122
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Serum metabonomics characterization of liver fibrosis induced by bile duct-ligated in rats and the intervention effects of herb compound 861

, , , , , & show all
Pages 31-44 | Received 18 Dec 2018, Accepted 23 Jan 2019, Published online: 12 Mar 2019

References

  • Anuja, G. I.; Shine, V. J.; Latha, P. G.; Suja, S. R. Protective Effect of Ethyl Acetate Fraction of Drynaria Quercifolia against CCl4 Induced Rat Liver Fibrosis via Nrf2/ARE and NFκB Signalling Pathway. J. Ethnopharmacol. 2018, 216, 79–88. DOI: 10.1016/j.jep.2017.11.015.
  • Bataller, R.; Brenner, D. A. Liver Fibrosis. J. Clin. Invest. 2005, 115, 209–218. DOI: 10.1172/JCI24282.
  • Dufour, J. F.; DeLellis, R.; Kaplan, M. M. Reversibility of Hepatic Fibrosis in Autoimmune Hepatitis. Ann. Intern. Med. 1997, 127, 981–985. DOI: 10.7326/0003-4819-127-11-199712010-00006.
  • Ghosh, N.; Ghosh, R.; Mandal, V.; Mandal, S. C. Recent Advances in Herbal Medicine for Treatment of Liver Diseases. Pharm. Biol. 2011, 49, 970–988. DOI: 10.3109/13880209.2011.558515.
  • Chen, S. R.; Chen, X. P.; Lu, J. J.; Wang, Y.; Wang, Y. T. Potent Natural Products and Herbal Medicines for Treating Liver Fibrosis. Chin. Med 2015, 10, 7. DOI: 10.1186/s13020-015-0036-y.
  • Ghazwani, A.; Zhang, Y.; Gao, X.; Fan, J.; Li, J.; Li, S. Anti-fibrotic Effect of Thymoquinone on Hepatic Stellate Cells. Phytomedicine 2014, 21, 254–260. DOI: 10.1016/j.phymed.2013.09.014.
  • Wang, X. J.; Zhang, A. H.; Sun, H.; Han, Y.; Yan, G. L. Discovery and Development of Innovative Drug from Traditional Medicine by Integrated Chinmedomics Strategies in the Post-genomic Era. Trac. Trend Anal. Chem 2016, 76, 88–94. DOI: 10.1016/j.trac.2015.11.010.
  • Wang, L.; Wang, J.; Wang, B. E.; Xiao, P. G.; Qiao, Y. J.; Tan, X. H. Effects of Herbal Compound 861 on Human Hepatic Stellate Cell Proliferation and Activation. World J. Gastroenterol. 2004, 10, 2831–2835.
  • Wei, D.; Liao, S.; Wang, J.; Yang, M.; Kong, L. Cholestatic Liver Injury Model of Bile Duct Ligation and the Protection of Huang-Lian-Jie-Du Decoction by NMR Metabolomic Profiling. RSC Adv. 2015, 5, 66200–66211. DOI: 10.1039/C5RA12224D.
  • Dong, S.; Cai, F. F.; Chen, Q. L.; Song, Y. N.; Sun, Y.; Wei, B.; Li, X. Y.; Hu, Y. Y.; Liu, P.; S.B, S. Chinese Herbal Formula Fuzheng Huayu Alleviates CCl4-induced Liver Fibrosis in Rats: a Transcriptomic and Proteomic Analysis. Acta Pharmacol. Sin 2018, 39, 930–941. DOI: 10.1038/aps.2017.150.
  • Wang, L.; Wang, B. E.; Wang, J.; Xiao, P. G.; Tan, X. H. Herbal Compound 861 Regulates mRNA Expression of Collagen Synthesis- and Degradation Related Genes in Human Hepatic Stellate Cells. WJG. 2008, 14, 1790–1794. DOI: 10.3748/wjg.14.1790.
  • Yin, S. S.; Wang, B. E.; Wang, T. L.; Jia, J. D.; Qian, L. X. The Effect of Cpd 861 on Chronic Hepatitis B Related Fibrosis and Early Cirrhosis: A Randomized, Double Blind, Placebo Controlled Clinical Trial. Zhonghua Gan Zang Bing Za Zhi 2004, 12, 467–470.
  • Hou, F.; Liu, R. X.; Liu, X. Y.; Cui, L. J.; Wen, Y.; Yan, S. B.; Yin, C. H. Attenuation of Liver Fibrosis by Herbal Compound 861 via Upregulation of BMP-7/Smad Signaling in the Bile Duct Ligation Model Rat. Mol. Med. Rep. 2016, 13, 4335–4342. DOI: 10.3892/mmr.2016.5071.
  • Chi, C.; Liu, X. Y.; Hou, F.; Yu, X. Z.; Li, C. Y.; Cui, L. J.; Liu, R. X.; Yin, C. H. Herbal Compound 861 Prevents Hepatic Fibrosis by Inhibiting the TGF-β1/Smad/SnoN Pathway in Bile Duct-ligated Rats. BMC Complem. Altern. M. 2018, 18, DOI: 10.1186/s12906-018-2119-7.
  • Forestier, M.; Solioz, M.; Isbeki, F.; Talos, C.; Reichen, J.; Krahenbuhl, S. Hepatic Mitochondrial Proliferati Corson on in Rats with Secondary Biliary Cirrhosis: Time Course and Mechanisms. Hepatology. 1997, 26, 386–391. DOI: 10.1002/hep.510260219.
  • Wang, M.; Lamers, R.-J. A. N.; Korthout, H. A. A. J.; van Nesselrooij, J. H. J.; Witkamp, R. F.; van der Heijden, R.; Voshol, P. J.; Havekes, L. M.; Verpoorte, R.; van der Greef, J. Metabolomics in the Context of Systems Biology: Bridging Traditional Chinese Medicine and Molecular Pharmacology. Phytother. Res. 2005, 19, 173–182. DOI: 10.1002/ptr.1624.
  • Zhang, A.; Sun, H.; Wang, Z.; Sun, W.; Wang, P.; Wang, X. Metabolomics: Towards Understanding Traditional Chinese Medicine. Planta Med. 2010, 76, 2026–2035. DOI: 10.1055/s-0030-1250542.
  • Nicholson, J.; Lindon, J.; Holmes, E. Metabonomics: Understanding the Metabolic Responses of Living Systems to Pathophysiological Stimuli via Multivariate Statistical Analysis of Biological NMR Spectroscopic Data. Xenobiotica. 1999, 29, 1181–1189. DOI: 10.1080/004982599238047.
  • Liu, X. J.; Zhou, Y. Z.; Li, Z. F.; Cui, J.; Li, Z. Y.; Gao, X. X.; Sun, H. F.; Zhang, L. Z.; Du, G. H.; Qin, X. M. Anti-depressant Effects of Xiaoyaosan on Rat Model of Chronic Unpredictable Mild Stress: A Plasma Metabonomics Study Based on NMR Spectroscopy. J. Pharm. Pharmacol. 2012, 64, 578–584. DOI: 10.1111/j.2042-7158.2011.01412.x.
  • Javadi-Paydar, M.; Ghiassy, B.; Ebadian, S.; Rahimi, N.; Norouzi, A.; Dehpour, A. R. Nitric Oxide Mediates the Beneficial Effect of Chronic Naltrexone on Cholestasis-induced Memory Impairment in Male Rats. Behav. Pharmacol. 2013, 24, 195–206. DOI: 10.1097/FBP.0b013e3283618a8c.
  • Aghaei, I.; Shabani, M.; Doustar, N.; Nazeri, M.; Dehpour, A. Peroxisome Proliferator-activated Receptor-gamma Activation Attenuates Motor and Cognition Impairments Induced by Bile Duct Ligation in a Rat Model of Hepatic Cirrhosis. Pharmacol. Biochem. Behav. 2014, 120, 133–139. DOI: 10.1016/j.pbb.2014.03.002.
  • Uchinami, H.; Seki, E.; Brenner, D. A.; D'Armiento, J. Loss of MMP 13 Attenuates Murine Hepatic Injury and Fibrosis during Cholestasis. Hepatology. 2006, 44, 420–429.
  • Tabet, E.; Genet, V.; Tiaho, F.; Lucas-Clerc, C.; Gelu-Simeon, M.; Piquet-Pellorce, C.; Samson, M. Chlordecone Potentiates Hepatic Fibrosis in Chronic Liver Injury Induced by Carbon Tetrachloride in Mice. Toxicol. Lett. 2016, 255, 1–10. DOI: 10.1016/j.toxlet.2016.02.005.
  • Huang, Y. T.; Hsu, Y. C.; Chen, C. J.; Liu, C. T.; Wei, Y. H. Oxidative-stress-related Changes in the Livers of Bile-duct-ligated Rats. J. Biomed. Sci. 2003, 10, 170–178. DOI: 10.1159/000068715.
  • Ferolla, S. M.; Armiliato, G. N.; Couto, C. A.; Ferrari, T. C. The Role of Intestinal Bacteria Overgrowth in Obesity-related Nonalcoholic Fatty Liver Disease. Nutrients. 2014, 6, 5583–5599. DOI: 10.3390/nu6125583.
  • Giannelli, V.; Di Gregorio V.; Iebba, V.; Giusto, M.; Schippa, S.; Merli, M.; Thalheimer, U. Microbiota and the Gut-liver Axis: Bacterial Translocation, Inflammation and Infection in Cirrhosis. WJG. 2014, 20, 16795–16810. DOI: 10.3748/wjg.v20.i45.16795.
  • Bradbury, M. J.; Campbell, U.; Giracello, D.; Chapman, D.; King, C.; Tehrani, L. Metabotropic Glutamate Receptor mGlu5 Is a Mediator of Appetite and Energy Balance in Rats and Mice. J. Pharmacol. Exp. Ther. 2004, 313, 395–402. DOI: 10.1124/jpet.104.076406.
  • Haussinger, D.; Sies, H.; Gerok, W. Functional Hepatocyte Heterogeneity in Ammonia Metabolism. The Intercellular Glutamine Cycle. J. Hepatol 1985, 1, 3–14. DOI: 10.1016/S0168-8278(85)80063-5.
  • Lesniak, W. G.; Jyoti, A.; Mishra, M. K.; Louissaint, N.; Romero, R.; Chugani, D. C.; Kannan, S.; Kannan, R. M. Concurrent Quantification of Tryptophan and Its Major Metabolites. Anal. Biochem. 2013, 443, 222–231. DOI: 10.1002/hep.21268.
  • Rafice, S. A.; Chauhan, N.; Efimov, I.; Basran, J.; Raven, E. L. Oxidation of l-tryptophan in Biology: A Comparison Between Tryptophan 2,3-dioxygenase and Indoleamine 2,3-Dioxygenase. Biochm. Soc. Trans. 2009, 37, 408–412. DOI: 10.1042/BST0370408.
  • Maddison, D. C.; Giorgini, F. The Kynurenine Pathway and Neurodegenerative Disease. Semin. Cell Dev. Biol. 2015, 40, 134–141. DOI: 10.1016/j.semcdb.2015.03.002.
  • Mellor, A. L.; Munn, D. H. IDO Expression by Dendritic Cells: Tolerance and Tryptophan Catabolism. Nat. Rev. Immunol. 2004, 4, 762–774. DOI: 10.1038/nri1457.
  • Nagano, J.; Shimizu, M.; Hara, T.; Shirakami, Y.; Kochi, T.; Nakamura, N.; Ohtaki, H.; Ito, H.; Tanaka, T.; Tsurumi, H.; et al. Effects of Indoleamine 2,3-Dioxygenase Deficiency on High-fat Diet-induced Hepatic Inflammation. PLOS One 2013, 8, e73404. DOI: 10.1371/journal.pone.0073404.
  • Larrea, E.; Riezu-Boj, J. I.; Gil-Guerrero, L.; Casares, N.; Aldabe, R.; Sarobe, P.; Civeira, M. P.; Heeney, J. L.; Rollier, C.; Verstrepen, B.; et al. Upregulation of Indoleamine 2,3-dioxygenase in Hepatitis C Virus Infection. J. Virol. 2007, 81, 3662–3666. DOI: 10.1128/JVI.02248-06.
  • Higashitani, K.; Kanto, T.; Kuroda, S.; Yoshio, S.; Matsubara, T.; Kakita, N.; Oze, T.; Miyazaki, M.; Sakakibara, M.; Hiramatsu, N.; et al. Association of Enhanced Activity of Indoleamine 2,3-dioxygenase in Dendritic Cells with the Induction of Regulatory T Cells in Chronic Hepatitis C Infection. J. Gastroenterol. 2013, 48, 660–670. DOI: 10.1007/s00535-012-0667-z.
  • Banks, M. A.; Porter, D. W.; Martin, W. G.; Castranova, V. Ozone-induced Lipid Peroxidation and Membrane Leakage in Isolated Rat Alveolar Macrophages: Protective Effects of Taurine. J. Nutr. Biochem. 1991, 2, 308–313. DOI: 10.1016/0955-2863(91)90072-D.
  • Bhavsar, T. M.; Cantor, J. O.; Patel, S. N.; Lau-Cam, C. A. Attenuating Effect of Taurine on Lipopolysaccharide-induced Acute Lung Injury in Hamsters. Pharmacol. Res 2009, 60, 418–428. DOI: 10.1016/j.phrs.2009.05.006.
  • Huxtable, R. J. Physiological Actions of Taurine. Physiol. Rev. 1992, 72, 101–163. DOI: 10.1152/physrev.1992.72.1.101.
  • Ljubuncic, P.; Tanne, Z.; Bomzon, A. Evidence of a Systemic Phenomenon for Oxidative Stress in Cholestatic Liver Disease. Gut. 2000, 47, 710–716. DOI: 10.1136/gut.47.5.710.
  • Ovey, I. S.; Naziroglu, M. Homocysteine and Cytosolic GSH Depletion Induced Aproptosis and Oxidative Toxicity through Cytosolic Calcium Overload in the Hippocampus of Aged Mice: involvement of Trpm2 and Trpv1 Channels. Neuroscience. 2015, 284, 225–233. DOI: 10.1016/j.neuroscience.2014.09.078.
  • Landel, A. M.; Hammond, W. G.; Meguid, M. M. Aspects of Amino Acid and Protein Metabolism in Cancer-bearing States. Cancer. 1985, 55, 230–237. DOI: 10.1002/1097-0142(19850101)55:1+<230::AIDCNCR2820551305>3.0.CO;2-I.
  • Holecek, M. Three Targets of Branched-chain Amino Acid Supplementation in the Treatment of Liver Disease. Nutrition. 2010, 26, 482–490. DOI: 10.1016/j.nut.2009.06.027.
  • Nakanishi, C.; Doi, H.; Katsura, K.; Satomi, S. Treatment with L-Valine Ameliorates Liver Fibrosis and Restores Thrombopoiesis in Rats Exposed to Carbon Tetrachloride. Tohoku J. Exp. Med. 2010, 221, 151–159. DOI: 10.1620/tjem.221.151.
  • Lake, A. D.; Novak, P.; Shipkova, P.; Aranibar, N.; Robertson, D. G.; Reily, M. D.; Lehman-McKeeman, L. D.; Vaillancourt, R. R.; Cherrington, N. J. Branched Chain Amino Acid Metabolism Profiles in Progressive Human Nonalcoholic Fatty Liver Disease. Amino Acids. 2015, 47, 603–615. DOI: 10.1007/s00726-014-1894-9.
  • Williams, R.; Lock, E. Sodium Benzoate Attenuates D-serine Induced Nephrotoxicity in the Rat. Toxicology. 2005, 207, 35–48. DOI: 10.1016/j.tox.2004.08.008.
  • Bradford, B. U.; O'Connell, T. M.; Han, J.; Kosyk, O.; Shymonyak, S.; Ross, P. K.; Winnike, J.; Kono, H.; Rusyn, I. Metabolomic Profiling of a Modified Alcohol Liquid Diet Model for Liver Injury in the Mouse Uncovers New Markers of Disease. Toxicol. Appl. Pharmacol. 2008, 232, 236–243. DOI: 10.1016/j.taap.2008.06.022.
  • O’Connell, T. M. The Complex Role of Branched Chain Amino Acids in Diabetes and Cancer. Metabolites 2013, 3, 931–945. DOI: 10.3390/metabo3040931.
  • Gao, R.; Cheng, J. H.; Fan, C. L.; Shi, X. F.; Cao, Y.; Sun, B.; Ding, H. G.; Hu, C. J.; Dong, F. T.; Yan, X. Z. Serum Metabolomics to Identify the Liver Disease-specific Biomarkers for the Progression of Hepatitis to Hepatocellular Carcinoma. Sci. Rep. 2015, 5, 18175. DOI: 10.1038/srep18175.
  • Ranjbar, M. R. N.; Luo, Y.; Di Poto, C.; Varghese, R.; Ferrarini, A.; Zhang, C.; Sarhan, N. I.; Soliman, H.; Tadesse, M. G.; Ziada, D. H.; et al. GC-MS Based Plasma Metabolomics for Identification of Candidate Biomarkers for Hepatocellular Carcinoma in Egyptian Cohort. PLoS One 2014, 10, e0127299. DOI: 10.1371/journal.pone.0127299.
  • Le, A.; Lane, A. N.; Hamaker, M.; Bose, S.; Gouw, A.; Barbi, J.; Tsukamoto, T.; Rojas, C. J.; Slusher, B. S.; Zhang, H. X.; et al. Glucose Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells. Cell Metab. 2012, 15, 110–121. DOI: 10.1016/j.cmet.2011.12.009.
  • Kakazu, E.; Kondo, Y.; Kogure, T.; Ninomiya, M.; Kimura, O.; Ueno, Y.; Shimosegawa, T. Plasma Amino Acids Imbalance in Cirrhotic Patients Disturbs the Tricarboxylic Acid Cycle of Dendritic Cell. Sci. Rep. 2013, 3, 3459. DOI: 10.1038/srep03459.
  • Stachowska, E.; Maciejewska, D.; Ossowski, P.; Drozd, A.; Ryterska, K.; Banaszczak, M.; Milkiewicz, M.; Raszeja-Wyszomirska, J.; Slebioda, M.; Milkiewicz, P. et al. Apolipoprotein E4 Allele Is Associated with Substantial Changes in the Plasma Lipids and Hyaluronic Acid Content in Patients with Nonalcoholic Fatty Liver Disease. J. Physiol. Pharmacol. 2013, 64, 711–717.
  • Guilbault, C.; Wojewodka, G.; Saeed, Z.; Hajduch, M.; Matouk, E.; De Sanctis, J. B.; Radzioch, D. Cystic Fibrosis Fatty Acid Imbalance Is Linked to Ceramide Deficiency and Corrected by Fenretinide. Am. Am. J. Respir. Cell Mol. Biol. 2009, 41, 100–106. DOI: 10.1165/rcmb.2008-0279OC.
  • Beyoğlu, D.; Imbeaud, S.; Maurhofer, O.; Bioulac-Sage, P.; Zucman-Rossi, J.; Dufour, J. F.; Idle, J. R. Tissue Metabolomics of Hepatocellular Carcinoma: Tumor Energy Metabolism and the Role of Transcriptomic Classification. Hepatology. 2013, 58, 229–238. DOI: 10.1002/hep.26350.
  • Geraci, J. P.; Mariano, M. S. Radiation Hepatology of the Rat: Association of the Production of Prostacyclin with Radiation-induced Hepatic Fibrosis. Radiat. Res. 1996, 145, 93–97. DOI: 10.2307/3579201.
  • Ishihara, K.; Miyazaki, A.; Nabe, T.; Fushimi, H.; Iriyama, N.; Kanai, S.; Sato, T.; Uozumi, N.; Shimizu, T.; Akiba, S. Group IVA Phospholipase A(2) Participates in the Progression of Hepatic Fibrosis. Faseb J. 2012, 26, 4111–4121. DOI: 10.1096/fj.12-205625.
  • He, J.; Wang, C.; Zhu, Y.; Ai, D. Soluble Epoxide Hydrolase: A Potential Target for Metabolic Diseases. J. Diabetes. 2016, 8, 305–313. DOI: 10.1111/1753-0407.12358.
  • Brouwers, J. F. H. M.; Vernooji, E. A. A. M.; Tielens, A. G. M.; van, G.,L. M. G. Rapid Separation and Identification of Phosphatidylethanolamine Molecular Species. J. Lipid Res. 1999, 40, 164–169.
  • Wright, M. M.; Howe, A. G.; Zaremberg, V. Cell Membranes and Apoptosis: Role of Cardiolipin, Phosphatidylcholine, and Anticancer Lipid Analogues. Biochem. Cell Biol. 2004, 82, 18–26. DOI: 10.1139/o03-092.
  • Wolf, C.; Quinn, P. J. Lipidomics: Practical Aspects and Applications. Prog. Lipid Res. 2008, 47, 15–36. DOI: 10.1016/j.plipres.2007.09.001.
  • Sanyal, A. J.; Pacana, T. A Lipidomic Readout of Disease Progression in a Diet-induced Mouse Model of Nonalcoholic Fatty Liver Disease. T. Am. Clin. Climato. Assoc. 2015, 126, 271–288.
  • Vance, D. E.; Ridgway, N. D. The Methylation of Phosphatidylethanolamine. Prog. Lipid Res. 1988, 27, 61–79.
  • DeLong, C. J.; Shen, Y. J.; Thomas, M. J.; Cui, Z. Molecular Distinction of Phosphatidylcholine Synthesis between the CDP-choline Pathway and Phosphatidylethanolamine Methylation Pathway. J. Biol. Chem. 1999, 274, 29683–29688. DOI: 10.1074/jbc.274.42.29683.
  • Vance, D. E. Role of Phosphatidylcholine Biosynthesis in the Regulation of Lipoprotein Homeostasis. Curr. Opin. Lipidol. 2008, 19, 229–234. DOI: 10.1097/MOL.0b013e3282fee935.
  • van der Veen, J. N.; Lingrell, S.; Gao, X. Pioglitazone Attenuates Hepatic Inflammation and Fibrosis in Phosphatidylethanolamine N-methyltransferase-deficient Mice. Am. J. Physiol-Gastr. L. 2016, 310, G526–G538. DOI: 10.1152/ajpgi.00243.2015.
  • Yin, P. Y.; Wan, D. F.; Zhao, C. X.; Chen, J.; Zhao, X. J.; Wang, W. Z.; Lu, X.; Yang, S. L.; Gu, J. R.; Xu, G. W. A Metabonomic Study of Hepatitis B-induced Liver Cirrhosis and Hepatocellular Carcinoma by Using RP-LC and HILIC Coupled with Mass Spectrometry. Mol. Biosyst. 2009, 5, 868–876. DOI: 10.1039/b820224a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.