiro-da-Silva A, Goetzl E J, Chemtob S. Modulation of pro-inflammatory gene expression by nuclear lysophosphatidic acid receptor type-1. J Biol Chem 2003; 278(40)38875–38883
  • O'Malley K L, Jong Y J, Gonchar Y, Burkhalter A, Romano C. Activation of metabotropic glutamate receptor mGlu5 on nuclear membranes mediates intranuclear Ca2 + changes in heterologous cell types and neurons. J. Biol. Chem. 2003; 278(30)28210–28219
  • Lee D K, Lanca A J, Cheng R, Nguyen T, Ji X D, Gobeil F J, Chemtob S, George S R. BF, OD. Agonist-independent nuclear localization of the Apelin, angiotensin AT1, bradykinin B2 receptors. J. Biol. Chem. 2004; 279(9)7901–7908
  • Marrache A M, Gobeil F J, Bernier S G, Stankova J, Rola-Pleszczynski M, Choufani S, Bkaily G, Bourdeau A, Sirois M G, Vazquez-Tello A, Fan L, Joyal J S, Filep J G, Varma D R, Ribeiro-Da-Silva A SC. Proinflammatory gene induction by platelet-activating factor mediated via its cognate nuclear receptor. J Immunol 2002; 169(11)6474–6481
  • Lu D, Yang H, Shaw G, Raizada M K. Angiotensin II-induced nuclear targeting of the angiotensin type 1 (AT1) receptor in brain neurons. Endocrinology 1998; 139(1)365–375
  • Zhuo J L, Imig J D, Hammond T G, Orengo S, Benes E, Navar L G, Ang I I. accumulation in rat renal endosomes during Ang II-induced hypertension: role of AT(1) receptor. Hypertension 2002; 39(1)116–121
  • Chen R, Mukhin Y V, Garnovskaya M N, Thielen T E, Iijima Y, Huang C, Raymond J R, Ullian M E, Paul R V. A functional angiotensin II receptor-GFP fusion protein: evidence for agonist-dependent nuclear translocation. Am J Physiol Renal Physiol 2000; 279(3)F440–448
  • Gobeil F J, Dumont I, Marrache A M, Vazquez-Tello A, Bernier S G, Abran D, Hou X, Beauchamp M H, Quiniou C, Bouayad A, Choufani S, Bhattacharya M, Molotchnikoff S, Ribeiro-Da-Silva A, Varma D R, Bkaily G, Chemtob S. Regulation of eNOS expression in brain endothelial cells by perinuclear EP(3) receptors. Circ Res 2002; 90(6)682–689
  • Boivin B, Chevalier D, Villeneuve L R, Rousseau E, Allen B G. Functional endothelin receptors are present on nuclei in cardiac ventricular myocytes. The Journal of Biological Chemistry 2003; 278(31)29153–29163
  • Boivin B, Lavoie C, Vaniotis G, Baragli A, Villeneuve L R, Ethier N, Trieu P, Allen B G, Hebert T E. Functional β -adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc Res 2006; 71(1)69–78
  • Zhang J H, Barr V A, Mo Y, Rojkova A M, Liu S, Simonds W F. Nuclear localization of G protein β 5 and regulator of G protein signaling 7 in neurons and brain. The Journal of Biological Chemistry 2001; 276(13)10284–10289
  • Boivin B, Villeneuve L R, Farhat N, Chevalier D, Allen B G. Sub-cellular distribution of endothelin signaling pathway components in ventricular myocytes and heart: lack of preformed caveolar signalosomes. J Mol Cell Cardiol 2005; 38(4)665–676
  • Willard F S, Crouch M F. Nuclear and cytoskeletal translocation and localization of heterotrimeric G-proteins. Immunol Cell Biol 2000; 78(4)387–394
  • Yamamoto S, Kawamura K, James T N. Intracellular distribution of adenylate cyclase in human cardiocytes determined by electron microscopic cytochemistry. Microsc Res Tech 1998; 40(6)479–487
  • Schulze W, Buchwalow I B. Adenylyl cyclase in the heart: an enzymocytochemical and immunocytochemical approach. Microsc Res Tech 1998; 40(6)473–478
  • Schievella A R, Regier M K, Smith W L, Lin L L. Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. The Journal of Biological Chemistry 1995; 270(51)30749–30754
  • Kim C G, Park D, Rhee S G. The role of carboxyl-terminal basic amino acids in Gqα -dependent activation, particulate association, nuclear localization of phospholipase C-β 1. The Journal of Biological Chemistry 1996; 271(35)21187–21192
  • Freyberg Z, Sweeney D, Siddhanta A, Bourgoin S, Frohman M, Shields D. Intracellular localization of phospholipase D1 in mammalian cells. Mol Biol Cell 2001; 12(4)943–955
  • Burchett S A. In through the out door: nuclear localization of the regulators of G protein signaling. J Neurochem 2003; 87(3)551–559
  • Scott M G, Le Rouzic E, Perianin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A. Differential nucleocytoplasmic shuttling of β -arrestins. Characterization of a leucine-rich nuclear export signal in β -arrestin2. The Journal of Biological Chemistry 2002; 277(40)37693–37701
  • Wang P, Wu Y, Ge X, Ma L, Pei G. Subcellular localization of β -arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. The Journal of Biological Chemistry 2003; 278(13)11648–11653
  • Yi X P, Gerdes A M, Li F. Myocyte redistribution of GRK2 and GRK5 in hypertensive, heart-failure-prone rats. Hypertension 2002; 39(6)1058–1063
  • Yi X P, Zhou J, Baker J, Wang X, Gerdes A M, Li F. Myocardial expression and redistribution of GRKs in hypertensive hypertrophy and failure. Anat Rec A Discov Mol Cell Evol Biol 2005; 282(1)13–23
  • Johnson L R, Scott M G, Pitcher J A. G protein-coupled receptor kinase 5 contains a DNA-binding nuclear localization sequence. Mol Cell Biol 2004; 24(23)10169–10179
  • Sastri M, Barraclough D M, Carmichael P T, Taylor S S. A-kinase-interacting protein localizes protein kinase A in the nucleus. Proc Natl Acad Sci U S A 2005; 102(2)349–354
  • Buu N T, Hui R, Falardeau P. Norepinephrine in neonatal rat ventricular myocytes: association with the cell nucleus and binding to nuclear α 1- and β -adrenergic receptors. J Mol Cell Cardiol 1993; 25(9)1037–1046
  • Chabot J G, Enjalbert A, Pelletier G, Dubois P M, Morel G. Evidence for a direct action of neuropeptide Y in the rat pituitary gland. Neuroendocrinology 1988; 47(6)511–517
  • Bhattacharya M, Peri K G, Almazan G, Ribeiro-Da-Sylva A, Shichi H, Durocher Y, Abramovitz M, Hou X, Varma D R, Chemtob S. Nuclear localization of prostaglandin E2 receptors. Proc Natl Acad Sci U SA 1998; 95: 15792–15797
  • Bhattacharya M, Peri K G, Ribeiro-Da-Sylva A, Almazan G, Shichi H, Hou X, Varma D R, Chemtob S. Localization of functional Prostaglandin E2 receptors EP3 and EP4 in the nuclear envelope. J Biol Chem 1999; 274(22)15719–15724
  • Miguel B G, Calcerrada M C, Martin L, Catalan R E, Martinez A M. Increase of phosphoinositide hydrolysis and diacylglycerol production by PAF in isolated rat liver nuclei. Prostaglandins Other Lipid Mediat 2001; 65(4)159–166
  • Jacques D, Sader S, Perreault C, Fournier A, Pelletier G, Beck-Sickinger A G, Descorbeth M. Presence of neuropeptide Y and the Y1 receptor in the plasma membrane and nuclear envelope of human endocardial endothelial cells: modulation of intracellular calcium. Canadian Journal of Physiology and Pharmacology 2003; 81(3)288–300
  • Nielsen C K, Campbell J I, Ohd J F, Morgelin M, Riesbeck K, Landberg G, Sjolander A. A novel localization of the G-protein-coupled CysLT1 receptor in the nucleus of colorectal adenocarcinoma cells. Cancer Res 2005; 65(3)732–742
  • Gobeil F, Zhu T, Brault S, Geha A, Vazquez-Tello A, Fortier A, Barbaz D, Checchin D, Hou X, Nader M, Bkaily G, Gratton J P, Heveker N, Ribeiro-da-Silva A KP, Bard H, Chorvatova A, D'Orleans-Juste P, Goetzl E J, Chemtob S. Nitric oxide signaling via nuclearized endothelial nitric-oxide synthase modulates expression of the immediate early genes iNOS and mPGES-1. The Journal of Biological Chemistry 2006; 281(23)16058–16067
  • Waters C M, Saatian B, Moughal N A, Zhao Y, Tigyi G, Natarajan V, Pyne S, Pyne N J. Integrin signalling regulates the nuclear localization and function of the lysophosphatidic acid receptor-1 (LPA1) in mammalian cells. The Biochemical Journal 2006; 398(1)55–62
  • Lind G J, Cavanagh H D. Nuclear muscarinic acetylcholine receptors in corneal cells from rabbit. Invest Ophtalmol Visual Sci 1993; 34(10)2943–2952
  • Lind G J, Cavanagh H D. Identification and subcellular distribution of muscarinic acetylcholine receptor-related proteins in rabbit corneal and Chinese hamster ovary cells. Invest Ophthalmol Vis Sci 1995; 36(8)1492–1507
  • Cavanagh H D, Colley A M. The molecular basis of neurotrophic keratitis. Acta Ophthalmol Suppl 1989; 192: 115–134
  • Re R. Intracellular renin-angiotensin system: the tip of the intracrine physiology iceberg. Am J Physiol Heart Circ Physiol 2007; 293(2)H905–906
  • Re R N, Cook J L. Potential therapeutic implications of intracrine angiogenesis. Med Hypotheses 2007; 69(2)414–421
  • Cook J L, Mills S J, Naquin R T, Alam J, Re R N. Cleavage of the angiotensin II type 1 receptor and nuclear accumulation of the cytoplasmic carboxy-terminal fragment. Am J Physiol Cell Physiol 2007; 292(4)C1313–1322
  • Nehring R B, Horikawa H P, El Far O, Kneussel M, Brandstatter J H, Stamm S, Wischmeyer E, Betz H, Karschin A. The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. The Journal of Biological Chemistry 2000; 275(45)35185–35191
  • White J H, McIllhinney R A, Wise A, Ciruela F, Chan W Y, Emson P C, Billinton A, Marshall F H. The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc Natl Acad Sci U S A 2000; 97(25)13967–13972
  • Vernon E, Meyer G, Pickard L, Dev K, Molnar E, Collingridge G L, Henley J M. GABA(B) receptors couple directly to the transcription factor ATF4. Mol Cell Neurosci 2001; 17(4)637–645
  • Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 2003; 26: 565–597
  • Sardi S P, Murtie J, Koirala S, Patten B A, Corfas G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 2006; 127(1)185–197
  • Dupre D J, Robitaille M, Ethier N, Villeneuve L R, Mamarbachi A M, Hebert T E. Seven transmembrane receptor core signaling complexes are assembled prior to plasma membrane trafficking. The Journal of Biological Chemistry 2006; 281(45)34561–34573
  • Boer U, Neuschafer-Rube F, Moller U, Puschel G P. Requirement of N-glycosylation of the prostaglandin E2 receptor EP3β for correct sorting to the plasma membrane but not for correct folding. The Biochemical Journal 2000; 350: 839–847, Pt 3
  • Mattaj I W. Sorting out the nuclear envelope from the endoplasmic reticulum. Nat Rev Mol Cell Biol 2004; 5(1)65–69
  • Lusk C P, Blobel G, King M C. Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol 2007; 8(5)414–420
  • Eisenhofer G. The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 2001; 91(1)35–62
  • Grundemann D, Schechinger B, Rappold G A, Schomig E. Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci 1998; 1(5)349–351
  • Jonker J W, Schinkel A H. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1–3). J Pharmacol Exp Ther 2004; 308(1)2–9
  • Chidiac P, Hebert T E, Valiquette M, Dennis M, Bouvier M. Inverse agonist activity of β -adrenergic antagonists. Mol Pharmacol 1994; 45(3)490–499
  • Samama P, Pei G, Costa T, Cotecchia S, Lefkowitz R J. Negative antagonists promote an inactive conformation of the β 2-adrenergic receptor. Mol Pharmacol 1994; 45(3)390–394
  • Mate S M, Brenner R R, Ves-Losada A. Endonuclear lipids in liver cells. Canadian Journal of Physiology and Pharmacology 2006; 84(3–4)459–468
  • Huang Y, Wright C D, Merkwan C L, Baye N L, Liang Q, Simpson P C, O'Connell T D. An α 1A-adrenergic-extracellular signal-regulated kinase survival signaling pathway in cardiac myocytes. Circulation 2007; 115(6)763–772
  • Robertson A L, Khairallah P A. Angiotensin II: rapid localization in nuclei of smooth and cardiac muscle. Science 1971; 172(988)1138–1139
  • Re R N, LaBiche R A, Bryan S E. Nuclear-hormone mediated changes in chromatin solubility. Biochem Biophys Res Commun 1983; 110(1)61–68
  • Re R N, Vizard D L, Brown J, Bryan S E, Angiotensin I I. receptors in chromatin fragments generated by micrococcal nuclease. Biochem Biophys Res Commun 1984; 119(1)220–227
  • Cook J L, Re R, Alam J, Hart M, Zhang Z. Intracellular angiotensin II fusion protein alters AT1 receptor fusion protein distribution and activates CREB. J Mol Cell Cardiol 2004; 36(1)75–90
  • Cook J L, Mills S J, Naquin R, Alam J, Re R N. Nuclear accumulation of the AT1 receptor in a rat vascular smooth muscle cell line: effects upon signal transduction and cellular proliferation. J Mol Cell Cardiol 2006; 40(5)696–707
  • Booz G W, Conrad K M, Hess A L, Singer H A, Baker K M. Angiotensin-II-binding sites on hepatocyte nuclei. Endocrinology 1992; 130(6)3641–3649
  • Eggena P, Zhu J H, Clegg K, Barrett J D. Nuclear angiotensin receptors induce transcription of renin and angiotensinogen mRNA. Hypertension 1993; 22(4)496–501
  • Erdmann B, Fuxe K, Ganten D. Subcellular localization of angiotensin II immunoreactivity in the rat cerebellar cortex. Hypertension 1996; 28(5)818–826
  • De Mello W C. Intracellular angiotensin II regulates the inward calcium current in cardiac myocytes. Hypertension 1998; 32(6)976–982
  • Haller H, Lindschau C, Quass P, Luft F C. Intracellular actions of angiotensin II in vascular smooth muscle cells. Journal of the American Society of Nephrology 1999; 10(Suppl 11)S75–S83
  • Bkaily G, Sleiman S, Stephan J, Asselin C, Choufani S, Kamal M, Jacques D, Gobeil F, D'Orleans-Juste P, Angiotensin I I. AT1 receptor internalization, translocation and de novo synthesis modulate cytosolic and nuclear calcium in human vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology 2003; 81(3)274–287
  • Shibuta K, Mori M, Shimoda K, Inoue H, Mitra P, Barnard G F. Regional expression of CXCL12/CXCR4 in liver and hepatocellular carcinoma and cell-cycle variation during in vitro differentiation. Jpn J Cancer Res 2002; 93(7)789–797
  • Spano J P, Andre F, Morat L, Sabatier L, Besse B, Combadiere C, Deterre P, Martin A, Azorin J, Valeyre D, Khayat D, Le Chevalier T, Soria J C. Chemokine receptor CXCR4 and early-stage non-small cell lung cancer: pattern of expression and correlation with outcome. Ann Oncol 2004; 15(4)613–617
  • Gobeil F, Fortier A, Zhu T, Bossolasco M, Leduc M, Grandbois M, Heveker N, Bkaily G, Chemtob S, Barbaz D. G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Canadian Journal of Physiology and Pharmacology 2006; 84(3–4)287–297
  • Hocher B, Rubens C, Hensen J, Gross P, Bauer C. Intracellular distribution of endothelin-1 receptors in rat liver cells. Biochem Biophys Res Commun 1992; 184(1)498–503
  • Bkaily G, Choufani S, Hassan G, El-Bizri N, Jacques D, D'Orléans-Juste P. Presence of functional endothelin-1 receptors in nuclear membranes of human aortic vascular smooth muscle cells. J. Cardiovasc. Pharmacol. 2000; 36: S414–S417
  • Jacques D, Descorbeth M, Abdel-Samad D, Provost C, Perreault C, Jules F. The distribution and density of ET-1 and its receptors are different in human right and left ventricular endocardial endothelial cells. Peptides 2005; 26(8)1427–1435
  • Doufexis M, Storr H L, King P J, Clark A J. Interaction of the melanocortin 2 receptor with nucleoporin 50: evidence for a novel pathway between a G-protein-coupled receptor and the nucleus. FASEB J 2007; 21(14)4095–4100
  • Lanoix D, Ouellette R, Vaillancourt C. Expression of melatoninergic receptors in human placental choriocarcinoma cell lines. Hum Reprod 2006; 21(8)1981–1989
  • Boer P A, Gontijo J A. Nuclear localization of SP, CGRP, NK1R in a subpopulation of dorsal root ganglia subpopulation cells in rats. Cell Mol Neurobiol 2006; 26(2)191–207
  • Belcheva M, Barg J, Rowinski J, Clark W G, Gloeckner C A, Ho A, Gao X M, Chuang D M, Coscia C. Novel opioid binding sites associated with nuclei of NG-108–15 neurohybrid cells. J Neuroscience 1993; 13(1)104–114
  • Ventura C, Maioli M, Pintus G, Posadino A M, Tadolini B. Nuclear opioid receptors activate opiod peptide gene transcription in isolated myocardial nuclei. The Journal of Biological Chemistry 1998; 273(22)13383–13386
  • Omary M B, Kagnoff M F. Identification of nuclear receptors for VIP on a human colonic adenocarcinoma cell line. Science 1987; 238(4833)1578–1581
  • Leung P K, Chow K B, Lau P N, Chu K M, Chan C B, Cheng C H, Wise H. The truncated ghrelin receptor polypeptide (GHS-R1b) acts as a dominant-negative mutant of the ghrelin receptor. Cellular Signalling 2007; 19(5)1011–1022
  • Watson P H, Fraher L J, Hendy G N, Chung U I, Kisiel M, Natale B V, Hodsman A B. Nuclear localization of the type 1 PTH/PTHrP receptor in rat tissues. J Bone Miner Res 2000; 15(6)1033–1044
  • Watson P H, Fraher L J, Natale B V, Kisiel M, Hendy G N, Hodsman A B. Nuclear localization of the type 1 parathyroid hormone/parathyroid hormone-related peptide receptor in MC3T3-E1 cells: association with serum-induced cell proliferation. Bone 2000; 26(3)221–225
  • Faucheux C, Horton M A, Price J S. Nuclear localization of type I parathyroid hormone/parathyroid hormone-related protein receptors in deer antler osteoclasts: evidence for parathyroid hormone-related protein and receptor activator of NF- κ B-dependent effects on osteoclast formation in regenerating mammalian bone. J Bone Miner Res 2002; 17(3)455–464
  • Pickard B W, Hodsman A B, Fraher L J, Watson P H. Type 1 parathyroid hormone receptor (PTH1R) nuclear trafficking: association of PTH1R with importin α 1 and β. Endocrinology 2006; 147(7)3326–3332
  • Vadakkadath Meethal S, Gallego M J, Haasl R J, Petras S J, Sgro J Y, Atwood C S. Identification of a gonadotropin-releasing hormone receptor orthologue in Caenorhabditis elegans. BMC Evol Biol 2006; 6(103)1–17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.