159
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Medium pH in submerged cultivation modulates differences in the intracellular protein profile of Fusarium oxysporum

, , , &

References

  • Hoffmeister, D.; Keller, N.P. Natural Products of Filamentous Fungi: Enzymes, Genes, and their Regulation. Nat. Prod. Rep. 2007, 24, 393–416.
  • Fang, X.; Barbetti, M.J. Differential Protein Accumulations in Isolates of the Strawberry Wilt Pathogen Fusarium oxysporum f. sp. Fragariae Differing in Virulence. J. Proteomics 2014, 108, 223–237.
  • Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster G.D. The Top 10 Fungal Pathogens in Molecular Plant Pathology. Mol. Plant. Pathol. 2012, 13, 414–430.
  • Alkan, N.; Espeso, E.A.; Prusky, D. Virulence Regulation of Phytopathogenic Fungi by pH. Antioxid. Redox Signal. 2013, 19, 1012–1025.
  • Li, B.; Wang, W.; Zong, Y.; Qin, G.; Tian, S. Exploring Pathogenic Mechanisms of Botrytis cinerea Secretome under Different Ambient pH Based on Comparative Proteomic Analysis. J. Proteome Res. 2012, 11, 4249–4260.
  • Caracuel, Z.; Roncero, M.I.G.; Espeso, E.A.; González-Verdejo, C.I.; García-Maceira, F.I.; Di Pietro, A. The pH Signalling Transcription Factor Pacc Controls Virulence in the Plant Pathogen Fusarium Oxysporum. Mol. Microbiol. 2003, 48, 765–779.
  • Peñalva, M.A.; Tilburn, J.; Bignell, E.; Arst, H.N. JR. Ambient pH Gene Regulation in Fungi: Making Connections. Trends Microbiol. 2008, 16, 291–300.
  • Peñalva, M.A.; Arst, H.N. JR. Regulation of Gene Expression by Ambient pH in Filamentous Fungi and Yeasts. Microbiol. Mol. Biol. Rev. 2002, 66, 426–446.
  • Jia, L.-J; Tang, W.-H. The Omics Era of Fusarium graminearum: Opportunities and Challenges. New Phytol. 2015, 207, 1–3.
  • González-Fernández, R.; Valero-Galván, J.; Gómez-Gálvez, F.J.; Jorrín-Novo, J.V. Unraveling the In Vitro Secretome of the Phytopathogen Botrytis cinerea to Understand the Interaction with its Hosts. Front. Plant. Sci. 2015, 6, 839.
  • Nakajima, M.; Akutsu, K. Virulence Factors of Botrytis cinerea. J. Gen. Plant. Pathol. 2014, 80, 15.
  • Ortega, L.M.; Kikot, G.E.; Astoreca, A.L.; Alconada, T.M. Screening of Fusarium graminearum Isolates for Enzymes Extracellular and Deoxynivalenol Production. J. Mycology. 2013, 2013, Article ID 358140.
  • Roncero, M.I.; Di Pietro, A.; Ruiz-Roldán, M.C.; Huertas-González, M.D.; Garcia-Maceira, F.I.; Méglecz, E.; Jiménez, A.; Caracuel, Z.; Sancho-Zapatero, R.; Hera C.; Gómez-Gómez, E.; Ruiz-Rubio, M.; González-Verdejo, C.I.; Páez, M.J. Role of Cell Wall-Degrading Enzymes in Pathogenicity of Fusarium oxysporum. Rev. Iberoam. Micol. 2000, 17, S47–S53.
  • Kikot, G.E.; Hours, R.A.; Alconada, T.M. Contribution of Cell Wall Degrading Enzymes to Pathogenesis of Fusarium graminearum: A Review. J. Basic. Microbiol. 2009, 49, 231–241.
  • Sarath, G.; De La Motte, R.S.; Wagner, F.W. In Proteolytic Enzymes: A Practical Approach; Beynon, R.J., Bond, J.S., Eds.; IRL Press: New York, USA, 1996, pp. 25–55.
  • Pereira, M.G.; Vici, A.C.; Facchini, F.D.A.; Tristão, A.P.; Cursino-Santos, J.R.; Sanches, P.R.; Jorge, J.A.; Polizeli, M.L.T.M. Screening of Filamentous Fungi for Lípase Production: Hypocrea Pseudokoningii a New Producer with a High Biotechnological Potential. Biocat. Biotransf. 2014, 32, 74–83.
  • Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428.
  • Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254.
  • Bi, F.; Barad, S.; Ment, D.; Luria, N.; Dubey, A.; Casado, V.; Glam, N.; Mínguez, J.D.; Espeso, E.A.; Fluhr, R.; Prusky, D. Carbon Regulation of Environmental pH by Secreted Small Molecules that Modulate Pathogenicity in Phytopathogenic Fungi. Mol. Plant. Pathol. 2016, 17, 1178–1195.
  • Rathore, S.S.; Saxena, S.N.; Shrma, Y.K.; Mishra, B.K.; Singh, B. Effect of pH and Salt Levels on Growth of Fusarium oxysporum f.sp. cumini Isolate from Cumin. Int. J. Seed Spices 2015, 5, 100–101.
  • Tyagi, S.; Paudel, R. Effect of Different pH on the Growth and Sporulation of Fusarium Oxysporum: The Causal Organism of Wilt Disease of Tomato. Int. J. Basic Appl. Biol. 2014, 2, 103–106.
  • Gonzalez-Fernandez, R.; Jorrin-Novo, J.V. Contribution of Proteomics to the Study of Plant Pathogenic Fungi. J. Proteome Res. 2012, 11, 3–16.
  • Jashni, M.K.; Dols, I.H.M.; Iida, Y.; Boeren, S.; Beenen, H.G.; Mehrabi, R.; Collemare, J.; de Wit, P.J.G.M. Synergistic Action of a Metalloprotease and a Serine Protease from Fusarium oxysporum f. sp. lycopersici Cleaves Chitin-Binding Tomato Chitinases, Reduces their Antifungal Activity, and Enhances Fungal Virulence. Mol. Plant Microbe Interact. 2015, 28, 996–1008.
  • Yike, I. Fungal Proteases and their Pathophysiological Effects. Mycopathologia 2011, 171, 299–323.
  • Di Pietro, A.; García-Maceira, F.I.; Méglecz, E.; Roncero, M.I.G. A MAP Kinase of the Vascular Wilt Fungus Fusarium oxysporum is Essential for Root Penetration and Pathogenesis. Mol. Microbiol. 2001, 39, 1140–1152.
  • Manteau, S.; Abouna, S.; Lambert, B.; Legendre, L. Differential Regulation by Ambient pH of Putative Virulence Factor Secretion by the Phytopathogenic Fungus Botrytis cinerea. FEMS Microbiol. Ecol. 2003, 43, 359–366.
  • Bravo-Ruiz, G.; Ruiz-Roldán, C.; Roncero, M.I.G. Lipolytic System of the Tomato Pathogen Fusarium oxysporum f. sp. Lycopersici. Mol. Plant Microbe Interact. 2013, 26, 1054–1067.
  • Kubicek, C.P.; Starr, T.L.; Glass, N.L. Plant Cell Wall–Degrading Enzymes and their Secretion in Plant-Pathogenic Fungi. Annu. Rev. Phytopathol. 2014, 52, 427–451.
  • Di Pietro, A.; Madrid, M.P.; Caracuel, Z.; Delgado-Jarana, J.; Roncero, M.I.G. Fusarium oxysporum: Exploring the Molecular Arsenal of a Vascular Wilt Fungus. Mol. Plant Pathol. 2003, 4, 315–325.
  • Ravalason, H.; Grisel, S.; Chevret, D.; Favel, A.; Berrin, J.G.; Sigoillot, J.C.; Herpoël-Gimbert, I. Fusarium Verticillioides Secretome as a Source of Auxiliary Enzymes to Enhance Saccharification of Wheat Straw. Bioresour. Technol. 2012, 114, 589–596.
  • Adav, S.S.; Ravindran, A.; Chao, L.T.; Tan, L.; Singh, S.; Sze, S.K. Proteomic Analysis of pH and Strains Dependent Protein Secretion of Trichoderma reesei. J Proteome Res. 2011, 10, 4579–4596.
  • Sun, Y.; Yi, X.; Peng, M.; Zeng, H.; Wang, D.; Li, B.; Tong, Z.; Chang, L.; Jin, X.; Wang, X. Proteomics of Fusarium oxysporum Race 1 and Race 4 Reveals Enzymes Involved in Carbohydrate Metabolism and Ion Transport that Might Play Important Roles in Banana Fusarium wilt. PLoS One 2014, 9, e113818.
  • Lee, S.H.; Kim, Y.K.; Yun, S.H.; Lee, Y.W. Identification of Differentially Expressed Proteins in a Mat1–2-Deleted Strain of Gibberella Zeae, using a Comparative Proteomics Analysis. Curr. Genet. 2008, 53, 175–184.
  • Li, E.; Ling, J.; Wang, G.; Xiao, J.; Yang, Y.; Mao, Z.; Wang, X.; Xie, B. Comparative Proteomics Analyses of Two Races of Fusarium oxysporum f. sp. conglutinans that Differ in Pathogenicity. Sci. Rep. 2015, 5, 13663.
  • Deng, G.-M.; Yang, Q.-S.; He, W.-D.; Li, C.-Y.; Yang, J.; Zuo, C.-W.; Gao, J.; Sheng, O.; Lu, S.-Y.; Zhang, S.; Yi, G.-J. Proteomic Analysis of Conidia Germination in Fusarium oxysporum f. sp. Cubense Tropical Race 4 Reveals New Targets in Ergosterol Biosynthesis Pathway for Controlling Fusarium Wilt of Banana. Appl. Microbiol. Biotechnol. 2015, 99, 7189–7207.
  • Rossi, A.; Cruz, A.H.; Santos, R.S.; Silva, P.M.; Silva, E.M.; Mendes, N.S.; Martinez-Rossi, N.M. Ambient pH Sensing in Filamentous Fungi: Pitfalls in Elucidating Regulatory Hierarchical Signaling Networks. IUBMB Life 2013, 65, 930–935.
  • Smith, L.M.; Kelleher, N.L.; The Consortium for Top Down Proteomics. Proteoform, a Single Term Describing Protein Complexity. Nat. Methods 2013, 10, 186–187.
  • Zhao, G.; Hou, L.; Yao, Y.; Wang, C.; Cao, X. Comparative Proteome Analysis of Aspergillus oryzae 3.042 and a. oryzae 100–8 Strains: Towards the Production of Different Soy Sauce Flavors. J. Proteomics 2012, 75, 3914–3924.
  • Suzuki, K. Selective Autophagy in Budding Yeast. Cell Death Differ. 2013, 20, 43–48.
  • Houterman, P.M.; Speijer, D.; Dekker, H.L.; de Koster, C.G.; Cornelissen, B.J.C.; Rep, M. The Mixed Xylem Sap Proteome of Fusarium oxysporum-Infected Tomato Plants. Mol. Plant Pathol. 2007, 8, 215–221.
  • Zhang, X.; Fu, J.; Hiromasa, Y.; Pan, H.; Bai, G. Differentially Expressed Proteins Associated with Fusarium Head Blight Resistance in Wheat. PLoS One 2013, 8, e82079.
  • Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29.
  • Kroll, K.; Pähtz, V.; Kniemeyer, O. Elucidating the Fungal Stress Response by Proteomics. J. Proteomics 2014, 97, 151–163.
  • Ayar-Kayali, H.; Ozer, N.; Tarhan, L. Intracellular Superoxide Dismutase, Catalase, and Glutathione Peroxidase Activities and Membrane Lipid Peroxide Levels in Fusarium Acuminatum upon Environmental Changes in a Defined Medium. Arch. Biochem. Biophys. 2002, 400, 265–272.
  • Sarkar, P.; Suraishkumar G.K. pH and Temperature Stresses in Bioreactor Cultures: Intracellular Superoxide Levels. Ind. Eng. Chem. Res. 2011, 50, 13129–13136.
  • López-Cruz, J.; Óscar, C.S.; Emma, F.C.; Pilar, G.A.; Carmen, G.B. Absence of Cu-Zn Superoxide Dismutase BCSOD1 Reduces Botrytis cinerea Virulence in Arabidopsis and Tomato Plants, Revealing Interplay among Reactive Oxygen Species, Callose and Signalling Pathways. Mol. Plant. Pathol. 2017, 18, 16–31.
  • Macías-Sánchez, K.L.; García-Soto, J.; Roncero, M.I.G.; Hernández-Monjaraz, W.; Caudillo-Pérez, C.; Martínez-Cadena, M.G. Isolation and Expression of Enolase Gene in Fusarium oxysporum f. sp. lycopersici. Appl. Biochem. Biotechnol. 2015, 175, 902–908.
  • Amselem, J.; Cuomo, C.A.; Van Kan, J.A.L.; Viaud, M.; Benito, E.P.; et al. Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011, 7, e1002230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.