200
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review of inhalable nanoparticles for the pulmonary delivery of anti-tuberculosis drugs

, , , &
Pages 978-991 | Received 16 Dec 2022, Accepted 05 Sep 2023, Published online: 23 Nov 2023

References

  • Ahmed R, Aucamp M, Ebrahim N, Samsodien H. 2021. Supramolecular assembly of rifampicin and PEGylated PAMAM dendrimer as a novel conjugate for tuberculosis. Journal of Drug Delivery Science and Technology. 66:102773. doi: 10.1016/j.jddst.2021.102773.
  • Albanese A, Tang PS, Chan WC. 2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 14(1):1–16. doi: 10.1146/annurev-bioeng-071811-150124.
  • Amarnath Praphakar R, Sam Ebenezer R, Vignesh S, Shakila H, Rajan M. 2019. Versatile PH-responsive chitosan-g-polycaprolactone/maleic anhydride–isoniazid polymeric micelle to improve the bioavailability of tuberculosis multidrugs. ACS Appl Bio Mater. 2(5):1931–1943. doi: 10.1021/acsabm.9b00003.
  • Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B. 2013. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev. 65(13–14):1816–1827. doi: 10.1016/j.addr.2013.07.020.
  • Avaliani T, Kiria N, Bablishvili N, Kiria N, Phichkhaia G. 2022. Usage of silver nanoparticles to restore moxifloxacin efficacy for fluoroquinolone-resistant M. Tuberculosis cultures. Eur Resp J. 60(suppl 66):1592. doi: 10.1183/13993003.congress-2022.1592.
  • Ayala-Torres C, Hernández N, Galeano A, Novoa-Aponte L, Soto CY. 2014. Zeta potential as a measure of the surface charge of mycobacterial cells. Ann Microbiol. 64(3):1189–1195. doi: 10.1007/s13213-013-0758-y.
  • Bahlool AZ, Fattah S, O'Sullivan A, Cavanagh B, MacLoughlin R, Keane J, O'Sullivan MP, Cryan S-A. 2022. Development of inhalable ATRA-loaded plga nanoparticles as host-directed immunotherapy against tuberculosis. Pharmaceutics. 14(8):1745. doi: 10.3390/pharmaceutics14081745.
  • Baranyai Z. 2020. Fighting against intracellular pathogens: host cell-targeted drug delivery. Future Microbiol. 15(10):833–836. doi: 10.2217/fmb-2020-0047.
  • Batt SM, Minnikin DE, Besra GS. 2020. The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host’s immune system. Biochem J. 477(10):1983–2006. doi: 10.1042/BCJ20200194.
  • Beck-Broichsitter M, Kleimann P, Gessler T, Seeger W, Kissel T, Schmehl T. 2012. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb® Pro: formulation aspects and nanoparticle stability to nebulization. Int J Pharm. 422(1–2):398–408. doi: 10.1016/j.ijpharm.2011.10.012.
  • Beck-Broichsitter M, Oesterheld N, Knuedeler MC, Seeger W, Schmehl T. 2014. On the correlation of output rate and aerodynamic characteristics in vibrating-mesh-based aqueous aerosol delivery. Int J Pharm. 461(1–2):34–37. doi: 10.1016/j.ijpharm.2013.11.036.
  • Bellini RG, Guimarães AP, Pacheco MA, Dias DM, Furtado VR, De Alencastro RB, Horta BA. 2015. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model. 60:34–42. doi: 10.1016/j.jmgm.2015.05.012.
  • Bhandari M, Soria-Carrera H, Wohlmann J, Dal NJK, de la Fuente JM, Martín-Rapún R, Griffiths G, Fenaroli F. 2023. Subcellular localization and therapeutic efficacy of polymeric micellar nanoparticles encapsulating bedaquiline for tuberculosis treatment in zebrafish. Biomater Sci. 11(6):2103–2114. doi: 10.1039/d2bm01835g.
  • Carneiro SP, Carvalho KV, de Oliveira Aguiar Soares RD, Carneiro CM, de Andrade MHG, Duarte RS, dos Santos ODH. 2019. Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity. Colloids Surf B Biointerfaces. 175:306–313. doi: 10.1016/j.colsurfb.2018.12.003.
  • Champion JA, Mitragotri S. 2006. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA. 103(13):4930–4934. doi: 10.1073/pnas.0600997103.
  • Champion JA, Walker A, Mitragotri S. 2008. Role of Particle Size in Phagocytosis of Polymeric Microspheres. Pharm Res. 25(8):1815–1821. doi: 10.1007/s11095-008-9562-y.
  • Chan JGY, Wong J, Zhou QT, Leung SSY, Chan HK. 2014. Advances in Device and Formulation Technologies for Pulmonary Drug Delivery. AAPS PharmSciTech. 15(4):882–897. doi: 10.1208/s12249-014-0114-y.
  • Changsan N, Sinsuebpol C. 2021. Dry powder inhalation formulation of chitosan nanoparticles for co-administration of isoniazid and pyrazinamide. Pharm Dev Technol. 26(2):181–192. doi: 10.1080/10837450.2020.1852570.
  • Chaurasiya B, Zhao Y-Y. 2020. Dry powder for pulmonary delivery: a comprehensive review. Pharmaceutics. 13(1):31. doi: 10.3390/pharmaceutics13010031.
  • Chen C-C, Chen Y-Y, Yeh C-C, Hsu C-W, Yu S-J, Hsu C-H, Wei T-C, Ho S-N, Tsai P-C, Song Y-D, et al. 2021. Alginate-capped silver nanoparticles as a potent anti-mycobacterial agent against Mycobacterium tuberculosis. Front Pharmacol. 12(November):746496. doi: 10.3389/fphar.2021.746496.
  • Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, et al. 2020. Applications and limitations of dendrimers in biomedicine. Molecules. 25(17):3982. doi: 10.3390/molecules25173982.
  • Chuan J, Li Y, Yang L, Sun X, Zhang Q, Gong T, Zhang Z. 2013. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles. J Nanopart Res. 15(5):9. doi: 10.1007/s11051-013-1634-1.
  • Clemens DL, Lee B-Y, Xue M, Thomas CR, Meng H, Ferris D, Nel AE, Zink JI, Horwitz MA. 2012. Targeted intracellular delivery of antituberculosis drugs to mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother. 56(5):2535–2545. doi: 10.1128/AAC.06049-11.
  • Davis JM, Ramakrishnan L. 2009. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 136(1):37–49. doi: 10.1016/j.cell.2008.11.014.
  • Debnath SK, Saisivam S, Debanth M, Omri A. 2018. Development and evaluation of chitosan nanoparticles based dry powder inhalation formulations of prothionamide. PLOS One. 13(1):e0190976. doi: 10.1371/journal.pone.0190976.
  • Deshmukh R, Bandyopadhyay N, Abed SN, Bandopadhyay S, Pal Y, Deb PK. 2019. Strategies for pulmonary delivery of drugs. In: Tekade RK, editor. Drug Delivery Systems. Academic Press; p. 85–129. doi: 10.1016/B978-0-12-814487-9.00003-X.
  • Donaldson K, Tran CL. 2002. Inflammation caused by particles and fibers. Inhal Toxicol. 14(1):5–27. doi: 10.1080/089583701753338613.
  • Du Q, Zhang D, Hu W, Li X, Xia Q, Wen T, Jia H. 2021. Nosocomial infection of COVID‑19: a new challenge for healthcare professionals. Int J Mol Med. 47(4):31. doi: 10.3892/ijmm.2021.4864.
  • Dua K, Rapalli VK, Shukla SD, Singhvi G, Shastri MD, Chellappan DK, Satija S, Mehta M, Gulati M, Pinto TDJA, et al. 2018. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: emerging need for novel drug delivery approaches. Biomed Pharmacother. 107(August):1218–1229. doi: 10.1016/j.biopha.2018.08.101.
  • Duncan R. 2006. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 6(9):688–701. doi: 10.1038/nrc1958.
  • Epstein-Barash H, Gutman D, Markovsky E, Mishan-Eisenberg G, Koroukhov N, Szebeni J, Golomb G. 2010. Physicochemical parameters affecting liposomal bisphosphonates bioactivity for restenosis therapy: internalization, cell inhibition, activation of cytokines and complement, and mechanism of cell death. J Control Release. 146(2):182–195. doi: 10.1016/j.jconrel.2010.03.011.
  • Freitas ESD, Da Silva PB, Chorilli M, Batista AA, De Oliveira Lopes É, Silva MM, Leite CQ, Pavan FR. 2014. Nanostructured lipid systems as a strategy to improve the in vitro cytotoxicity of ruthenium(II) compounds. Molecules. 19(5):5999–6008. doi: 10.3390/molecules19055999.
  • Fröhlich E. 2012. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 7(May):5577–5591. doi: 10.2147/IJN.S36111.
  • Galdopórpora JM, Martinena C, Bernabeu E, Riedel J, Palmas L, Castangia I, Manca ML, Garcés M, Lázaro-Martinez J, Salgueiro MJ, et al. 2022. Inhalable mannosylated rifampicin & curcumin co-loaded nanomicelles with enhanced in vitro antimicrobial efficacy for an optimised pulmonary tuberculosis therapy. Pharmaceutics. 14(5):959. doi: 10.3390/pharmaceutics14050959.
  • García-Díaz M, Birch D, Wan F, Nielsen HM. 2018. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv Drug Deliv Rev. 124:107–124. doi: 10.1016/j.addr.2017.11.002.
  • Gaul R, Ramsey JM, Heise A, Cryan SA, Greene CM. 2018. Nanotechnology approaches to pulmonary drug delivery: targeted delivery of small molecule and gene-based therapeutics to the lung. In: Grumezescu AM, editor. Design of nanostructures for versatile therapeutic applications. Norwich, NY: Wiliam Andrew Publishing; p. 221–253. doi: 10.1016/B978-0-12-813667-6.00006-1.
  • Ghasemiyeh P, Mohammadi-Samani S. 2018. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 13(4):288–303. doi: 10.4103/1735-5362.235156.
  • Grotz E, Tateosian NL, Salgueiro J, Bernabeu E, Gonzalez L, Manca ML, Amiano N, Valenti D, Manconi M, García V, et al. 2019. Pulmonary delivery of rifampicin-loaded soluplus micelles against Mycobacterium Tuberculosis. J Drug Deliv Sci Technol. 53(April):101170. doi: 10.1016/j.jddst.2019.101170.
  • Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. 2015. Nanoparticle uptake: the phagocyte problem. Nano Today. 10(4):487–510. doi: 10.1016/j.nantod.2015.06.006.
  • Hamed A, Osman R, Al-Jamal KT, Holayel SM, Geneidi A-S. 2019. Enhanced antitubercular activity, alveolar deposition and macrophages uptake of mannosylated stable nanoliposomes. J Drug Deliv Sci Technol. 51:513–523. doi: 10.1016/j.jddst.2019.03.032.
  • Hess DR. 2000. Nebulisers: principles and performance. Respir Care. 45(6):609–622.
  • Ho DK, Nichols BL, Edgar KJ, Murgia X, Loretz B, Lehr CM. 2019. Challenges and strategies in drug delivery systems for treatment of pulmonary infections. Eur J Pharm Biopharm. 144(May):110–124. doi: 10.1016/j.ejpb.2019.09.002.
  • Immordino M, Laura F, Dosio, L, Cattel. 2006. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 1(3):297–315. doi: 10.2217/17435889.1.3.297.
  • Jafari A, Nagheli A, Foumani AA, Soltani B, Goswami R. 2020. The role of metallic nanoparticles in inhibition of Mycobacterium tuberculosis and enhances phagosome maturation into the infected macrophage. Oman Med J. 35(6):e194–e194. doi: 10.5001/omj.2020.78.
  • Jary D, Hibbitts A, Lozano-Fernandez T, Pérez D, Lucia A, Ainsa JA, Codony D, Freire C, Redinger N, Schaible U, et al. 2018. Bedaquiline loaded lipid nanoparticles: a promising candidate for TB treatment. TechConnect Briefs. 3:59–62.
  • Joudeh N, Linke D. 2022. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology. 20(1):262. doi: 10.1186/s12951-022-01477-8.
  • Kalmantaeva OV, Firstova VV, Grishchenko NS, Rudnitskaya TI, Potapov VD, Ignatov SG. 2020. Antibacterial and immunomodulating activity of silver nanoparticles on mice experimental tuberculosis model. Appl Biochem Microbiol. 56(2):226–232. doi: 10.1134/S0003683820020088.
  • Kalombo L, Lemmer Y, Semete-Makokotlela B, Ramalapa B, Nkuna P, Booysen LL, Naidoo S, Hayeshi R, Verschoor JA, Swai HS. 2019. Spray-dried, nanoencapsulated, multi-drug anti-tuberculosis therapy aimed at once weekly administration for the duration of treatment. Nanomaterials. 9(8):1167. doi: 10.3390/nano9081167.
  • Kaur M., Gogna S., Reetika, Kaur N., Minhas P., Sharma D., Kumar M. 2020. Nano-technological developments in tuberculosis management: an update. Tathapi (UGC Care J). 19(5):313–329.
  • Kaur R, Weiss TT, Perez A, Fink JB, Chen R, Luo F, Liang Z, Mirza S, Li J. 2020. Practical strategies to reduce nosocomial transmission to healthcare professionals providing respiratory care to patients with COVID-19. Crit Care. 24(1):571. doi: 10.1186/s13054-020-03231-8.
  • Kelly C, Jefferies C, Cryan S-A. 2011. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011:727241–727211. doi: 10.1155/2011/727241.
  • Kesharwani P, Tekade RK, Jain NK. 2015. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm Res. 32(4):1438–1450. doi: 10.1007/s11095-014-1549-2.
  • Khosa A, Reddi S, Saha RN. 2018. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 103:598–613. doi: 10.1016/j.biopha.2018.04.055.
  • Klein DM, Poortinga A, Verhoeven FM, Bonn D, Bonnet S, van Rijn CJ. 2021. Degradation of lipid based drug delivery formulations during nebulisation. Chemical Physics. 547(March):111192. doi: 10.1016/j.chemphys.2021.111192.
  • Kling J. 2014. Sanofi to Propel inhalable insulin Afrezza into market. Nat Biotechnol. 32(9):851–852. doi: 10.1038/nbt0914-851a.
  • Kumar G, Malhotra S, Shafiq N, Pandhi P, Khuller GK, Sharma S. 2011. In Vitro Physicochemical characterization and short term in vivo tolerability study of ethionamide loaded PLGA nanoparticles: potentially effective agent for multidrug resistant tuberculosis. J Microencapsul. 28(8):717–728. doi: 10.3109/02652048.2011.615948.
  • Kumar PV, Asthana A, Dutta T, Jain NK. 2006. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target. 14(8):546–556. doi: 10.1080/10611860600825159.
  • Kumari S, Goyal A, Sönmez Gürer E, Algın Yapar E, Garg M, Sood M, Sindhu RK. 2022. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential. Pharmaceutics. 14(5):1091. doi: 10.3390/pharmaceutics14051091.
  • Kushwaha KSS, Rai KA, Parveen H. 2019. Development & pharmaceutical characterization of isoniazid loaded solid lipid nanoparticle drug delivery approach. CDTH. 14(3):228–238. doi: 10.2174/1574885514666190103114200.
  • Labiris NR, Dolovich MB. 2003. Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolised medications. Br J Clin Pharmacol. 56(6):600–612. doi: 10.1046/j.1365-2125.2003.01893.x.
  • Lee WH, Loo CY, Traini D, Young PM. 2015. Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opin Drug Deliv. 12(6):1009–1026. doi: 10.1517/17425247.2015.1039509.
  • Leung SSY, Parumasivam T, Tang P, Chan H-K. 2016. A proof-of-principle setup for delivery of Relenza® (Zanamivir) inhalation powder to intubated patients. J Aerosol Med Pulm Drug Deliv. 29(1):30–35. doi: 10.1089/jamp.2014.1179.
  • Li Y, Sun F, Zhang W. 2019. Bedaquiline and Delamanid in the Treatment of Multidrug-Resistant Tuberculosis: promising but Challenging. Drug Dev Res. 80(1):98–105. doi: 10.1002/ddr.21498.
  • Liang Z, Ni R, Zhou J, Mao S. 2015. Recent advances in controlled pulmonary drug delivery. Drug Discov Today. 20(3):380–389. doi: 10.1016/j.drudis.2014.09.020.
  • Lyu Z, Ding L, Huang AY-T, Kao C-L, Peng L. 2019. Poly(amidoamine) dendrimers: covalent and supramolecular synthesis. Mater Today Chem. 13:34–48. doi: 10.1016/j.mtchem.2019.04.004.
  • Ma C, Wu M, Ye W, Huang Z, Ma X, Wang W, Wang W, Huang Y, Pan X, Wu C. 2021. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and PH-sensitive properties. Drug Deliv Transl Res. 11(3):1218–1235. doi: 10.1007/s13346-020-00849-7.
  • Manalan BV, Arul B, Kothai R. 2022. Dendritic nanoparticulated carriers for the delivery of rifampicin. Int J Res Pharmaceut Sci Technol. 3(1 SE-Research Article) doi: 10.33974/ijrpst.v3i1.288.
  • Marasini N, Haque S, Kaminskas LM. 2017. Polymer-drug conjugates as inhalable drug delivery systems: a review. Curr Opin Colloid Interf Sci. 31:18–29. doi: 10.1016/j.cocis.2017.06.003.
  • Maretti E, Rustichelli C, Lassinantti Gualtieri M, Costantino L, Siligardi C, Miselli P, Buttini F, Montecchi M, Leo E, Truzzi E, et al. 2019. The impact of lipid corona on rifampicin intramacrophagic transport using inhaled solid lipid nanoparticles surface-decorated with a mannosylated surfactant. Pharmaceutics. 11(10):508. doi: 10.3390/pharmaceutics11100508.
  • McGrath JA, O'Toole C, Bennett G, Joyce M, Byrne MA, MacLoughlin R. 2019. Investigation of the quantity of exhaled aerosols released into the environment during nebulisation. Pharmaceutics. 11(2):75. doi: 10.3390/pharmaceutics11020075.
  • Mehta M, Sharma N, Vyas M, Khurana N, Maurya PK, Singh H, Andreoli de Jesus TP, Dureja H, Chellappan DK, Gupta G, Wadhwa R. 2019. Interactions with the macrophages: an emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact304 (February): 10–19. doi: 10.1016/j.cbi.2019.02.021.
  • Mehta P, Bothiraja C, Kadam S, Pawar A. 2018. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. Artif Cells Nanomed Biotechnol. 46(sup 3):S791–S806. doi: 10.1080/21691401.2018.1513938.
  • Mintzer MA, Grinstaff MW. 2011. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev. 40(1):173–190. doi: 10.1039/b901839p.
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. 2021. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 20(2):101–124. doi: 10.1038/s41573-020-0090-8.
  • Montalvo-Quirós S, Gómez-Graña S, Vallet-Regí M, Prados-Rosales RC, González B, Luque-Garcia JL. 2021. Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. Colloids Surf B Biointerfaces. 197:111405. doi: 10.1016/j.colsurfb.2020.111405.
  • Mukhtar M, Csaba N, Robla S, Varela-Calviño R, Nagy A, Burian K, Kókai D, Ambrus R. 2022. Dry powder comprised of isoniazid-loaded nanoparticles of hyaluronic acid in conjugation with mannose-anchored chitosan for macrophage-targeted pulmonary administration in tuberculosis. Pharmaceutics. 14(8):1543. doi: 10.3390/pharmaceutics14081543.
  • Mulla JA, Mabrouk M, Choonara YE, Kumar P, Chejara DR, Du Toit LC, Pillay V. 2017. Development of respirable rifampicin-loaded nano-lipomer composites by microemulsion-spray drying for pulmonary delivery. J Drug Deliv Sci Technol. 41:13–19. doi: 10.1016/j.jddst.2017.06.017.
  • Muralidharan P, Malapit M, Mallory E, Hayes D, Mansour HM. 2015. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine. 11(5):1189–1199. doi: 10.1016/j.nano.2015.01.007.
  • Muttil P, Wang C, Hickey AJ. 2009. Inhaled drug delivery for tuberculosis therapy. Pharm Res. 26(11):2401–2416. doi: 10.1007/s11095-009-9957-4.
  • Nanda A, Nasker SS, Kushwaha AK, Ojha DK, Dearden AK, Nayak SK, Nayak S. 2021. Gold nanoparticles augment N-terminal cleavage and splicing reactions in Mycobacterium tuberculosis SufB. Front Bioeng Biotechnol. 9(December):773303. doi: 10.3389/fbioe.2021.773303.
  • Nanjwade BK, Adichwal SA, Gaikwad KR, Parikh KA, Manvi FV. 2011. Pulmonary drug delivery: novel pharmaceutical technologies breathe new life into the lungs. PDA J Pharm Sci Technol. 65(5):513–534. doi: 10.5731/pdajpst.2011.00704.
  • Naseri N, Valizadeh H, Zakeri-Milani P. 2015. Solid lipid nanoparticles and nanostructured lipid carriers: structure preparation and application. Adv Pharm Bull. 5(3):305–313. doi: 10.15171/apb.2015.043.
  • Nasiruddin M, Neyaz MK, Das S. 2017. Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat. 2017(Table 1):4920209–4920212. doi: 10.1155/2017/4920209.
  • Newman SP. 2017. Drug delivery to the lungs: challenges and opportunities. Ther Deliv. 8(8):647–661. doi: 10.4155/tde-2017-0037.
  • Newman S, Gee-Turner A. 2005. The Omron microair vibrating mesh technology nebuliser, a 21st century approach to inhalation therapy. J Appl Therapeut Res. 5(4):29–33.
  • Nii T, Takizawa S, Akita T, Yamashita C, Takeuchi I, Makino K. 2022. A mouse model for tuberculosis combined with inhalable Imiquimod-PLGA nanocomposite particles based on macrophage phenotype. In Vivo. 36(5):2166–2172. doi: 10.21873/invivo.12942.
  • Nkanga CI, Krause RWM. 2019. Encapsulation of isoniazid-conjugated phthalocyanine-in-cyclodextrin-in-liposomes using heating method. Sci Rep. 9(1):11485. doi: 10.1038/s41598-019-47991-y.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 113(7):823–839. doi: 10.1289/ehp.7339.
  • Oliveira M, Silva YJA, Azevedo LA, Linhares LA, Montenegro LML, Alves S, Amorim RVS. 2021. Antimycobacterial compound of chitosan and ethambutol: ultrastructural biological evaluation in vitro against Mycobacterium tuberculosis. Appl Microbiol Biotechnol. 105(24):9167–9179. doi: 10.1007/s00253-021-11690-4.
  • Opanasopit P, Yokoyama M, Watanabe M, Kawano K, Maitani Y, Okano T. 2004. Block Copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res. 21(11):2001–2008. doi: 10.1023/B:PHAM.0000048190.53439.eb.
  • Pandey R, Sharma S, Khuller GK. 2004. Lung specific stealth liposomes as antitubercular drug carriers in guinea pigs. Indian J Exp Biol. 42(6):562–566.
  • Patil JS, Dhadde SB, Chandakavathe BN. 2018. Nanostructure drug delivery system is an option to solve antimicrobial drug resistance: perspective review. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Characterisation and biology of nanomaterials for drug delivery: nanoscience and nanotechnology in drug delivery. Amsterdam: Elsevier Inc; p. 165–197. doi: 10.1016/B978-0-12-814031-4.00007-6.
  • Patil K, Bagade S, Bonde S, Sharma S, Saraogi G. 2018. Recent therapeutic approaches for the management of tuberculosis: challenges and opportunities. Biomed Pharmacother. 99(January):735–745. doi: 10.1016/j.biopha.2018.01.115.
  • Petkar KC, Chavhan S, Kunda N, Saleem I, Somavarapu S, Taylor KM, Sawant KK. 2018. Development of novel octanoyl chitosan nanoparticles for improved rifampicin pulmonary delivery: optimisation by factorial design. AAPS PharmSciTech. 19(4):1758–1772. doi: 10.1208/s12249-018-0972-9.
  • Pham DD, Fattal E, Tsapis N. 2015. Pulmonary drug delivery systems for tuberculosis treatment. Int J Pharm. 478(2):517–529. doi: 10.1016/j.ijpharm.2014.12.009.
  • Pilcer G, Amighi K. 2010. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 392(1–2):1–19. doi: 10.1016/j.ijpharm.2010.03.017.
  • Pourshahab PS, Gilani K, Moazeni E, Eslahi H, Fazeli MR, Jamalifar H. 2011. Preparation and characterisation of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid. J Microencapsul. 28(7):605–613. doi: 10.3109/02652048.2011.599437.
  • Prabhu P, Fernandes T, Chaubey P, Kaur P, Narayanan S, Vk R, Sawarkar SP. 2021. Mannose-conjugated chitosan nanoparticles for delivery of rifampicin to osteoarticular tuberculosis. Drug Deliv Transl Res. 11(4):1509–1519. doi: 10.1007/s13346-021-01003-7.
  • Praphawatvet T, Peters JI, Williams RO. 2020. Inhaled nanoparticles–an updated review. Int J Pharm. 587:119671. doi: 10.1016/j.ijpharm.2020.119671.
  • Pulivendala G, Bale S, Godugu C. 2020. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv Transl Res. 10(2):339–353. doi: 10.1007/s13346-019-00690-7.
  • Puri V, Chaudhary KR, Singh A, Singh C. 2022. Inhalation potential of N-acetylcysteine loaded PLGA nanoparticles for the management of tuberculosis: in vitro lung deposition and efficacy studies. Curr Res Pharmacol Drug Discov. 3:100084. doi: 10.1016/j.crphar.2022.100084.
  • Rani S, Gothwal A, Khan I, Pachouri PK, Bhaskar N, Gupta UD, Chauhan DS, Gupta U. 2018. Smartly engineered PEGylated di-block nanopolymeric micelles: duo delivery of isoniazid and rifampicin against Mycobacterium tuberculosis. AAPS PharmSciTech. 19(7):3237–3248. doi: 10.1208/s12249-018-1151-8.
  • Rawal T, Parmar R, Tyagi RK, Butani S. 2017. Rifampicin loaded chitosan nanoparticle dry powder presents: an improved therapeutic approach for alveolar tuberculosis. Colloids Surf B Biointerfaces. 154:321–330. doi: 10.1016/j.colsurfb.2017.03.044.
  • Rawal T, Patel S, Butani S. 2018. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline. Eur J Pharm Sci. 124:273–287. doi: 10.1016/j.ejps.2018.08.038.
  • Sahu T, Kumar Ratre Y, Chauhan S, Bhaskar LVKS, Nair MP, Verma HK. 2021. Nanotechnology based drug delivery system: current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol. 63:102487. doi: 10.1016/j.jddst.2021.102487.
  • Sansare V, Warrier D, Shinde U. 2020. Cellular trafficking of nanocarriers in alveolar macrophages for effective management of pulmonary tuberculosis. Journal of Tuberculosis. 3(1):1016.
  • Sato MR, Oshiro-Junior JA, Souza PC, Campos DL, Pereira-Da-Silva MA, Pavan FR, Da Silva PB, Chorilli M. 2019. Copper(II) complex-loaded castor oil-based nanostructured lipid carriers used against Mycobacterium tuberculosis: development, characterisation, in vitro and in vivo biological assays. Die Pharmazie. 74(12):715–720. doi: 10.1691/ph.2019.9110.
  • Scherließ R, Etschmann C. 2018. DPI formulations for high dose applications – challenges and opportunities. Int J Pharm. 548(1):49–53. doi: 10.1016/j.ijpharm.2018.06.038.
  • Schmid O, Stoeger T. 2016. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 99:133–143. doi: 10.1016/j.jaerosci.2015.12.006.
  • Selim A, Elhaig MM, Taha SA, Nasr EA. 2018. Antibacterial activity of silver nanoparticles against field and reference strains of Mycobacterium tuberculosis, Mycobacterium bovis and multiple-drug-resistant tuberculosis strains. Rev Sci Tech. 37(3):823–830. doi: 10.20506/rst.37.3.2888.
  • Shah S, Cristopher D, Sharma S, Soniwala M, Chavda J. 2020. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: design, development and in vitro evaluation. J Drug Deliv Sci Technol. 60:102013. doi: 10.1016/j.jddst.2020.102013.
  • Shahriari M, Jafari A, Movahedzadeh F, Foumani AA, Falahatkar S. 2019. Evaluation of mixture magnesium oxide and zinc oxide nanoparticles against multi-drug-resistance mycobacterium tuberculosis by microplate Alamar blue assay. Research Square. 1:1–10. doi: 10.21203/rs.2.13541/v1.
  • Sharma A, Sharma S, Khuller GK. 2004. Lectin-functionalised poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother. 54(4):761–766. doi: 10.1093/jac/dkh411.
  • Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, Smith JW. 2010. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release. 147(3):408–412. doi: 10.1016/j.jconrel.2010.07.116.
  • Shiehzadeh F, Hadizadeh F, Mohammadpour A, Aryan E, Gholami L, Tafaghodi M. 2019. Streptomycin sulfate dry powder inhalers for the new tuberculosis treatment schedule. J Drug Deliv Sci Technol. 52:957–967. doi: 10.1016/j.jddst.2019.05.052.
  • Singh AP, Biswas A, Shukla A, Maiti P. 2019. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Sig Transduct Target Ther. 4(1):33. doi: 10.1038/s41392-019-0068-3.
  • Singh J, Garg T, Rath G, Goyal AK. 2016. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis–a critical review. Drug Deliv. 23(5):1676–1698. doi: 10.3109/10717544.2015.1074765.
  • Singh J, Rath G, Sharma G, Goyal AK. 2018. Development, optimisation and evaluation of anti-tubercular drugs loaded pulmonary solid lipid nanoparticles for management of tuberculosis using Box-Behnken design. Pharmaspire. 10(1):13–22.
  • Singh R, Nawale LU, Arkile M, Shedbalkar UU, Wadhwani SA, Sarkar D, Chopade BA. 2015. Chemical and biological metal nanoparticles as antimycobacterial agents: a comparative study. Int J Antimicrob Agents. 46(2):183–188. doi: 10.1016/j.ijantimicag.2015.03.014.
  • Swaminathan J, Ehrhardt C. 2012. Liposomal delivery of proteins and peptides. Expert Opin Drug Deliv. 9(12):1489–1503. doi: 10.1517/17425247.2012.735658.
  • Tăbăran A-F, Matea CT, Mocan T, Tăbăran A, Mihaiu M, Iancu C, Mocan L. 2020. Silver nanoparticles for the therapy of tuberculosis. Int J Nanomedicine. 15:2231–2258. doi: 10.2147/IJN.S241183.
  • Tang P, Chan H-K, Rajbhandari D, Phipps P. 2011. Method to introduce mannitol powder to intubated patients to improve sputum clearance. J Aerosol Med Pulm Drug Deliv. 24(1):1–9. doi: 10.1089/jamp.2010.0825.
  • Thakur AK, Chellappan DK, Dua K, Mehta M, Satija S, Singh I. 2020. Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert Opin Ther Pat. 30(5):375–387. doi: 10.1080/13543776.2020.1741547.
  • Truzzi E, Leite Nascimento T, Iannuccelli V, Costantino L, Lima EM, Leo E, Siligardi C, Gualtieri ML, Maretti E. 2020. In vivo biodistribution of respirable solid lipid nanoparticles surface-decorated with a mannose-based surfactant: a promising tool for pulmonary tuberculosis treatment? Nanomaterials. 10(3):568. doi: 10.3390/nano10030568.
  • Turner PV, Brabb T, Pekow C, Vasbinder MA. 2011. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 50(5):600–613.
  • Vieira AC, Chaves LL, Pinheiro M, Costa Lima SA, Ferreira D, Sarmento B, Reis S. 2018. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artif Cells Nanomed Biotechnol. 46(sup1):653–663. doi: 10.1080/21691401.2018.1434186.
  • Vieira AC, Magalhães J, Rocha S, Cardoso MS, Santos SG, Borges M, Pinheiro M, Reis S. 2017. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine. 12(24):2721–2736. doi: 10.2217/nnm-2017-0248.
  • World Health Organization. 2009. Management of MDR-TB: a field guide: a companion document to guidelines for programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization; p. 62.
  • World Health Organization. 2022. WHO “global tuberculosis report.” https://www.ptonline.com/articles/how-to-get-better-mfi-results.
  • Yang Z, Lou C, Wang X, Wang C, Shi Z, Niu N. 2022. Preparation, characterisation, and in-vitro cytotoxicity of nanoliposomes loaded with anti-tubercular drugs and TGF-B1 SiRNA for improving spinal tuberculosis therapy. BMC Infect Dis. 22(1):824. doi: 10.1186/s12879-022-07791-8.
  • Yeung S, Traini D, Tweedie A, Lewis D, Church T, Young PM. 2019. Assessing aerosol performance of a dry powder carrier formulation with increasing doses using a novel inhaler. AAPS PharmSciTech. 20(3):94. doi: 10.1208/s12249-019-1302-6.
  • Yokoyama M. 2010. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv. 7(2):145–158. doi: 10.1517/17425240903436479.
  • Yokoyama M, Opanasopit P, Okano T, Kawano K, Maitani Y. 2004. Polymer design and incorporation methods for polymeric micelle carrier system containing water-insoluble anti-cancer agent camptothecin. J Drug Target. 12(6):373–384. doi: 10.1080/10611860412331285251.
  • Zhang LW, Monteiro-Riviere NA. 2009. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci. 110(1):138–155. doi: 10.1093/toxsci/kfp087.
  • Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan H-K. 2015. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 85:83–99. doi: 10.1016/j.addr.2014.10.022.
  • Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. 2014. Nanomedicine in the management of microbial infection – overview and perspectives. Nano Today. 9(4):478–498. doi: 10.1016/j.nantod.2014.06.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.