253
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In vitro fermentation assay on the bifidogenic effect of steviol glycosides of Stevia rebaudiana plant for the development of dietetic novel products

&

References

  • Lange, K. W. The Prevention Of COVID-19 and the Need for Reliable Data. Mov. Nut. Health Dis. 2020, 4, 53–63.
  • Lange, K. W. Food Science and COVID-19. Food Sci. Hum. Wellness 2021, 10, 1–5. DOI: 10.1016/j.fshw.2020.08.005.
  • Rodgers, S. Minimally Processed Functional Foods: Technological and Operational Pathways. J. Food Sci. 2016, 81, R2309–R2319. DOI: 10.1111/1750-3841.13422.
  • Akin, Z.; Ozcan, T. Functional Properties of Fermented Milk Produced with Plant Proteins. LWT - Food Sci. Technol. 2017, 86, 25–30. DOI: 10.1016/j.lwt.2017.07.025.
  • Granato, D.; Nunes, D. S.; Barba, F. J. An Integrated Strategy Between Food Chemistry, Biology, Nutrition, Pharmacology, and Statistics in the Development of Functional Foods: A Proposal. Trends Food Sci. Technol. 2017, 62, 13–22. DOI: 10.1016/j.tifs.2016.12.010.
  • Alongi, M.; Monica Anese, M. Re-Thinking Functional Food Development Through A Holistic Approach. J. Funct. Foods 2021, 81, 104466. DOI: 10.1016/j.jff.2021.104466.
  • Maldonado Galdeano, C.; Inés Cazorla, S.; Lemme Dumit, J. M.; Velez, E.; Perdigón, G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019, 74, 115–124.
  • Jin, H. Y.; Cai, L.; Cheng, Z. S.; Cheng, H.; Deng, T.; Fan, Y.; Fang, C.; Huang, D.; Huang, L. Q.; Huang, Q.; et al. A Rapid Advice Guideline for the Diagnosis Andtreatment of 2019 Novel Coronavirus (2019-nCoV) İnfected Pneumonia. Mil. Med. Res. 2020, 7, 1–23.
  • Xu, K.; Cai, H.; Shen, Y.; Qin, N.; Chen, Y.; Hu, S.; Li, J.; Wang, H.; Yu, L.; Huang, H.; et al. Management of Corona Virus Disease-19 (COVID-19): The Zhejiang Experience, Zhejiang Da Xue Xue Bao Yi Xue Ban. Nat. Lib. Med. 2020, 49, 147–157.
  • Baud, D.; Agri, V. D.; Gibson, G. R.; Reid, G.; Giannoni, E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front Public Health 2020, 8, 186.
  • Khaled, J. MA. Probiotics, Prebiotics, and COVID-19 Infection: A Review Article. Saudi J. Biol. Sci. 2021, 28, 865–869. DOI: 10.1016/j.sjbs.2020.11.025.
  • Pedreschi, R.; Campos, D.; Noratto, G.; Chirinos, R.; Cisneros-Zevallos, L. Andean yacon Root (Smallanthus Sonchifolius Poepp. Endl) Fructooligosaccharides as a Potential Novel Source of Prebiotics. J. Agric. Food Chem. 2003, 51, 5278–5284. DOI: 10.1021/jf0344744.
  • Van der Meulen, R.; Avonts, L.; Vuyst, L. D. Short Fractions of Oligofructose Are Preferentially Metabolized by Bifidobacterium Animalis DN-173 010. Appl. Environ. Microbiol. 2004, 70, 1923–1930.
  • Wang, J.; Sun, B.; Cao, Y.; Wang, C. In Vitro Fermentation of Xylooligosaccharides From Wheat Bran in Soluble Dietary Fiber by Bifidobacteria. Carbohydr. Polym. 2010, 82, 419–423. DOI: 10.1016/j.carbpol.2010.04.082.
  • Gavini, F.; Delcenserie, V.; Kopeinig, K.; Pollinger, S.; Beerens, H.; Bonaparte, C.; Upmann, M. Bifidobacterium Species Isolated from Animal Feces and From Beef and Pork Meat. J Food Prot 2006, 69, 871–877. DOI: 10.4315/0362-028x-69.4.871.
  • Hadadji, M.; Benema, R.; Saidi, N.; Henni, D. E.; Kihal, M. Identificationof Cultivable Bifidobacterium Species Isolated From Breast-Fed İnfants Feces In West-Algeria. Afr. J. Biotechnol. 2005, 4, 422–430.
  • Quigley, E. M. M. Bifidobacterium Animalis Spp. lactis: The Microbiota in Gastrointestinal Pathophysiology. Floch, M. H., Ringel, Y., Walker, W. A., Eds. Academic Press: Elsevier Inc. London, 2017; pp. 127–130.
  • Barat, A.; Ozcan, T. Growth of Probiotic Bacteria and Characteristics of Fermented Milk Containing Fruit Matrices. Int. J. Dairy Technol. 2018, 71, 120–129. DOI: 10.1111/1471-0307.12391.
  • Kurtuldu, O.; Ozcan, T. Effect of β-Glucan on the Properties of Probiotic Set Yoghurt With Bifidobacterium animalis Subsp. lactis Strain Bb-12. Int. J. Dairy Technol. 2018, 71, 157–166. DOI: 10.1111/1471-0307.12414.
  • Rogers, P. J.; Hogenkamp, P. S.; de Graaf, C.; Higgs, S.; Lluch, A.; Ness, A. R.; Penfold, C.; Perry, R.; Putz, P.; Yeomans, M. R.; Mela, D. J. Does Low-Energy Sweetener Consumption Affect Energy Intake and Body Weight? A Systematic Review, Including Meta-Analyses, of the Evidence from Human and Animal Studies. Int. J. Obes. 2016, 40, 381–394. DOI: 10.1038/ijo.2015.177.
  • Ozdemir, T.; Ozcan, T. Effect of Steviol Glycosides as Sugar Substitute on the Probiotic Fermentation in Milk Gels Enriched with Red Beetroot (Beta Vulgaris L.) Bioactive Compounds. LWT - Food Sci. Technol. 2020, 134, 109851. DOI: 10.1016/j.lwt.2020.109851.
  • Pól, J.; Hohnová, B.; Hyötyläinen, T. Characterization of Stevia Rebaudiana by Comprehensive Two Dimensional Liquid Chromatography Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2007, 1150, 85–92. DOI: 10.1016/j.chroma.2006.09.008.
  • Brahmachari, G.; Mandal, L. C.; Roy, R.; Mondal, S.; Brahmachari, A. K. Stevioside and Related Compounds–Molecules of Pharmaceutical Promise: A Critical Overview. Arch. Pharm. (Weinheim) 2011, 344, 5–19. DOI: 10.1002/ardp.201000181.
  • Brownawell, A. M.; Caers, W.; Gibson, G. R.; Kendall, C. W.; Lewis, K. D.; Ringel, Y.; Slavin, J. L. Prebiotics and the Health Benefits of Fiber: Current Regulatory Status, Future Research, and Goals, 2. J. Nutr. Health 2012, 142, 962–974.
  • Zou, X.; Tan, Q. W.; Goh, B. H.; Lee, L. H.; Tan, K. L.; Leng, H. Sweeter’ Than İts Name: Anti-İnflammatory Activities of Stevia Rebaudiana. All Life 2020, 13, 286–309. DOI: 10.1080/26895293.2020.1771434.
  • Geuns, J. M. Safety of Stevia and Stevioside. Recent Res. Devel. Phytochem. 2000, 4, 75–88.
  • Geuns, J. M.; Buyse, J.; Vankeirsbilck, A.; Temme, E. H. Metabolism of Stevioside by Healthy Subjects. Exp. Biol. Med (Maywood). 2007, 232, 164–173.
  • Gardana, C.; Scaglianti, M.; Simonetti, P. Evaluation of Steviol and İts Glycosides in Stevia Rebaudiana Leaves and Commercial Sweetener by Ultra-High-Performance Liquid Chromatography-Massspectrometry. J. Chromatogr. A 2010, 1217, 1463–1470. DOI: 10.1016/j.chroma.2009.12.036.
  • Anton, S. D.; Martin, C. K.; Han, H.; Coulon, S.; Cefalu, W. T.; Geiselman, P.; Williamson, D. A. Effects of Stevia, Aspartame, and Sucrose on Food İntake, Satiety and Postprandial Glucose and İnsulin Levels. Appetite 2010, 55, 37–43. DOI: 10.1016/j.appet.2010.03.009.
  • Goyal, S. K.; Samsher, G. R.; Goyal, R. K. Stevia (Stevia Rebaudiana) a Bio-Sweetener: A Review. Int. J. Food Sci. 2010, 61, 1–10. DOI: 10.3109/09637480903193049.
  • Ozcan, T.; Ozdemir, T.; Avci, H. R. Survival of Lactobacillus casei and Functional Characteristics of Reduced Sugar Red Beetroot Yoghurt with Natural Sugar Substitutes. Int. J. Dairy Technol. 2021, 74, 148–160. DOI: 10.1111/1471-0307.12741.
  • Lee, C. N.; Wong, K. L.; Liu, J. C.; Chen, Y. J.; Cheng, J. T.; Chan, P. Inhibitory Effect of Stevioside on Calcium Influx to Produce Antihypertension. Planta Med. 2001, 67, 796–799. DOI: 10.1055/s-2001-18841.
  • Yoneda, Y.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Effect of Treatment With Gibberellin, Gibberellin Biosynthesis Inhibitor, Andauxin on Steviol Glycoside Content in Stevia Rebaudiana Bertoni. Sugar Tech. 2018, 20, 482–491. DOI: 10.1007/s12355-017-0561-3.
  • Koyama, E.; Kitazawa, K.; Ohori, Y.; Izawa, O.; Kakegawa, K.; Fujino, A.; Ui, M. In Vitro Metabolism of the Glycosidic Sweeteners, Stevia Mixture and Enzymatically Modified Stevia in Human Intestinal Microflora. Food Chem. Toxicol. 2003, 41, 359–374. DOI: 10.1016/s0278-6915(02)00235-1.
  • Ozcan, T.; Yilmaz-Ersan, L.; Akpinar-Bayizit, A.; Delikanli-Kiyak, B. Using of Stevia as Non-Caloric Sugar Substitutes on Viability of Probiotic Bacteria Lactobacillus casei. Int. J. Adv. Sci. Eng. Technol. 2017, 5, 43–48.
  • Ozcan, T.; Yilmaz-Ersan, L.; Akpinar-Bayizit, A.; Ozcan, O.; Delikanli-Kiyak, B.; Ozyurek, M. B.; Teksoy, S. Potential Prebiotic Effects of Mushroom Extracts on the Viability of Bifidobacterium bifidum. Fresenius Environ. Bull. 2020, 29, 1452–1458.
  • Vinderola, C. G.; Reinheimer, J. A. Enumeration of L. casei in the Presence of L. acidophilus, Bifidobacteria and Starter Bacteria in Fermented Dairy Products. Int. Dairy J. 2000, 10, 271–275. DOI: 10.1016/S0958-6946(00)00045-5.
  • Grimoud, J.; Durand, H.; Courtin, C.; Monsan, P.; Ouarné, F.; Theodorou, V.; Roques, C. In Vitro Screening of Probiotic Lactic Acid Bacteria and Prebiotic Glucooligosaccharides to Select Effective Synbiotics. Anaerobe 2010, 16, 493–500. DOI: 10.1016/j.anaerobe.2010.07.005.
  • Heydari, S.; Hosseini, S. E.; Mortazavian, A. M.; Taheri, S. Biochemical, Microbiological, and Sensory Properties of Probiotic Yogurt Made from Iranian Native Strains Compared to Commercial Strains. J. Food Process. Preserv. 2021, 45, e15021.
  • Yilmazer, M.; Secilmis, H. Analysis of Some Flavour Components in Dairy Products With Gas Chromatography Headspace System. Turkey 9th Food Congress, May 24–26, 2006, Abant Izzet Baysal University, Bolu.
  • Huebner, J.; Wehling, R. L.; Parkhurst, A.; Hutkins, R. W. Effect of Processing Conditions on the Prebiotic Activity of Commercial Prebiotics. Int. Dairy J. 2008, 18, 287–293. DOI: 10.1016/j.idairyj.2007.08.013.
  • Shuler, M. L.; Kargi, F. Bioprocess Engineering: Basic Concepts. Pearson Education: Singapore, 2005, 553 pp.
  • Griffiths, M. J.; Garcin, C.; van Hille, R. P.; Harrison, S. T. Interference by Pigment in the Estimation of Microalgal Biomass Concentration by Optical Density. J. Microbiol. Methods 2011, 85, 119–123. DOI: 10.1016/j.mimet.2011.02.005.
  • Shah, N. P. Probiotic Bacteria: Selective Enumeration and Survival in Dairy Foods. J. Dairy Sci. 2000, 83, 894–907. DOI: 10.3168/jds.S0022-0302(00)74953-8.
  • Sultana, K.; Godward, G.; Reynolds, N.; Arumugaswamy, R.; Peiris, P.; Kailasapathy, K. Encapsulation of Probiotic Bacteria with Alginate-Starch and Evaluation of Survival in Simulated Gastrointestinal Conditions and in Yoghurt. Int. J. Food Microbiol. 2000, 62, 47–55. DOI: 10.1016/s0168-1605(00)00380-9.
  • Homayouni, A.; Azizi, A.; Ehsani, M. R.; Yarmand, M. S.; Razavi, S. H. Effect of Microencapsulation and Resistant Starch on the Probiotic Survival and Sensory Properties of Synbiotic İce Cream. Food Chem. 2008, 111, 50–55. DOI: 10.1016/j.foodchem.2008.03.036.
  • Mahmoudi, F.; Miloud, H.; Bettache, G.; Mebrouk, K. Identification and Physiological Properties of Bifidobacterium Strains Isolated from Different Origin. J. Food Eng. 2013, 3, 196–206.
  • Shori, A. B. Influence of Food Matrix on the Viability of Probiotic Bacteria: A Review Based on Dairy and Non-Dairy Beverages. Food Biosci. 2016, 13, 1–8. DOI: 10.1016/j.fbio.2015.11.001.
  • Singh, P.; Medronho, B.; dos Santos, T.; Nunes-Correia, I.; Granja, P.; Miguel, M. G.; Lindman, B. On the Viability, Cytotoxicity and Stability of Probiotic Bacteria Entrapped in Cellulose-Based Particles. Food Hydrocolloids 2018, 82, 457–465. DOI: 10.1016/j.foodhyd.2018.04.027.
  • Su, P.; Henriksson, A.; Mitchell, H. Selected Prebiotics Support the Growth of Probiotic Mono-Cultures İn Vitro. Anaerobe 2007, 13, 134–139. DOI: 10.1016/j.anaerobe.2007.04.007.
  • Goderska, K.; Nowak, J.; Czarnecki, Z. Comparision of Growth of Lactobacillus acidophilus and Bifidobacterium bifidum Species in Media Suplemented with Selected Saccharides Including Prebiotics. Acta Sci. Pol. Technol. Aliment 2008, 7, 5–20.
  • Donkor, O. N.; Henriksson, A.; Vasiljevic, T.; Shah, N. P. Effect of Acidification on the Activity of Probiotics in Yoghurt During Cold Storage. Int. Dairy J. 2006, 16, 1181–1189. DOI: 10.1016/j.idairyj.2005.10.008.
  • Sanz, Y. Ecological and Functional Implications of the Acid-Adaptation Ability of Bifidobacterium: A Way of Selecting Improved Probiotic Strains. Int. Dairy J. 2007, 17, 1284–1289. DOI: 10.1016/j.idairyj.2007.01.016.
  • Tamime, A. Y.; Saarela, M.; Korslund-Sondergaard, A.; Mistry, V. V.; Shah, N. P. Production and Maintenance of Viability of Probiotic Microorganisms in Dairy Products: Probiotic Dairy Products; Tamime, A.Y., Ed. Blackwell Publishing Ltd.: London, 2005; pp 39–97.
  • Cardarelli, H. R.; Saad, S. M.; Gibson, G. R.; Vulevic, J. Functional Petit-Suisse Cheese: Measure of the Prebiotic Effect. Anaerobe 2007, 13, 200–207. DOI: 10.1016/j.anaerobe.2007.05.003.
  • Tsai, C. C.; Chou, L. C.; Tsen, H. Y.; Lin, J. S. An İn Vitro Investigation of the Antagonistic Effects of Multiple Strains of Lactobacillales on Salmonella enterica Serovar Choleraesuis. Appl. Microbiol. 2016, 2, 1000109.
  • Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. Eur. J. Nutr. 2018, 57, 1–24. DOI: 10.1007/s00394-017-1445-8.
  • Davie, J. R. Inhibition of Histone Deacetylase Activity by Butyrate. J. Nutr. 2003, 133, 2485–2493.
  • Smith, P. M.; Howitt, M. R.; Panikov, N.; Michaud, M.; Gallini, C. A.; Bohlooly, Y. M.; Glickman, J. N.; Garrett, W. S. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science 2013, 341, 569–573. DOI: 10.1126/science.1241165.
  • Lee, C.; Kim, B. G.; Kim, J. H.; Chun, J.; Im, J. P.; Kim, J. S. Sodium Butyrate Inhibits the NF-Kappa B Signaling Pathway and Histone Deacetylation, and Attenuates Experimental Colitis in an IL-10 İndependent Manner. Int. Immunopharmacol. 2017, 51, 47–56. DOI: 10.1016/j.intimp.2017.07.023.
  • Samuel, B. S.; Shaito, A.; Motoike, T.; Rey, F. E.; Backhed, F.; Manchester, J. K.; Hammer, R. E.; Williams, S. C.; Crowley, J.; Yanagisawa, M.; Gordon, J. I. Effects of the Gut Microbiota on Host Adiposity Are Modulated by the Short-Chain Fatty-Acid Binding G Protein-Coupled Receptor, Gpr41. Proc. Natl. Acad. Sci. U S A 2008, 105, 16767–16772. DOI: 10.1073/pnas.0808567105.
  • Tolhurst, G.; Heffron, H.; Lam, Y. S.; Parker, H. E.; Habib, A. M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F. M. Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2. Diabetes 2012, 61, 364–371. DOI: 10.2337/db11-1019.
  • Lin, H. V.; Frassetto, A.; Kowalik, E. J.; Nawrocki, A. R.; Lu, M. M.; Kosinski, J. R.; Hubert, J. A.; Szeto, D.; Yao, X.; Forrest, G.; Marsh, D. J. Butyrate and Propionate Protect Against Diet-Induced Obesity and Regulate Gut Hormones Via Free Fatty Acid Receptor 3-Independent Mechanisms. PLoS One 2012, 7, e35240. DOI: 10.1371/journal.pone.0035240.
  • Franck, A. M. Inulin and Oligofructose. In LFRA İngredient Handbook: Prebiotics and Probiotics; Gibson, G., Angus, F., Eds. Leatherhead Publishing: Surrey, 2000; pp. 1–18.
  • Marx, S. P.; Winkler, S.; Hartmeier, W. Metabolization of β-(2, 6)-Linked fructose-Oligosaccharides by Different Bifidobacteria. FEMS Microbiol. Lett. 2000, 182, 163–169. DOI: 10.1111/j.1574-6968.2000.tb08891.x.
  • Chen, T.; Xiong, S.; Wang, M.; Wu, Q.; Wei, H. Effects of Traditional Chinese Medicines on Intestinal Bacteria: A Review. Indian J. Tradit. Knowl. 2012, 11, 401–407.
  • Yang, K.; Xu, M.; Zhong, F.; Zhu, J. Rapid Differentiation of Lactobacillus Species via Metabolic Profiling. J. Microbiol. Methods 2018, 154, 147–155. DOI: 10.1016/j.mimet.2018.10.013.
  • Carlson, J.; Slavin, J.; Deng, P.; Swanson, K.; Hospattankar, A. In vitro Batch Fermentation Analysis of Wheat Dextrin and Partially Hydrolyzed Guar Gum-Fermentation Kinetics and Prebiotics Effects. FASEB J. 2015, 29, 606–601. DOI: 10.1096/fasebj.29.1_supplement.606.1.
  • Zoetendal, E. G.; Raes, J.; van den Bogert, B.; Arumugam, M.; Booijink, C. C.; Troost, F. J.; Bork, P.; Wels, M.; de Vos, W.; Michiel Kleerebezem, M. The Human Small Intestinal Microbiota is Driven by Rapid Uptake and Con- Version of Simple Carbohydrates. ISME J. 2012, 6, 1415–1426. DOI: 10.1038/ismej.2011.212.
  • Narli, M. B.; Ozcan, T. Assessment of Bifidogenic Potential of Cowpea (Vigna unguiculata (L.) Walp.) Extract in İn Vitro and Milk Fermentation Models. LWT - Food Sci. Technol. 2022, 157, 113071.
  • Usta-Gorgun, B.; Yilmaz-Ersan, L. Short-Chain Fatty Acid Production by the Bifidobacterium Species in the Presence of Salep. Electron. J. Biotechnol. 2020, 47, 29–35. DOI: 10.1016/j.ejbt.2020.06.004.
  • Kim, J. F.; Jeong, H.; Yu, D. S.; Choi, S.-H.; Hur, C.-G.; Park, M.-S.; Yoon, S. H.; Kim, D.-W.; Ji, G. E.; Park, H.-S.; Oh, T. K. Genome Sequence of the Probiotic Bacterium Bifidobacterium animalis Subsp. lactis AD011. J. Bacteriol. 2009, 191, 678–679. DOI: 10.1128/JB.01515-08.
  • Meyer, D.; Stasse-Wolthuis, M. The Bifidogenic Effect of Inulin and Oligofructose and İts Consequences for Gut Health. Eur. J. Clin. Nutr. 2009, 63, 1277–1289. DOI: 10.1038/ejcn.2009.64.
  • Playne, M. J.; Crittenden, R. G. Galacto-Oligosaccharides and Other Products Derived from Lactose. In Lactose, Water, Salts and Minor Constituents; McSweeney, P. L. H., Fox, P. F., Eds. Springer: New York, NY, 2009; pp. 121–201.
  • Yilmaz-Ersan, L.; Ozcan, T.; Akpinar-Bayizit, A.; Delikanli, B. The Importance of Lactose Derivatives as a Bifidogenic Factor. J. Agric. Fac. Uludag Univ. 2016, 30, 79–90.
  • Huebner, J.; Wehling, R. L.; Hutkins, R. W. Functional Activity of Commercial Prebiotics. Int. Dairy J. 2007, 17, 770–775. DOI: 10.1016/j.idairyj.2006.10.006.
  • Anprung, P.; Sangthawan, S. Prebiotic Activity and Bioactive Compounds of the Enzymatically Depolymerized Thailand-Grown Mangosteen Aril. J. Food Res. 2012, 1, 268–276.
  • Kaplan, H.; Hutkins, R. W. Fermentation of Fructooligosaccharides by Lactic Acid Bacteria and Bifidobacteria. Appl. Environ. Microbiol. 2000, 66, 2682–2684. DOI: 10.1128/AEM.66.6.2682-2684.2000.
  • Thuaytong, W.; Anprung, P. Bioactive Compounds and Prebiotic Activity in Thailand-Grown Red and White Guava Fruit (Psidium guajava L.). Food Sci. Technol. İnt. 2011, 17, 205–212. DOI: 10.1177/1082013210382066.
  • Ozcan, T.; Karaman, S. Effect of Acacia Exudate Gum on Milk Gel Fermentation of Flavoured Synbiotic Yoghurt Enriched with Daucus Carota L. Ssp. sativus Var. atrorubens Alef Fibre. Mljekarstvo 2021, 71, 204–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.