174
Views
0
CrossRef citations to date
0
Altmetric
Articles

Development of a fluorometric measurement system used in biological samples upon the determination of iron (II) metal ion

ORCID Icon, , , & ORCID Icon

References

  • Karaca, N.; Karaca Balta, D.; Ocal, N.; Arsu, N. Thioxanthonation of Fluorenone: Visible Photoinitiator for Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 1012–1019.
  • Gacal, B.; Akat, H.; Balta, D. K.; Arsu, N.; Yagci, Y. Synthesis and Characterization of Polymeric Thioxanthone Photoinitatiors via Double Click Reactions. Macromolecules. 2008, 41, 2401–2405.
  • Moon, J.-K.; Park, J.-W.; Lee, W. S.; Kang, Y.-J.; Chung, H.-A.; Shin, M.-S.; Yoon, Y.-J.; Park, K. H. Synthesis of Some 2‐Substituted-Thioxanthones. J. Heterocyclic. Chem. 1999, 36, 793–798.
  • Ma, D.-M.; Wang, J.; Guo, H.; Qian, D.-J. Photophysical and Electrochemical Properties of Newly Synthesized Thioxathone-Viologen Binary Derivatives and Their Photo-/Electrochromic Displays in Ionic Liquids and Polymer Gels. New J. Chem. 2020, 44, 3654–3663.
  • Jiang, X.; Luo, J.; Yin, J. A Novel Amphipathic Polymeric Thioxanthone Photoinitiator. Polymer. 2009, 50, 37–41.
  • Valandro, S. R.; Poli, A. L.; Neumann, M. G.; Schmitt, C. C. Photochemical Synthesis of Ag and Au Nanoparticles Using a Thioxanthone Substituted Chitosan as Simultaneous Photoinitiator and Stabilizer. J. Braz. Chem. Soc. 2019, 30, 2642–2648.
  • Wen, Y.; Jiang, X.; Liu, R.; Yin, J. Amphipathic Hyperbranched Polymeric Thioxanthone Photoinitiators (AHPTXs): Synthesis, Characterization and Photoinitiated Polymerization. Polymer 2009, 50, 3917–3923.
  • Temel, G.; Arsu, N.; Yagci, Y. Polymeric Side Chain Thioxanthone Photoinitiator for Free Radical Polymerization. Polym. Bull. 2006, 57, 51–56.
  • Karaca Balta, D.; Arsu, N.; Yagci, Y.; Jockusch, S.; Turro, N. J. Thioxanthone-Anthracene: A New Photoinitiator for Free Radical Polymerization in the Presence of Oxygen. Macromolecules. 2007, 40, 4138–4141.
  • Jiang, X.; Xu, H.; Yin, J. Polymeric Amine Bearing Side-Chain Thioxanthone as a Novel Photoinitiator for Photopolymerization. Polymer. 2004, 45, 133–140.
  • Jiang, X.; And.; Yin, J. Water-Soluble Polymeric Thioxanthone Photoinitiator Containing Glucamine as Coinitiator. Macromol. Chem. Phys. 2008, 209, 1593–1600.
  • Jiang, X.; And.; Yin, J. Polymeric Photoinitiator Containing in-Chain Thioxanthone and Coinitiator Amines. Macromol. Rapid Commun. 2004, 25, 748–752.
  • Tunc, D.; And.; Yagci, Y. Thioxanthone-Ethylcarbazole as a Soluble Visible Light Photoinitiator for Free Radical and Free Radical Promoted Cationic Polymerizations. Polym. Chem. 2011, 2, 2557–2563.
  • Jiang, X.; Wang, W.; Xu, H.; Yin, J. Water-Compatible Dendritic Macrophotoinitiator Containing Thioxanthone. J. Photochem. Photobiol. A. 2006, 181, 233–237.
  • Encinas, M. V.; Rufs, A. M.; Corrales, T.; Catalina, F.; Peinado, C.; Schmith, K.; Neumann, M. G.; Allen, N. S. The Influence of the Photophysics of 2-Substituted Thioxanthones on Their Activity as Photoinitiators. Polymer. 2002, 43, 3909–3913.
  • Yang, J.; Zeng, Z.; Chen, Y. Amine-Linked Thioxanthones as Water-Compatible Photoinitiators. J. Polym. Sci. A Polym. Chem. 1998, 36, 2563–2570.
  • Corrales, T.; Catalina, F.; Allen, N. S.; Peinado, C. Novel Water Soluble Copolymers Based on Thioxanthone: photochemistry and Photoinitiation Activity. J. Photochem. Photobiol. A. 2005, 169, 95–100.
  • Luo, L.; Li, Y.; Qiang, X.; Cao, Z.; Xu, R.; Yang, X.; Xiao, G.; Song, Q.; Tan, Z.; Deng, Y. Multifunctional Thioxanthone Derivatives with Acetycholinesterase, Monoamine Oxidases and β-Amyloid Aggregation Inhibitory Activities as Potential Agents Against Alzheimer’s Disease. Bioorg. Med. Chem. 2017, 25, 1997–2009.
  • Palmeira, A.; Vasconcelos, M. H.; Paiva, A.; Fernandes, M. X.; Pinto, M.; Sousa, E. Dual Inhibitors of P-Glycoprotein and Tumor Cell Growth: (Re)Discovering Thioxanthones. Biochem. Pharmacol. 2012, 83, 57–68.
  • Yilmaz, G.; Guler, E.; Barlas, F. B.; Timur, S.; Yagci, Y. Polymeric Thioxanthones as Potential Anticancer and Radiotherapy Agents. Macromol. Rapid Commun. 2016, 37, 1046–1051.
  • Palmeira, A.; Sousa, E.; Fernandes, M. X.; Pinto, M. M.; Vasconcelos, M. H. Multidrug Resistance Reversal Effects of Aminated Thioxanthones and Interaction with Cytochrome P450 3A4. J. Pharm. Pharm. Sci. 2012, 15, 31–45.
  • Lima, R. T.; Sousa, D.; Gomes, A. S.; Mendes, N.; Matthiesen, R.; Pedro, M.; Marques, F.; Pinto, M. M.; Sousa, E.; Vasconcelos, M. H. The Antitumor Activity of a Lead Thioxanthone is Associated with Alterations in Cholesterol Localization. Molecules. 2018, 23, 33011–33019.
  • Karaca, N.; Ocal, N.; Arsu, N.; Jockusch, S. Thioxanthone-Benzothiophenes as Photoinitiator for Free Radical Polymerization. J. Photochem. Photobiol. A. 2016, 331, 22–28.
  • Wang, Z.; Li, Y.; Cai, X.; Chen, D.; Xie, G.; Liu, K.; Wu, Y.-C.; Lo, C.-C.; Lien, A.; Cao, Y.; Su, S.-J. Structure-Performance Investigation of Thioxanthone Derivatives for Developing Color Tunable Highly Efficient Thermally Activated Delayed Fluorescence Emitters. ACS Appl. Mater. Interfaces. 2016, 8, 8627–8636.
  • Esen, D. S.; Temel, G.; Balta, D. K.; Allonas, X.; Arsu, N. One-Component Thioxanthone Acetic Acid Derivative Photoinitiator for Free Radical Polymerization. Photochem. Photobiol. 2014, 90, 463–469.
  • Doğruyol, S. K.; Doğruyol, Z.; Arsu, N. Thioxanthone Based 9-(2-(Methyl-Phenyl-Amino)-Acetyl)-Thia-Naphthacene-12-One as a Visible Photoinitiator. J. Lumin. 2013, 138, 98–104.
  • Eren, T. N.; Okte, N.; Morlet-Savary, F.; Fouassier, J. P.; Lalevee, J.; Avci, D. One-Component Thioxanthone-Based Polymeric Photoinitiators. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 3370–3378.
  • Dogruyol, S. K.; Dogruyol, Z.; Arsu, N. A Thioxanthone-Based Visible Photoinitiator. J. Polym. Sci. A Polym. Chem. 2011, 49, 4037–4043.
  • Bujacz, A. Structures of Bovine, Equine and Leporine Serum 28echnol. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 1278–1289.
  • Jachimska, B.; And.; Pajor, A. Physico-Chemical Characterization of Bovine Serum 28echnol in Solution and as Deposited on Surfaces. Bioelectrochemistry. 2012, 87, 138–146.
  • Sun, S. F.; Chang, T. S.; Rosario, N. O. Bovine Serum Albumin in Lithium Chloride Solutions. Changes in Conformation. Int. J. Peptide Protein Res. 2009, 6, 87–94.
  • Francis, G. L. Albumin and Mammalian Cell Culture: Implications for Biotechnology Applications. Cytotechnology. 2010, 62, 1–16.
  • Roshchupkin, D. I.; Buravleva, K. V.; Murina, M. A.; Sergienko, V. I. A Fluorometric Study of Modification of Bovine Serum Albumin with Structural Analogues of Taurine Chloramine. Biophysics. 2017, 62, 24–30.
  • Roy, S. An Insight of Binding Interaction between Tryptophan, Tyrosine and Phenylalanine Separately with Green Goldnanoparticles by Fluorescence Quenching Method. Optik. 2017, 138, 280–288.
  • Silber, M. L.; And.; Davitt, B. B. Preparative Binding of Coomassie Brilliant Blue to Bovine Serum Albumine at Alkaline pH. Prep. Biochem. Biotechnol. 2000, 30, 209–229.
  • Lemli, B.; Derdák, D.; Laczay, P.; Kovács, D.; Kunsagi-Mate, S. Noncovalent Interaction of Tilmicosin with Bovine Serum Albumin. Molecules. 2018, 23, 1915–1910.
  • Xiao, J.; Zhao, Y.; Wang, H.; Yuan, Y.; Yang, F.; Zhang, C.; Yamamoto, K. Noncovalent Interaction of Dietary Polyphenols with Common Human Plasma Proteins. J. Agric. Food Chem. 2011, 59, 10747–10754.
  • Bischel, H. N.; Macmanus-Spencer, L. A.; Luthy, R. G. Noncovalent Interactions of Long-Chain Perfluoroalkyl Acids with Serum Albumin. Environ. Sci. Technol. 2010, 44, 5263–5269.
  • Bekale, L.; Agudelo, D.; And.; Tajmir-Riahi, H. A. Effect of Polymer Molecular Weight on Chitosan–Protein Interaction. Colloids Surf. B Biointerfaces 2015, 125, 309–317.
  • Li, D.; Zhu, M.; Xu, C.; Chen, J.; Ji, B. The Effect of Cu2+ or Fe3+ on the Noncovalent Binding of Rutin with Bovine Serum Echnol by Spectroscopic Analysis. Spectrochim. Acta, Part A. 2011, 78, 74–79.
  • Henrotte, V.; Laurent, S.; Gabelica, V.; Elst, L. V.; Depauw, E.; Muller, R. N. Investigation of Non-Covalent Interactions between Paramagnetic Complexes and Human Serum Echnol by Electrospray Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 1919–1924.
  • Navarra, G.; Tinti, A.; Leone, M.; Militello, V.; Torreggiani, A. Influence of Metal Ions on Thermal Aggregation of Bovine Serum Echnol: Aggregation Kinetics and Structural Changes. J. Inorg. Biochem. 2009, 103, 1729–1738.
  • Lu, Q.-H.; Ba, C.-D.; And.; Chen, D.-Y. Investigating Noncovalent Interactions of Rutin – Serum Echnol by Capillary Electrophoresis – Frontal Analysis. J. Pharm. Biomed. Anal. 2008, 47, 888–891.
  • Zhao, Y.; Li, F.; Carvajal, M. T.; Harris, M. T. Interactions between Bovine Serum Echnol and Alginate: An Evaluation of Alginate as Protein Carrier. J. Colloid Interface Sci. 2009, 332, 345–353.
  • Barbero, N.; Barni, E.; Barolo, C.; Quagliotto, P.; Viscardi, G.; Napione, L.; Pavan, S.; Bussolino, F. A Study of the Interaction between Fluorescein Sodium Salt and Bovine Serum Echnol by Steady-State Fluorescence. Dyes. Pigm. 2009, 80, 307–313.
  • Sharma, V.; Yanez, O.; Alegría-Arcos, M.; Kumar, A.; Thakur, R. C.; Cantero-López, P. A Physicochemical and Conformational Study of co-Solvent Effect on the Molecular Interactions between Similarly Charged Protein Surfactant [BSA-SDBS] System. J. Chem. Thermodyn. 2020, 142, 106022.
  • Jia, X.; Hu, X.; Wang, W.; Du, C. Non-Covalent Loading of Ionic Liquid-Functionalized Nanoparticles for Bovine Serum Echnol: Experiments and Theoretical Analysis. RSC Adv. 2019, 9, 19114–19120.
  • Cavalu, S.; Damian, G.; Dânşoreanu, M. EPR Study of Non-Covalent Spin Labeled Serum Echnol and Hemoglobin. Biophys. Chem. 2002, 99, 181–188.
  • Al-Hanish, A.; Stanic-Vucinic, D.; Mihailovic, J.; Prodic, I.; Minic, S.; Stojadinovic, M.; Radibratovic, M.; Milcic, M.; Velickovic, T. C. Noncovalent Interactions of Bovine a-Lactalbumin with Green Tea Polyphenol, Epigalocatechin-3-Gallate. Food Hydrocoll. 2016, 61, 241–250.
  • Cronin, S. J.; Woolf, C. J.; Weiss, G.; Penninger, J. M. R. T. Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Front. Mol. Biosci. 2019, 6, 1–19.
  • Gurzau, E. S.; Neagu, C.; Gurzau, A. E. Essential Metals-Case Study on Iron. Ecotoxicol. Environ. Saf. 2003, 56, 190–200.
  • Leclere, V.; Beaufort, S.; Dessoy, S.; Dehottay, P.; Jacques, P. Development of a Biological Test to Evaluate Thebioavailability of Iron in Culture Media. J. Appl. Microbiol. 2009, 107, 1598–1605.
  • Rakhimova, M.; Faizulloev, E.; Mametova, A.; Askalieva, N.; Gafforova, H.; Dzhumanazarova, A.; Zhakypova, G.; Abdullaeva, Z. Complex Formation in the Fe[II]-Fe[III]-Acrylamide–Water System and Chemical Models. J. Coord. Chem. 2020, 73, 1077–1085.
  • Aisen, P.; Enns, C.; Wessling-Resnick, M. Chemistry and Biology of Eukaryotic Iron Metabolism. Int. J. Biochem. Cell Biol. 2001, 33, 940–959.
  • Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on Iron and Its Importance for Human Health. J. Res. Med. Sci. 2014, 19, 164–174.
  • Tapia, J. M.; Munoz, J.; Gonzalez, F.; Blazquez, M. L.; Ballester, A. Sorption of Ferrous and Ferric Iron by Extracellular Polymeric Substances [EPS] from Acidophilic Bacteria. Prep. Biochem. Biotechnol. 2013, 43, 815–827.
  • Pantopoulos, K.; Porwal, S. K.; Tartakoff, A.; Devireddy, L. Mechanisms of Mammalian Iron Homeostasis. Biochemistry. 2012, 51, 5705–5724.
  • Bird, L. J.; Bonnefoy, V.; Newman, D. K. Bioenergetic Challenges of Microbial Iron Metabolisms. Trends Microbiol. 2011, 19, 330–340.
  • Beard, J. L. Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning. J. Nutr. 2001, 131, 568S–580S.
  • Cairo, G.; Bernuzzi, F.; Recalcati, S. A Precious Metal: Iron, an Essential Nutrient for All Cells. Genes Nutr. 2006, 1, 25–40.
  • Rout, G. R.; Sahoo, S. Role of Iron in Plant Growth and Metabolism. Ras. 2015, 3, 1–24.
  • Kazi, T. G.; Afridi, H. I.; Kazi, N.; Jamali, M. K.; Arain, M. B.; Jalbani, N.; Kandhro, G. A. Copper, Chromium, Manganese, Iron, Nickel, and Zinc Levels in Biological Samples of Diabetes Mellitus Patients. Biol. Trace Elem. Res. 2008, 122, 1–18.
  • Chua, A. C. G.; Graham, R. M.; Trinder, D.; Olynyk, J. K. The Regulation of Cellular Iron Metabolism. Crit. Rev. Clin. Lab. Sci. 2007, 44, 413–459.
  • Gomes, A. J.; Lunardi, C. N.; Rocha, F. S.; And.; Patience, G. S. Experimental Methods in Chemical Engineering: Fluorescence Emission Spectroscopy. Can. J. Chem. Eng. 2019, 97, 2168–2175.
  • Polat, Ü.; Özyiğit, İE.; Karakuş, E. Analysis of Hydrolytic Differences of Free and ‘polyacrylic acid [PAAc]-conjugated trypsin and chymotrypsin’ by using fluorescence lifetime distributions. Prep. Biochem. Biotechnol. 2020, 50, 717–722.
  • Rocco, R. M. Fluorometric Analysis of Alkaline Phosphatase in Fluid Dairy Products. J. Food Prot. 1990, 53, 588–591.
  • Jin, X. L.; Hapsari, N. D.; Lee, S.; Jo, K. DNA Binding Fluorescent Proteins as Single-Molecule Probes. Analyst. 2020, 145, 4079–4095.
  • Royer, C. A. Characterizing Proteins in Their Cellular Environment: Examples of Recent Advances in Quantitative Fluorescence Microscopy. Protein Sci. 2019, 28, 1210–1221.
  • Meguro, H.; Ohrui, H. Strategy and Design of Novel Reagents Echnol Fluorometric Analysis of Biomolecules. Biasci. Biotech. Biochem. 1996, 60, 1919–1924.
  • Khetan, D.; Gupta, N.; Chaudhary, R.; Shukla, J. S. Comparison of UV Spectrometry and Fluorometry-Based Methods for Quantification of Cell-Free DNA in Red Cell Components. Asian J. Transfus. Sci. 2019, 13, 95–99.
  • Christie, S.; Shi, X. J.; Smith, A. W. Resolving Membrane Protein-Protein Interactions in Live Cells with Pulsed Interleaved Excitation Fluorescence Cross-Correlation Spectroscopy. Acc. Chem. Res. 2020, 53, 792–799.
  • Li, L.; Wang, Y.; Zhang, W.; Yu, S.; Wang, X.; Gao, N. New Advances in Fluorescence Excitation-Emission Matrix Spectroscopy Echnol Characterization of Dissolved Organic Matter in Drinking Water Treatment: A Review. Chem. Eng. J. 2020, 381, 122676, 1–12.
  • Carstea, E. M.; Popa, C. L.; Baker, A.; Bridgeman, J. In Situ Fluorescence Measurements of Dissolved Organic Matter: A Review. Sci. Total Environ. 2020, 699, 134361, 1–16.
  • Nasir, I.; Onuchic, P. L.; Labra, S. R.; Deniz, A. A. Single-Molecule Fluorescence Studies of Intrinsically Disordered Proteins and Liquid Phase Separation. Biochim. Biophys. Acta. Proteins Proteom. 2019, 1867, 980–987.
  • Hassoun, A.; Sahar, A.; Lakhal, L.; Ait-Kaddour, A. Fluorescence Spectroscopy as a Rapid and Non-Destructive Method for Monitoring Quality and Authenticity of Fish and Meat Products: Impact of Different Preservation Conditions. LWT-Food Sci. Technol. 2019, 103, 279–292.
  • Akasaka, K.; Sasaki, I.; Ohrui, H.; Meguro, H. A Simple Fluorometry of Hydroperoxides in Oils and Foods. Biosci. Biotech. Biochem. 1992, 56, 605–607.
  • Hy, J.-Y.; Senkbeil, E. G.; White, H. B. Fluorometric Analysis of Riboflavin: An Undergraduate Biochemistry Experiment. J. Chem. Educ. 1990, 67, 803–804.
  • Thompson, S.; Pappas, D. A Fluorescence Toolbox: A Review of Investigation of Electrophoretic Separations, Process, and Interfaces. Electrophoresis. 2019, 40, 606–615.
  • Hemmila, I.; Webb, S. Time-Resolved Fluorometry: An Overview of the Labels and Core Echnologies for Drug Screening Applications. Drug Discov. Today. 1997, 2, 373–381.
  • Strojny, N.; de Silva, J. A. F. Laser Induced Fluorometric Analysis of Drugs. Anal. Chem. 1980, 52, 1554–1559.
  • Chen, S. H.; Li, Y. X.; Li, P. H.; Xiao, X. Y.; Jiang, M.; Li, S. S.; Zhou, W. Y.; Yang, M.; Huang, X. J.; Liu, W. Q. Electrochemical Spectral Methods for Trace Detection of Heavy Metals: A Review. TrAC, Trends Anal. Chem. 2018, 106, 139–150.
  • Geahchan, A.; Chambon, P. Fluorometry of Selenium in Urine. Clin. Chem. 1980, 26, 1272–1274.
  • Ichinose, N.; Ikeda, S.; Kubodera, T.; Adachi, K.; Toyama, M. Fluorometric Analysis of Uranium [vi] by Means of Extraction and Flying Spot Scanner. Fresenius’ J. Anal. Chem. 1991, 340, 1–13.
  • Schaferling, M.; Duerkop, A. Intrinsically Referenced Fluorimetric Sensing and Detection Schemes: Methods, Advantages and Applications. Vol. 5. In Standardization and Quality Assurance in Fluorescence Measurements I, Springer Ser Fluoresc. Springer-Verlag: Berlin Heidelberg, 2008; pp. 373–414.
  • Beechem, J. M.; Knutson, J. R.; Ross, J. B. A.; Turner, B. W.; Brand, L. Global Resolution of Heterogeneous Decay by Phase/Modulation Fluorometry: Mixtures and Proteins. Biochemistry. 1983, 22, 6054–6058.
  • Syvanen, A.-C.; Tchen, P.; Ranki, M.; Soderlund, H. Time-Resolved Fluorometry: A Sensitive Method to Quantify DNA-Hybrids. Nucleic Acids Res. 1986, 14, 1017–1028.
  • Resch-Genger, U.; Hoffmann, K.; Nietfeld, W.; Engel, A.; Neukammer, J.; Nitschke, R.; Ebert, B.; Macdonald, R. How to Improve Quality Assurance in Fluorometry: Fluorescence-Inherent Sources of Error and Suited Fluorescence Standards. J. Fluoresc. 2005, 15, 337–362.
  • Hemmila, I.; Mukkala, V.-M. Time-Resolution in Fluorometry Technologies, Labels, and Applications in Bioanalytical Assays. Crit. Rev. Clin. Lab. Sci. 2001, 38, 441–519.
  • Jameson, D. M.; Gratton, E.; Hall, R. D. The Measurement and Analysis of Heterogeneous Emissions by Multifrequency Phase and Modulation Fluorometry. Appl. Spectrosc. Rev. 1984, 20, 55–106.
  • Naresh, K. Applications of Fluorescence Spectroscopy. J. Chem. Pharm. Sci. 2014, 5, 18–21.
  • Al-Kindy, S. M. Z.; Al-Hinai, A.; Al-Rasbi, N. K.; Suliman, F. E. O.; Al-Lawati, H. J. Spectrofluorimetric Determination of Aluminium in Water Samples Using N-[[2-Hydroxynaphthalen-1-yl]Methylene] Acetylhydrazide. J. Taibah Univ. Sci. 2015, 9, 601–609.
  • Gonzales, W. V.; Mobashsher, A. T.; And.; Abbosh, A. The Progress of Glucose Monitoring-A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors. 2019, 19, 800–845.
  • Aydin, M.; Arsu, N.; Yagci, Y. One-Component Bimolecular Photoinitiating Systems, 2-Thioxanthone Acetic Acid Derivatives as Photoinitiators for Free Radical Polymerization. Macromol. Rapid Commun. 2003, 24, 718–723.
  • Prystupa, A.; Błażewicz, A.; Kiciński, P.; Sak, J.; Niedziałek, J.; Załuska, W. Serum Concentrations of Selected Heavy Metals in Patients with Alcoholic Liver Cirrhosis from the Lublin Region in Eastern Poland. IJERPH. 2016, 13, 582–511.
  • Curran-Everett, D. Explorations in Statistics: Standard Deviations and Standard Errors. Adv. Physiol. Educ. 2008, 32, 203–208.
  • Hamada, Y. Z. Metal Ions Role in Biological Systems. Electron. J. Biol. 2016, 2, 1–1.
  • Tan, M. X.; Liang, W. J.; Luo, X. J.; Gu, Y. Q. Fluorescence Spectroscopy Study on the Interaction Between Evodiamine and Bovine Serum Albumin. J. Chem. 2013, 2013, 1–6.
  • Hirayama, T. Fluorescent Probes for the Detection of Catalytic Fe[II] Ion. Free Radic. Biol. Med. 2019, 133, 38–45.
  • Gong, X.; Zhang, H.; Jiang, N.; Wang, L.; Wang, G. Oxadiazole-Based ‘on-Off’ Fluorescence Chemosensor for Rapid Recognition and Detection of Fe2+ and Fe3+ in Aqueous Solution and in Living Cells. Microchem. J. 2019, 145, 435–443.
  • Horak, E.; Hohnadel, D. C.; Sunderman, F. W. Jr. Modified Method for Analysis of Serum Iron. Ann. Clin. Lab. Sci. 1975, 5, 303–307.
  • Xu, X.; Zhang, L.; Shen, D.; Wu, H.; Liu, Q. Oxygen-Dependent Oxidation of Fe[II] to Fe[III] and Interaction of Fe[III] with Bovine Serum Albumin, Leading to a Hysteretic Effect on the Fluorescence of Bovine Serum Albumin. J. Fluoresc. 2008, 18, 193–201.
  • Jiang, W.; Sun, G.; Wen, X.; Men, S.; Cui, W.; Jing, M.; Jia, X.; Hu, Z.; Pu, D.; Zhang, S.; Yuan, X.; et al. Development and Evaluation of an Element-Tagged Immunoassay Coupled with Inductively Coupled Plasma Mass Spectrometry Detection: can we Apply the New Assay in the Clinical Laboratory.? Clin. Chem. Lab. Med. 2019, 58, 1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.