594
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Signaling Complexes of Voltage-Gated Calcium Channels and G Protein-Coupled Receptors

&
Pages 71-81 | Published online: 10 Oct 2008

REFERENCES

  • Schroeder J E, McCleskey E W. Inhibition of Ca2+ currents by a mu-opioid in a defined subset of rat sensory neurons. J Neurosci 1995; 13: 867–873
  • Taddese A, Nah S Y, McCleskey E W. Selective opioid inhibition of small nociceptive neurons. Science 1995; 270: 1366–1369
  • Beedle A M, McRory J E, Poirot O, Doering C J, Altier C, Barrere C, Hamid J, Nargeot J, Bourinet E, Zamponi G W. Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 2004; 7: 118–125
  • Altier C, Khosravani H, Evans R M, Hameed S, Peloquin J B, Vartian B A, Chen L, Beedle A M, Ferguson S S, Mezghrani A, Dubel S J, Bourinet E, McRory J E, Zamponi G W. ORL1 receptor-mediated internalization of N-type calcium channels. Nat Neurosci 2006; 9: 31–40
  • Tombler E, Cabanilla N J, Carman P, Permaul N, Hall J J, Richman R W, Lee J, Rodriguez J, Felsenfeld D P, Hennigan R F, Diverse-Pierluissi M A. G protein-induced trafficking of voltage-dependent calcium channels. J Biol Chem 2006; 281: 1827–1839
  • Davare M A, Avdonin V, Hall D D, Peden E M, Burette A, Weinberg R J, Horne M C, Hoshi T, Hell J W. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 2001; 293: 98–101
  • Kitano J, Nishida M, Itsukaichi Y, Minami I, Ogawa M, Hirano T, Mori Y, Nakanishi S. Direct interaction and functional coupling between metabotropic glutamate receptor subtype 1 and voltage-sensitive Cav2.1 Ca2+ channel. J Biol Chem 2003; 278: 25101–25108
  • Wheeler D B, Randall A, Tsien R W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission [see comments]. Science 1994; 264: 107–111
  • Dunlap K, Luebke J I, Turner T J. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 1995; 18: 89–98
  • Sutton K G, McRory J E, Guthrie H, Murphy T H, Snutch T P. P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 1999; 401: 800–804
  • Dolmetsch R E, Pajvani U, Fife K, Spotts J M, Greenberg M E. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 2001; 294: 333–339
  • Khosravani H, Zamponi G W. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 2006; 86: 941–966
  • Mangoni M E, Traboulsie A, Leoni A L, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin H S, Escande D, Charpentier F, Nargeot J, Lory P. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res 2006; 98: 1422–1430
  • Ophoff R A, Terwindt G M, Vergouwe M N, van Eijk R, Oefner P J, Hoffman S M, Lamerdin J E, Mohrenweiser H W, Bulman D E, Ferrari M, Haan J, Lindhout D, van Ommen G J, Hofker M H, Ferrari M D, Frants R R. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996; 87: 543–552
  • Ophoff R A, Terwindt G M, Frants R R, Ferrari M D. P/Q-type Ca2+ channel defects in migraine, ataxia and epilepsy. Trends Pharmacol Sci 1998; 19: 121–127
  • Splawski I, Timothy K W, Sharpe L M, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz P J, Joseph R M, Condouris K, Tager-Flusberg H, Priori S G, Sanguinetti M C, Keating M T. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004; 119: 19–31
  • Splawski I, Yoo D S, Stotz S C, Cherry A, Clapham D E, Keating M T. CACNA1H mutations in autism spectrum disorders. J Biol Chem 2006; 281: 22085–22091
  • Doering C J, Zamponi G W. Molecular pharmacology of non-L-type calcium channels. Curr Pharm Des 2005; 11: 1887–1898
  • Catterall W. Annual Review of Cell Development Biloogy 2000; 16: 521
  • Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003; 83: 117–161
  • Bichet D, Cornet V, Geib S, Carlier E, Volsen S, Hoshi T, Mori Y, De Waard M. The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 2000; 25: 177–190
  • Arikkath J, Campbell K P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 2003; 13: 298–307
  • Dolphin A C. Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 2003; 35: 599–620
  • Yasuda T, Chen L, Barr W, McRory J E, Lewis R J, Adams D J, Zamponi G W. Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells. Eur J Neurosci 2004; 20: 1–13
  • Tedford H W, Zamponi G W, Direct G. protein modulation of Cav2 calcium channels. Pharmacol Rev 2006; 58: 837–862
  • Smith M T, Cabot P J, Ross F B, Robertson A D, Lewis R J. The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 2002; 96: 119–127
  • Krarup C. An update on electrophysiological studies in neuropathy. Curr Opin Neurol 2003; 16: 603–612
  • Dunlap K, Fischbach G D. Neurotransmitters decrease the calcium component of sensory neurone action potentials. Nature 1978; 276: 837–839
  • Ikeda S R, Schofield G G. Somatostatin blocks a calcium current in rat sympathetic ganglion neurones. J Physiol (Lond) 1989; 409: 221–240
  • Bernheim L, Mathie A, Hille B. Characterization of muscarinic receptor subtypes inhibiting Ca2+ current and M current in rat sympathetic neurons. Proc Natl Acad Sci U S A 1992; 89: 9544–9548
  • Mintz I M, Bean B P. GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron 1993; 10: 889–898
  • Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 1994; 17: 531–536
  • Bunzow J R, Saez C, Mortrud M, Bouvier C, Williams J T, Low M, Grandy D K. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett 1994; 347: 284–288
  • Mollereau C, Parmentier M, Mailleux P, Butour J L, Moisand C, Chalon P, Caput D, Vassart G, Meunier J C. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett 1994; 341: 33–38
  • Wick M J, Minnerath S R, Lin X, Elde R, Law P Y, Loh H H. Isolation of a novel cDNA encoding a putative membrane receptor with high homology to the cloned mu, delta, and kappa opioid receptors. Brain Res Mol Brain Res 1994; 27: 37–44
  • Reinscheid R K, Nothacker H P, Bourson A, Ardati A, Henningsen R A, Bunzow J R, Grandy D K, Langen H, Monsma F J, Jr., Civelli O. Orphanin FQ: A neuropeptide that activates an opioidlike G protein-coupled receptor. Science 1995; 270: 792–794
  • Knoflach F, Reinscheid R K, Civelli O, Kemp J A. Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J Neurosci 1996; 16: 6657–6664
  • Neal C R, Jr, Mansour A, Reinscheid R, Nothacker H P, Civelli O, Watson S J. Jr. Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol 1999; 406: 503–547
  • Larsson K P, Olsen U B, Hansen A J. Nociceptin is a potent inhibitor of N-type Ca(2+) channels in rat sympathetic ganglion neurons. Neurosci Lett 2000; 296: 121–124
  • Yamamoto T, Nozaki-Taguchi N, Kimura S. Analgesic effect of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, in the rat formalin test. Neuroscience 1997a; 81: 249–254
  • Yamamoto T, Nozaki-Taguchi N, Kimura S. Effects of intrathecally administered nociceptin, an opioid receptor-like1 (ORL1) receptor agonist, on the thermal hyperalgesia induced by unilateral constriction injury to the sciatic nerve in the rat. Neurosci Lett 1997b; 224: 107–110
  • Gouarderes C, Tafani J A, Meunier J C, Jhamandas K, Zajac J M. Nociceptin receptors in the rat spinal cord during morphine tolerance. Brain Res 1999; 838: 85–94
  • Ueda H, Inoue M, Takeshima H, Iwasawa Y. Enhanced spinal nociceptin receptor expression develops morphine tolerance and dependence. J Neurosci 2000; 20: 7640–7647
  • Kisilevsky A E, Mulligan S, Altier C, Iftinca M C, Varela D, Tai C, Chen L, Hameed S, Hamid J, MacVicar B A, Zamponi G W. D1 receptors physically interact with N-type calcium channels to regulate to regulate channel distribution and dendritic calcium entry. Neuron 2008
  • Puckerin A, Liu L, Permaul N, Carman P, Lee J, Diverse-Pierluissi M A. Arrestin is required for agonist-induced trafficking of voltage-dependent calcium channels. J Biol Chem 2006; 281: 31131–31141
  • Huang C C, Wang S J, Gean P W. Selective enhancement of P-type calcium currents by isoproterenol in the rat amygdala. J Neurosci 1998; 18: 2276–2282
  • Kaneko S, Akaike A, Satoh M. Differential regulation of N- and Q-type Ca2+ channels by cyclic nucleotides and G-proteins. Life Sci 1998; 62: 1543–1547
  • Wu L, Bauer C S, Zhen X G, Xie C, Yang J. Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 2002; 419: 947–952
  • Fournier F, Charnet P, Bourinet E, Vilbert C, Matifat F, Charpentier G, Navarre P, Brule G, Marlot D. Regulation by protein kinase-C of putative P-type Ca channels expressed in Xenopus oocytes from cerebellar mRNA. FEBS Lett 1993; 317: 118–124
  • Hell J W, Westenbroek R E, Warner C, Ahlijanian M K, Prystay W, Gilbert M M, Snutch T P, Catterall W A. Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol 1993; 123: 949–962
  • Kapur A, Yeckel M F, Gray R, Johnston D. L-Type calcium channels are required for one form of hippocampal mossy fiber LTP. J Neurophysiol 1998; 79: 2181–2190
  • Mangoni M E, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 2003; 100: 5543–5548
  • McDonald T F, Pelzer S, Trautwein W, Pelzer D J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 1994; 74: 365–507
  • Gao T, Yatani A, Dell'Acqua M L, Sako H, Green S A, Dascal N, Scott J D, Hosey M M. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997; 19: 185–196
  • Devic E, Xiang Y, Gould D, Kobilka B. Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol 2001; 60: 577–583
  • Skeberdis V A, Jurevicius J, Fischmeister R. Beta-2 adrenergic activation of L-type Ca++ current in cardiac myocytes. J Pharmacol Exp Ther 1997; 283: 452–461
  • Zhang Z S, Cheng H J, Ukai T, Tachibana H, Cheng C P. Enhanced cardiac L-type calcium current response to beta2-adrenergic stimulation in heart failure. J Pharmacol Exp Ther 2001; 298: 188–196
  • Brodde O E, Michel M C. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 1999; 51: 651–690
  • Chen-Izu Y, Xiao R P, Izu L T, Cheng H, Kuschel M, Spurgeon H, Lakatta E G. G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels. Biophys J 2000; 79: 2547–2556
  • Zhang Z S, Cheng H J, Onishi K, Ohte N, Wannenburg T, Cheng C P. Enhanced inhibition of L-type Ca2+ current by beta3-adrenergic stimulation in failing rat heart. J Pharmacol Exp Ther 2005; 315: 1203–1211
  • Hall D D, Davare M A, Shi M, Allen M L, Weisenhaus M, McKnight G S, Hell J W. Critical role of cAMP-dependent protein kinase anchoring to the L-type calcium channel Cav1.2 via A-kinase anchor protein 150 in neurons. Biochemistry 2007; 46: 1635–1646
  • Oliveria S F, Dell'Acqua M L, Sather W A. AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 2007; 55: 261–275
  • Hall D D, Feekes J A, Arachchige Don A S, Shi M, Hamid J, Chen L, Strack S, Zamponi G W, Horne M C, Hell J W. Binding of protein phosphatase 2A to the L-type calcium channel Cav1.2 next to Ser1928, its main PKA site, is critical for Ser 1928 dephosphorylation. Biochemistry 2006; 45: 3448–3459

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.