154
Views
1
CrossRef citations to date
0
Altmetric
Review

Microbased biorefinery for gold nanoparticle production: recent advancements, applications and future aspects

, , &

References

  • Narkeviciute, I.; Chakthranont, P.; Mackus, A. J. M.; Hahn, C.; Pinaud, B. A.; Bent, S. F.; Jaramillo, T. F. Tandem Core-Shell Si-Ta3N5 Photoanodes for Photoelectrochemical Water Splitting. Nano Lett. 2016, 16, 7565–7572. DOI: 10.1021/acs.nanolett.6b03408.
  • Salata, O. Applications of Nanoparticles in Biology and Medicine. J. Nanobiotechnol. 2004, 2, 3–5. DOI: 10.1186/1477-3155-2-3.
  • Hammami, I.; Alabdallah, N. M.; Jomaa, A. A.; Kamoun, M. Gold Nanoparticles: Synthesis Properties and Applications. J. King Saud Univ. Sci. 2021, 33, 101560. DOI: 10.1016/j.jksus.2021.101560.
  • Reddy, K. R.; Lee, K.-S.; Iyenger, A. G. Self-Assembly Directed Synthesis of Poly (Ortho-Toluidine)-Metal (Gold and Palladium) Composite Nanospheres. J. Nanosci. Nanotechnol. 2007, 7, 3117–3125. DOI: 10.1166/jnn.2007.692.
  • Reddy, K. R.; Nakata, K.; Ochiai, T.; Murakami, T.; Tryk, D. A.; Fujishima, A. Facile Fabrication and Photocatalytic Application of Ag nanoparticles-TiO2 Nanofiber Composites. J. Nanosci. Nanotechnol. 2011, 11, 3692–3695. DOI: 10.1166/jnn.2011.3805.
  • Devi, T. A.; Sivaraman, R. M.; Sheeba Thavamani, S.; Peter Amaladhas, T.; AlSalhi, M. S.; Devanesan, S.; Kannan, M. M. Green Synthesis of Plasmonic Nanoparticles Using Sargassum ilicifolium and Application in Photocatalytic Degradation of Cationic Dyes. Environ. Res. 2022, 208, 112642. DOI: 10.1016/j.envres.2021.112642.
  • Duran, N.; Seabra, A. B. Metallic Oxide Nanoparticles: State of the Art in Biogenic Syntheses and Their Mechanisms. Appl. Microbiol. Biotechnol. 2012, 95, 275–288. DOI: 10.1007/s00253-012-4118-9.
  • Alkilany, A. M.; Murphy, C. J. Toxicity and Cellular Uptake of Gold Nanoparticles: What We Have Learned So Far? J. Nanopart. Res. 2010, 12, 2313–2333. DOI: 10.1007/s11051-010-9911-8.
  • López-Miranda, J. L.; Molina, G. A.; Esparza, R.; González-Reyna, M. A.; Silva, R.; Estévez, M. Green Synthesis of Homogeneous Gold Nanoparticles Using Sargassum Spp. Extracts and Their Enhanced Catalytic Activity for Organic Dyes. Toxics 2021, 9, 280. DOI: 10.3390/toxics9110280.
  • Mandhata, C. P.; Sahoo, C. R.; Padhy, R. N. Biomedical Applications of Biosynthesized Gold Nanoparticles from Cyanobacteria: An Overview. Biol. Trace Elem. Res. 2022, DOI: 10.1007/s12011-021-03078-2.
  • Arvizo, R.; Bhattacharya, R.; Mukherjee, P. Gold Nanoparticles: Opportunities and Challenges in Nanomedicine. Expert Opin. Drug Deliv. 2010, 7, 753–763. DOI: 10.1517/17425241003777010.
  • Daraee, H.; Eatemadi, A.; Abbasi, E.; Aval, S. F.; Kouhi, M.; Akbarzadeh, A. Application of Gold Nanoparticles in Biomedical and Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 410–422. DOI: 10.3109/21691401.2014.955107.
  • Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold Nanomaterials at Work in Biomedicine. Chem. Rev. 2015, 115, 10410–10488. DOI: 10.1021/acs.chemrev.5b00193.
  • Hassan, M.; Haque, E.; Reddy, K. R.; Minett, A. I.; Chen, J.; Gomes, V. G. Edge-Enriched Graphene Quantum Dots for Enhanced Photoluminescence and Supercapacitance. Nanoscale 2014, 6, 11988–11994. DOI: 10.1039/c4nr02365j.
  • Reddy, K. R.; Gomes, V.; Hassan, M. Carbon Functionalized TiO2 Nanofibers for High Efficiency Photocatalysis. Mater. Res. Express 2014, 1, 1–15.
  • Reddy, K. R.; Sin, B. C.; Yoo, C. H.; Park, W.; Ryu, K. S.; Lee, J.-S.; Sohn, D.; Lee, Y. A New One-Step Synthesis Method for Coating Multi-Walled Carbon Nanotubes with Cuprous Oxide Nanoparticles. Scr. Mater. 2008, 58, 1010–1013. DOI: 10.1016/j.scriptamat.2008.01.047.
  • Zhang, Y. P.; Lee, S. H.; Reddy, K. R.; Gopalan, A. I.; Lee, K. P. Synthesis and Characterization of Core-Shell SiO2 Nanoparticles/Poly (3-Aminophenylboronic Acid) Composites. J. Appl. Polym. Sci. 2007, 104, 2743–2750. DOI: 10.1002/app.25938.
  • Akbarzadeh, A.; Davood, Z. A. F.; Mohammad, R. M.; Norouzian, D.; Tangestaninejad, S.; Moghadam, M.; Bararpour, N. Synthesis and Characterization of Gold Nanoparticles by Tryptophane. Am. J. Appl. Sci. 2009, 6, 691–695. DOI: 10.3844/ajassp.2009.691.695.
  • Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 2006, 110, 15700–15707. DOI: 10.1021/jp061667w.
  • Ravindra, P. Protein-Mediated Synthesis of Gold Nanoparticles. Mater. Sci. Eng. B 2009, 163, 93–98. DOI: 10.1016/j.mseb.2009.05.013.
  • Roy, K.; Lahiri, S. A Green Method for Synthesis of Radioactive Gold Nanoparticles. Green Chem. 2006, 8, 1063–1066. DOI: 10.1039/b605625c.
  • Sugunan, A.; Dutta, J. Novel Synthesis of Gold Nanoparticles in Aqueous Media. MRS Online Proc. Lib. 2006, 901, 655.
  • Dhillon, G. S.; Brar, S. K.; Kaur, S.; Verma, M. Green Approach for Nanoparticle Biosynthesis by Fungi: Current Trends and Applications. Crit. Rev. Biotechnol. 2012, 32, 49–73. DOI: 10.3109/07388551.2010.550568.
  • He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of Gold Nanoparticles Using the Bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007, 61, 3984–3987. DOI: 10.1016/j.matlet.2007.01.018.
  • Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 2003a, 28, 313–318. DOI: 10.1016/S0927-7765(02)00174-1.
  • Lengke, M. F.; Southam, G.; Cosmochim, G. The Effect of Thiosulfate Oxidizing Bacteria on the Stability of the Gold-Thiosulfate Complex. Geochim Cosmochim Acta 2005, 69, 3759–3772. DOI: 10.1016/j.gca.2005.03.012.
  • Varshney, R.; Mishra, A. N.; Bhadauria, S.; Gaur, M. S. A Novel Microbial Route to Synthesize Silver Nanoparticles Using Fungus Hormoconis resinae. Dig. J. Nanomater. Bios. 2009, 4, 349–355.
  • Ali Mansoori, G. Synthesis of Nanoparticles by Fungi. United States Patent Application 2010, 20100055199.
  • Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Intracellular Synthesis of Gold Nanoparticles by a Novel Alkalotolerant Actinomycete, Rhodococcus Species. Nanotechnology 2003c, 14, 824–828. DOI: 10.1088/0957-4484/14/7/323.
  • Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir 2003b, 19, 3550–3553. DOI: 10.1021/la026772l.
  • Lengke, M. F.; Fleet, M. E.; Southam, G. Morphology of Gold Nanoparticles Synthesized by Filamentous Cyanobacteria from Gold (I)-Thiosulfate and Gold(III)–Chloride Complexes. Langmuir 2006a, 22, 2780–2787. DOI: 10.1021/la052652c.
  • Gericke, M.; Pinches, A. Microbial Production of Gold Nanoparticles. Gold Bull. 2006, 39, 22–28. DOI: 10.1007/BF03215529.
  • Siddiqi, K. S.; Husen, A. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application. Nano Res. Lett. 2016, 11, 98–108.
  • Kitching, M.; Ramani, M.; Marsili, E. Fungal Biosynthesis of Gold Nanoparticles: Mechanism and Scale up. Microb. Biotechnol. 2015, 8, 904–917. DOI: 10.1111/1751-7915.12151.
  • Mihail, J. D.; Taylor, S. J. Interpreting Variability among Isolates for Macrophomina phaseolina in Pathogenicity, Pycnidium Production and Chlorate Utilization. Can. J. Bot. 1995, 10, 1596–1603.
  • Khan, S. K. M. phaseolina as Causal Agent for Charcoal Rot of Sunflower. Mycopathologia 2007, 5, 111–118.
  • Islam, M. S.; Haque, M. S.; Islam, M. M.; Emdad, E. M.; Halim, A.; Hossen, Q. M. M.; Hossain, M. Z.; Ahmed, B.; Rahim, S.; Rahman, M. S.; et al. Tools to Kill: Genome of One of the Most Destructive Plant Pathogenic Fungi Macrophomina phaseolina. BMC Genomics 2012, 13, 493. DOI: 10.1186/1471-2164-13-493.
  • Sreedharan, S. M.; Gupta, S.; Saxena, A. K.; Singh, R. Macrophomina phaseolina: Microbased Biorefinery for Gold Nanoparticle Production. Ann. Microbiol. 2019, 69, 435–445. DOI: 10.1007/s13213-018-1434-z.
  • Ramezani, F.; Ramezani, M.; Talebi, S. Mechanistic Aspects of Biosynthesis of Nanoparticles by Several Microbes. Nanocon 2010, 10, 12–11.
  • Santhosh, P. B.; Genova, J.; Chamati, H. Green Synthesis of Gold Nanoparticles: An Eco-Friendly Approach. Chem. MDPI 2022, 4, 345–369. DOI: 10.3390/chemistry4020026.
  • Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. JFB. 2021; 12, 70. DOI: 10.3390/jfb12040070.
  • Gahlawat, G.; Choudhury, A. R. A Review on the Biosynthesis of Metal and Metal Salt Nanoparticles by Microbes. RSC Adv. 2019, 9, 12944–12967. DOI: 10.1039/C8RA10483B.
  • Soni, M.; Mehta, P.; Soni, A.; Goswami, G. K. Green Nanoparticles: Synthesis and Applications. IOSR J. Biotechnol. Biochem. 2018, 4, 78–83.
  • Pal, G.; Rai, P.; Pandey, A. Green Synthesis of Nanoparticles: A Greener Approach for a Cleaner Future. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, 2019; pp. 1–26.
  • Roychoudhury, A. Yeast-Mediated Green Synthesis of Nanoparticles for Biological Applications. Indian J. Pharm. Biol. Res. 2020, 8, 26–31.
  • Kato, Y.; Suzuki, M. Synthesis of Metal Nanoparticles by Microorganisms. Crystals 2020, 10, 589. DOI: 10.3390/cryst10070589.
  • Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S. Microbial Deposition of Gold Nanoparticles by the Metal-Reducing Bacterium Shewanella Algae. Electrochim. Acta. 2007, 53, 186–192. doi:10.1016/j.electacta.2007.02.073.
  • Maggy, F. L.; Michael, E. F.; Gordon, S. Synthesis of Palladium Nanoparticles by Reaction of Filamentous Cyanobacterial Biomass with a Palladium (II) Chloride Complex. Langmuir 2007, 23, 8982–8987.
  • Prasad, R. Microbial Nanobionics; Springer: Cham; 2019.
  • Su, S. S.; Chang, I. Review of Production Routes of Nanomaterials. In Commercialization of Nanotechnologies—A Case Study Approach; Brabazon, D., Pellicer, E., Zivic, F., Sort, J., Baró, M. D., Grujovic, N., Choy, K.-L., Eds.; Springer: Cham, 2018; pp. 15–29.
  • Ahmad, R. S.; Ali, F.; Hamid, R. S.; Sara, M. Synthesis and Effect of Silver Nanoparticles on the Antibacterial Activity of Different Antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. 2007a, 3, 168–171.
  • Minaeian, S.; Shahverdi, A. R.; Nohi, A. S.; Shahverdi, H. R. Extracellular Biosynthesis of Silver Nanoparticles by Some Bacteria. J. Sci. IAU 2008, 17, 1–4.
  • Narges, M.; Shahram, D.; Seyedali, S.; Reza, A.; Khosro, A.; Saeed, S.; Sara, M.; Hamid, R. S.; Ahmad, R. S. Biological Synthesis of Very Small Silver Nanoparticles by Culture Supernatant of Klebsiella pneumonia: The Effects of Visible-Light Irradiation and the Liquid Mixing Process. Mater. Res. Bull. 2009, 44, 1415–1421.
  • Ahmad, R. S.; Sara, M.; Hamid, R. S.; Hossein, J.; Ashraf-Asadat, N. Rapid Synthesis of Silver Nanoparticles Using Culture Supernatants of Enterobacteria: A Novel Biological Approach. Process Biochem. 2007b, 42, 919–923.
  • Du, L. W.; Jiang, H.; Liu, X. H.; Wang, E. K. Biosynthesis of Gold Nanoparticles Assisted by Escherichia coli DH5α and Its Application on Direct Electrochemistry of Hemoglobin. Electrochem. Commun. 2007, 9, 1165–1170. DOI: 10.1016/j.elecom.2007.01.007.
  • El-Shanshoury Abd El-Raheem, R.; Ebeid El-Zeiny, E.; Elsilk Sobhy, E.; Mohamed Samia, F.; Ebeid Mohamed, E. Biogenic Synthesis of Gold Nanoparticles by Bacteria and Utilization of the Chemical Fabricated for Diagnostic Performance of Viral Hepatitis C Virus-NS4. Lett. Appl. Nanobiosci. 2020, 9, 1395–1408.
  • Yasuhiro, K.; Kaor, O.; Norizoh, S.; Toshiyuki, N.; Shinsuke, N.; Hajime, H.; Yoshio, T.; Tomoya, U. Bioreductive Deposition of Platinum Nanoparticles on the Bacterium Shewanella algae. J Biotechnol. 2007, 128, 648–653.
  • Shunmugam, R.; Balusamy, S. R.; Kumar, V.; Menon, S.; Lakshmi, T.; Perumalsamy, H. Biosynthesis of Gold Nanoparticles Using Marine Microbe (Vibrio alginolyticus) and Its Anticancer and Antioxidant Analysis. J King Saud Univ. Sci. 2021, 33, 101260. DOI: 10.1016/j.jksus.2020.101260.
  • Jha, A. K.; Prasad, K.; Kulkarni, A. R. Synthesis of TiO2 Nanoparticles Using Microorganisms. Colloids Surf. B Biointerfaces 2009, 71, 226–229. DOI: 10.1016/j.colsurfb.2009.02.007.
  • Nanda, A.; Saravanan, M. Biosynthesis of Silver Nanoparticles from Staphylococcus aureus and Its Antimicrobial Activity against MRSA and MRSE. Nanomedicine 2009, 5, 452–456. DOI: 10.1016/j.nano.2009.01.012.
  • Saifuddin, N.; Wong, C. W.; Yasumira, A. A. N. Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation. E. J. Chem. 2009, 6, 61–70. DOI: 10.1155/2009/734264.
  • Kumar, S. A.; Peter, Y. A.; Nadeau, J. L. Facile Biosynthesis, Separation and Conjugation of Gold Nanoparticles to Doxorubicin. Nanotechnology 2008, 19, 495101–495110. DOI: 10.1088/0957-4484/19/49/495101.
  • Sadowski, Z.; Maliszewska, I. H.; Grochowalska, B.; Polowczyk, I.; Kozlecki, T. Synthesis of Silver Nanoparticles Using Microorganisms. Mater. Sci. Poland 2008, 26, 419–424.
  • Kathiresan, K.; Manivannan, S.; Nabeel, M. A.; Dhivya, B. Studies on Silver Nanoparticles Synthesized by a Marine Fungus, Penicillium fellutanum Isolated from Coastal Mangrove Sediment. Colloids Surf. B Biointerfaces 2009, 71, 133–137.
  • Bansal, V.; Poddar, P.; Ahmad, A.; Sastry, M. Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. J. Am. Chem. Soc. 2006, 128, 11958–11963.
  • Agnihotri, M.; Joshi, S.; Kumar, A. R.; Zinjarde, S.; Kulkarni, S. Biosynthesis of Gold Nanoparticles by the Tropical Marine Yeast Yarrowia lipolytica NCIM 3589. Mater. Lett. 2009, 63, 1231–1234. DOI: 10.1016/j.matlet.2009.02.042.
  • Rajasekar, T.; Karthika, K.; Muralitharan, G.; Maryshamya, A.; Sabarika, S.; Anbarasu, S.; Revathy, K.; Prasannabalaji, N.; Kumaran, S. Green Synthesis of Gold Nanoparticles Using Extracellular Metabolites of Fish Gut Microbes and Their Antimicrobial Properties. Braz. J. Microbiol. 2020, 51, 957–967.
  • Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Kottaisamy, M.; BarathmaniKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of Silver and Gold Nanoparticles Using Brevibacterium casei. Colloids Surf. B Biointerfaces 2010, 77, 257–262. DOI: 10.1016/j.colsurfb.2010.02.007.
  • Brown, S.; Sarikaya, M.; Johnson, E. A. A Genetic Analysis of Crystal Growth. J. Mol. Biol. 2000, 299, 725–735. DOI: 10.1006/jmbi.2000.3682.
  • Lengke, M. F.; Ravel, B.; Fleet, M. E.; Wanger, G.; Gordon, R. A.; Southam, G. Mechanisms of Gold Bioaccumulation by Filamentous Cyanobacteria from Gold (III)-Chloride Complex. Environ. Sci. Technol. 2006b, 40, 6304–6309. DOI: 10.1021/es061040r.
  • Singaravelu, G.; Arockiamary, J. S.; Kumar, V. G.; Govindaraju, K. A Novel Extracellular Synthesis of Monodisperse Gold Nanoparticles Using Marine Alga, Sargassum wightii. Colloids Surf. B Biointerfaces 2007, 57, 97–101. DOI: 10.1016/j.colsurfb.2007.01.010.
  • Konishi, Y.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S.; Hishida, H.; Takahashi, Y.; Uruga, T. Bioreductive Deposition of Platinum Nanoparticles on the Bacterium Shewanella algae. J. Biotechnol. 2007, 128, 648–653.
  • Suresh, A. K.; Pelletier, D. A.; Wang, W.; Broich, M. L.; Moon, J. W.; Gu, B.; Allison, D. P.; Joy, D. C.; Phelps, T. J.; Doktycz, M. J. Biofabrication of Discrete Spherical Gold Nanoparticles Using the Metal Reducing Bacterium Shewanella oneidensis. Acta Biomater. 2011, 7, 2148–2152.
  • Juibari, M. M.; Yeganeh, L. P.; Abbasalizadeh, S.; Azarbaijani, R.; Mousavi, S. H.; Tabatabaei, M.; Jouzani, G. S.; Salekdeh, G. H. Investigation of a Hot Spring Extremophilic Ureibacillus thermosphaericus Strain Thermos-BF for Extracellular Biosynthesis of Functionalized Gold Nanoparticles. BioNanoScience 2015, 5, 233–241. DOI: 10.1007/s12668-015-0185-6.
  • Sarkar, J.; Ray, S.; Chattopadhyay, D.; Laskar, A.; Acharya, K. Mycogenesis of Gold Nanoparticles Using a Phytopathogen Alternaria alternata. Bioprocess Biosyst. Eng. 2012, 35, 637–643. DOI: 10.1007/s00449-011-0646-4.
  • Bhambure, R.; Bule, M.; Shaligram, N.; Kamat, M.; Singhal, R. Extracellular Biosynthesis of Gold Nanoparticles Using Aspergillus niger – Its Characterization and Stability. Chem. Eng. Technol. 2009, 32, 1036–1041. DOI: 10.1002/ceat.200800647.
  • Xie, J.; Lee, J. Y.; Wang, D. I. C.; Ting, Y. P. High-Yield Synthesis of Complex Gold Nanostructures in a Fungal System. J. Phys. Chem. C 2007, 111, 16858–16865. DOI: 10.1021/jp0752668.
  • Binupriya, A. R.; Sathishkumar, M.; Vijayaraghavan, K.; Yun, S. I. Bioreduction of Trivalent Aurum to Nanocrystalline Gold Particles by Active and Inactive Cells and Cell Free Extract of Aspergillus oryzae Var. Viridis. J. Hazard. Mater. 2010, 177, 539–545. DOI: 10.1016/j.jhazmat.2009.12.066.
  • Vala, A. K. Exploration on Green Synthesis of Gold Nanoparticles by a Marine-Derived Fungus Aspergillus sydowii. Environ. Prog. Sustainable Energy 2015, 34, 194–197. DOI: 10.1002/ep.11949.
  • Zhang, X.; He, X.; Wang, K.; Yang, X. Different Active Biomolecules Involved in Biosynthesis of Gold Nanoparticles by Three Fungus Species. J. Biomed. Nanotechnol. 2011, 7, 245–254. DOI: 10.1166/jbn.2011.1285.
  • Ahmad, T.; Wani, I. A.; Manzoor, N.; Ahmed, J.; Asiri, A. M. Biosynthesis, Structural Characterization and Antimicrobial Activity of Gold and Silver Nanoparticles. Colloids Surf. B Biointerfaces 2013, 107, 227–234. DOI: 10.1016/j.colsurfb.2013.02.004.
  • Chauhan, A.; Zubair, S.; Tufail, S.; Sherwani, A.; Sajid, M.; Raman, S. C.; Azam, A.; Owais, M. Fungus-Mediated Biological Synthesis of Gold Nanoparticles: Potential in Detection of Liver Cancer. Int. J. Nanomedicine 2011, 6, 2305–2319. DOI: 10.2147/IJN.S23195.
  • K, S. K.; R, A.; Arumugam, P.; Berchmans, S. Synthesis of Gold Nanoparticles: An Ecofriendly Approach Using Hansenula anomala. ACS Appl. Mater. Interfaces 2011, 3, 1418–1425. DOI: 10.1021/am200443j.
  • Shankar, S. S.; Ahmad, A.; Pasricha, R.; Sastry, M. Bioreduction of Chloroaurate Ions by Geranium Leaves and Its Endophytic Fungus Yields Gold Nanoparticles of Different Shapes. J. Mater. Chem. 2003, 13, 1822–1826. DOI: 10.1039/b303808b.
  • Sanghi, R.; Verma, P. pH Dependent Fungal Proteins in the “Green” Synthesis of Gold Nanoparticles. Adv. Mater. Lett. 2010, 1, 193–199. DOI: 10.5185/amlett.2010.5124.
  • Narayanan, K. B.; Sakthivel, N. Mycocrystallization of Gold Ions by the Fungus Cylindrocladium floridanum. World J. Microbiol. Biotechnol. 2013, 29, 2207–2211. DOI: 10.1007/s11274-013-1379-0.
  • Narayanan, K. B.; Sakthivel, N. Facile Green Synthesis of Gold Nanostructures by NADPH-Dependent Enzyme from the Extract of Sclerotium rolfsii. Colloids Surf. A Physicochem. Eng. Asp. 2011a, 380, 156–161. DOI: 10.1016/j.colsurfa.2011.02.042.
  • Narayanan, K. B.; Sakthivel, N. Synthesis and Characterization of Nanogold Composite Using Cylindrocladium floridanum and Its Heterogeneous Catalysis in the Degradation of 4-Nitrophenol. J. Hazard. Mater. 2011b, 189, 519–25525. DOI: 10.1016/j.jhazmat.2011.02.069.
  • Mandal, D.; Bolander, M. E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The Use of Microorganisms for the Formation of Metal Nanoparticles and Their Application. Appl. Microbiol. Biotechnol. 2006, 69, 485–492. DOI: 10.1007/s00253-005-0179-3.
  • Sawle, B. D.; Salimath, B.; Deshpande, R.; Bedre, M. R.; Prabhakar, B. K.; Venkataraman, A. Biosynthesis and Stabilization of Au and Au-Ag Alloy Nanoparticles by Fungus, Fusarium semitectum. Sci. Technol. Adv. Mater. 2008, 9, 1–10.
  • Mishra, A. N.; Bhadauria, S.; Gaur, M. S.; Pasricha, R. Extracellular Microbial Synthesis of Gold Nanoparticles Using Fungus Hormoconis resinae. JOM 2010, 62, 45–48. DOI: 10.1007/s11837-010-0168-6.
  • Castro, L. E.; Vilchis, N. A. R.; Avalos, B. M. Biosynthesis of Silver, Gold and Bimetallic Nanoparticles Using the Filamentous Fungus Neurospora crassa. Colloids Surf. B Biointerfaces 2011, 83, 42–48.
  • Mishra, A.; Tripathy, S. K.; Wahab, R.; Jeong, S.-H.; Hwang, I.; Yang, Y. B.; Kim, Y. S.; Shin, H. S.; Yun, S. I. Microbial Synthesis of Gold Nanoparticles Using the Fungus Penicillium brevicompactum and Their Cytotoxic Effects against Mouse Mayo Blast Cancer C2C12 Cells. Appl. Microbiol. Biotechnol. 2011, 92, 617–630. DOI: 10.1007/s00253-011-3556-0.
  • Mishra, A.; Tripathy, S. K.; Yun, S.-I. Fungus Mediated Synthesis of Gold Nanoparticles and Their Conjugation with Genomic DNA Isolated from Escherichia coli and Staphylococcus aureus. Process Biochem. 2012, 47, 701–711. DOI: 10.1016/j.procbio.2012.01.017.
  • Du, L.; Xian, L.; Feng, J. X. Rapid Extra-/Intracellular Biosynthesis of Gold Nanoparticles by the Fungus Penicillium sp. J. Nanopart. Res. 2011, 13, 921–930. DOI: 10.1007/s11051-010-0165-2.
  • Sanghi, R.; Verma, P.; Puri, S. Enzymatic Formation of Gold Nanoparticles Using Phanerochaete chrysosporium. ACES 2011, 01, 154–162. DOI: 10.4236/aces.2011.13023.
  • Das, S. K.; Dickinson, C.; Lafir, F.; Brougham, D. F.; Marsili, E. Synthesis, Characterization and Catalytic Activity of Gold Nanoparticles Biosynthesized with Rhizopus oryzae Protein Extract. Green Chem. 2012, 14, 1322–1344. DOI: 10.1039/c2gc16676c.
  • Lin, Z.; Wu, J.; Xue, R.; Yang, Y. Spectroscopic Characterization of Au3+ Biosorption by Waste Biomass of Saccharomyces cerevisiae. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2005, 61, 761–765. DOI: 10.1016/j.saa.2004.03.029.
  • Maliszewska, I.; Aniszkiewicz, Ł.; Sadowski, Z. Biological Synthesis of Gold Nanostructures Using the Extract of Trichoderma koningii. Acta Phys. Polon. A 2009, 116, 163–165.
  • Maliszewska, I. Microbial Mediated Synthesis of Gold Nanoparticles: Preparation, Characterization and Cytotoxicity Studies. Dig. J. Nanomater. Bios. 2013, 8, 1123–1131.
  • Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, M. I.; Ramani, R.; Parischa, R.; Ajayakumar, P. V.; Alam, M.; et al. Bioreduction of AuCl−4 Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed. Angew. Chem. Int. Ed. 2001, 40, 3585–3588. DOI: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K.
  • Philip, D. Biosynthesis of Au, Ag and Au-Ag Nanoparticles Using Edible Mushroom Extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 374–381. DOI: 10.1016/j.saa.2009.02.037.
  • Khan, T.; Abbas, S.; Fariq, A.; Yasmin, A. Microbes: Nature’s Cell Factories of Nanoparticles Synthesis. In Exploring the Realms of Nature for Nanosynthesis; Prasad, R., Jha, A. K., Prasad, K., Eds.; Springer: Cham, 2018; pp. 25–50.
  • Hulkoti, N. I.; Taranath, T. Biosynthesis of Nanoparticles Using Microbes – A Review. Colloids Surf. B Biointerfaces 2014, 121, 474–483. DOI: 10.1016/j.colsurfb.2014.05.027.
  • Tiquia-Arashiro, S.; Rodrigues, D. Nanoparticles Synthesized by Microorganisms. In Extremophiles: Applications in Nanotechnology; Springer: Cham; 2016; pp. 1–51.
  • Scott, D.; Toney, M.; Muzikár, M. Harnessing the Mechanism of Glutathione Reductase for Synthesis of Active Site Bound Metallic Nanoparticles and Electrical Connection to Electrodes. J. Am. Chem. Soc. 2008, 130, 865–874.
  • Yusof, H. M.; Mohamad, R.; Zaidan.; U. H.; Microbial. Synthesis of Zinc Oxide Nanoparticles and Their Potential Application as an Antimicrobial Agent and a Feed Supplement in Animal Industry: A Review. J. Anim. Sci. Biotechnol. 2019, 10, 1–22.
  • Ali, M. A.; Ahmed, T.; Wu, W.; Hossain, A.; Hafeez, R.; Islam Masum, M. M.; Wang, Y.; An, Q.; Sun, G.; Li, B. Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens. Nanomaterials 2020, 10, 1146. DOI: 10.3390/nano10061146.
  • Singh, R.; Shedbalkar, U. U.; Wadhwani, S. A.; Chopade, B. A. Bacteriagenic Silver Nanoparticles: Synthesis, Mechanism, and Applications. Appl. Microbiol. Biotechnol. 2015, 99, 4579–4593. DOI: 10.1007/s00253-015-6622-1.
  • Kalimuthu, K.; Babu, R. S.; Venkataraman, D.; Bilal, M.; Gurunathan, S. Biosynthesis of Silver Nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 2008, 65, 150–153. DOI: 10.1016/j.colsurfb.2008.02.018.
  • Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.-H.; Kim, J.-H. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials 2019, 9, 1719. DOI: 10.3390/nano9121719.
  • Singh, A.; Gautam, P. K.; Verma, A.; Singh, V.; Shivapriya, P. M.; Shivalkar, S. Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review. Biotechnol. Rep. 2020, 25, 1–14.
  • Ingale, A. G.; Chaudhari, A. Biogenic Synthesis of Nanoparticles and Potential Applications: An Eco-Friendly Approach. J. Nanomed. Nanotechol. 2013, 4, 1–7.
  • Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Lattice Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nat. Chem. 2010, 2, 454–460. DOI: 10.1038/nchem.623.
  • Yeh, Y. C.; Creran, B.; Rotello, V. M. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale 2012, 4, 1871–1880. DOI: 10.1039/c1nr11188d.
  • Noruzi, M.; Zare, D.; Khoshnevisan, K.; Davoodi, D. Rapid Green Synthesis of Gold Nanoparticles Using Rosa Hybrida Petal Extract at Room Temperature. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011, 79, 1461–1465. DOI: 10.1016/j.saa.2011.05.001.
  • Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological Synthesis of Triangular Gold Nanoprisms. Nat. Mater. 2004, 3, 482–488. DOI: 10.1038/nmat1152.
  • Sengani, M.; Grumezescu, A. M.; Rajeswari, V. D. Recent Trends and Methodologies in Gold Nanoparticle synthesis-A Prospective Review on Drug Delivery Aspect. OpenNano 2017, 2, 37–46. DOI: 10.1016/j.onano.2017.07.001.
  • Panigrahi, G. K.; Sahoo, A.; Satapathy, K. B. Insights to Plant Immunity: Defense Signaling to Epigenetics. Phy. Mol. Plant Patho. 2021b, 113, 101568–101567. DOI: 10.1016/j.pmpp.2020.101568.
  • Panigrahi, G. K.; Sahoo, S. K.; Sahoo, A.; Behera, S.; Sahu, S. R.; Dash, A.; Satapathy, K. B. Bioactive Molecules from Plants: A Prospective Approach to Combat SARS-Cov-2. Adv. Trad. Med. 2021a, 1–14.
  • Sahoo, S. K.; Panigrahi, G. K.; Sahoo, A.; Pradhan, A. K.; Dalbehera, A. Bio-Hydrothermal Synthesis of ZnO–ZnFe2O4 Nanoparticles Using Psidium guajava Leaf Extract: Role in Waste Water Remediation and Plant Immunity. J. Clean. Prod. 2021, 318, 128522–128514. (DOI: 10.1016/j.jclepro.2021.128522.
  • Sahoo, S. K.; Panigrahi, G. K.; Sahoo, M. K.; Arzoo, A.; Sahoo, J. K.; Sahoo, A.; Pradhan, A. K.; Dalbehera, A. Biological Synthesis of GO-MgO Nanomaterial Using Azadirachta indica Leaf Extract: A Potential Bio-Adsorbent for Removing Cr(VI) Ions from Aqueous Media. Biochem. Eng. J. 2022, 177, 1–12.
  • Mohanpuria, P.; Rana, N. K.; Yadav, S. K. Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10, 507–517. DOI: 10.1007/s11051-007-9275-x.
  • Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A. K. Facile Green Synthesis of Variable Metallic Gold Nanoparticle Using Padina gymnospora, a Brown Marine Macroalga. Appl. Nanosci. 2013, 3, 145–151. DOI: 10.1007/s13204-012-0115-7.
  • Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current Methods for Synthesis of Gold Nanoparticles, Artificial Cells. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 596–602. DOI: 10.3109/21691401.2014.971807.
  • Kumar, K. P.; Paul, W.; Sharma, C. P. Green Synthesis of Gold Nanoparticles with Zingiber officinale Extract: Characterization and Blood Compatibility. Proc. Biochem. 2011, 46, 2007–2013. DOI: 10.1016/j.procbio.2011.07.011.
  • Parida, U. K.; Bindhani, B. K.; Nayak, P. Green Synthesis and Characterization of Gold Nanoparticles Using Onion (Allium cepa) Extract. WJNSE 2011, 01, 93–98. DOI: 10.4236/wjnse.2011.14015.
  • Gong, Y.; Hu, J.; Choi, J. R.; You, M.; Zheng, Y.; Xu, B.; Wen, T.; Xu, F. Improved LFIAs for Highly Sensitive Detection of BNP at Point-of-Care. Int. J. Nanomedicine 2017, 12, 4455–4466. DOI: 10.2147/IJN.S135735.
  • Wang, Z.; Wu, X.; Liu, L.; Xu, L.; Kuang, H.; Xu, C. Rapid and Sensitive Detection of Diclazuril in Chicken Samples Using a Gold Nanoparticle-Based Lateral-Flow Strip. Food Chem. 2020, 312, 12616.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.