39
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Modern trends in the formulation of microparticles for lung delivery using porogens: methods, principles and examples

&
Received 07 Nov 2023, Accepted 29 Apr 2024, Published online: 23 May 2024

References

  • Al-Hallak MK, Sarfraz MK, Azarmi S, Roa WH, Finlay WH, Löbenberg R. 2011. Pulmonary delivery of inhalable nanoparticles: dry powder inhalers. Ther Deliv. 2(10):1313–1324. doi: 10.4155/tde.11.100.
  • Alipour S, Shirooee A, Ahmadi F. 2020. Porogen effects on aerosolization properties of fluconazole loaded PLGA large porous particles. Int J App Pharm. 2020:258–263. doi: 10.22159/ijap.2020v12i4.37453.
  • Arnold MM, Gorman EM, Schieber LJ, Munson EJ, Berkland C. 2007. NanoCipro encapsulation in monodisperse large porous PLGA microparticles. J Control Release. 121(1-2):100–109. doi: 10.1016/j.jconrel.2007.05.039.
  • Ben-Jebria A, Chen D, Eskew ML, Vanbever R, Langer R, Edwards DA. 1999. Large porous particles for sustained protection from carbachol-induced bronchoconstriction in guinea pigs. Pharm Res. 16(4):555–561. doi: 10.1023/a:1018879331061.
  • Biswas GR, Khatoon N, Kundu A. 2024. Fabrication of porous microspheres of azithromycin, incorporating different porogens. Int J Pharm Res Technol. 14(1):1–8.
  • Cai Y, Chen Y, Hong X, Liu Z, Yuan W. 2013. Porous microsphere and its applications. Int J Nanomed. 8:1111–1120. doi: 10.2147/IJN.S41271.
  • Cal K, Sollohub K. 2010. Spray drying technique. I: hardware and process parameters. J Pharm Sci. 99(2):575–586. doi: 10.1002/jps.21886.
  • Calín-Sánchez Á, Lipan L, Cano-Lamadrid M, Kharaghani A, Masztalerz K, Carbonell-Barrachina ÁA, Figiel A. 2020. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods. 9(9):1261. doi: 10.3390/foods9091261.
  • Cassidy JP, Amin N, Marino M, Gotfried M, Meyer T, Sommerer K, Baughman RA. 2011. Insulin lung deposition and clearance following Technosphere® insulin inhalation powder administration. Pharm Res. 28(9):2157–2164. doi: 10.1007/s11095-011-0443-4.
  • Chae J, Choi Y, Tanaka M, Choi J. 2021. Inhalable nanoparticles delivery targeting alveolar macrophages for the treatment of pulmonary tuberculosis. J Biosci Bioeng. 132(6):543–551. doi: 10.1016/j.jbiosc.2021.08.009.
  • Chaurasiya B, Zhao YY. 2021. Dry powder for pulmonary delivery: a comprehensive review. Pharmaceutics. 13(1):31. doi: 10.3390/pharmaceutics13010031.
  • Chen AZ, Tang N, Wang SB, Kang YQ, Song HF. 2015. Insulin-loaded poly-L-lactide porous microspheres prepared in supercritical CO2 for pulmonary drug delivery. J Supercrit Fluids. 101:117–123. doi: 10.1016/j.supflu.2015.03.010.
  • Chen G, Ushida T, Tateishi T. 2001. Preparation of poly (L-lactic acid) and poly (DL-lactic-co-glycolic acid) foams by use of ice microparticulates. Biomaterials. 22(18):2563–2567. doi: 10.1016/s0142-9612(00)00447-6.
  • Chow AH, Tong HH, Chattopadhyay P, Shekunov BY. 2007. Particle engineering for pulmonary drug delivery. Pharm Res. 24(3):411–437. doi: 10.1007/s11095-006-9174-3.
  • Chvatal A, Ambrus R, Party P, Katona G, Jójárt-Laczkovich O, Szabó-Révész P, Fattal E, Tsapis N.,. 2019. Formulation and comparison of spray dried non-porous and large porous particles containing meloxicam for pulmonary drug delivery. Int J Pharm. 559:68–75. doi: 10.1016/j.ijpharm.2019.01.034.
  • Cruz L, Fattal E, Tasso L, Freitas GC, Carregaro AB, Guterres SS, Pohlmann AR, Tsapis N. 2011. Formulation and in vivo evaluation of sodium alendronate spray-dried microparticles intended for lung delivery. J Control Release. 152(3):370–375. doi: 10.1016/j.jconrel.2011.02.030.
  • Daman Z, Gilani K, Rouholamini NA, Eftekhari HR, Barghi MA. 2014. Formulation of inhalable lipid-based salbutamol sulfate microparticles by spray drying technique. J Pharm Sci. 22(1):1–9.
  • Dastidar DG, Saha S, Chowdhury M. 2018. Porous microspheres: synthesis, characterization and applications in pharmaceutical & medical fields. Int J Pharm. 548(1):34–48. doi: 10.1016/j.ijpharm.2018.06.015.
  • Diamond S. 2000. Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res. 30(10):1517–1525. doi: 10.1016/S0008-8846(00)00370-7.
  • Doryab A, Taskin MB, Stahlhut P, Schröppel A, Wagner DE, Groll J, Schmid O. 2021. A biomimetic, copolymeric membrane for cell‐stretch experiments with pulmonary epithelial cells at the air‐liquid interface. Adv Funct Mat. 31(10):2004707. doi: 10.1002/adfm.202004707.
  • Douafer H, Andrieu V, Brunel JM. 2020. Scope and limitations on aerosol drug delivery for the treatment of infectious respiratory diseases. J Control Release. 325:276–292. doi: 10.1016/j.jconrel.2020.07.002.
  • Duong T, López-Iglesias C, Szewczyk PK, Stachewicz U, Barros J, Alvarez-Lorenzo C, Alnaief M, García-González CA. 2021. A pathway from porous particle technology toward tailoring aerogels for pulmonary drug administration. Front Bioeng Biotechnol. 9:671381. doi: 10.3389/fbioe.2021.671381.
  • Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, Mintzes J, Deaver D, Lotan N, Langer R. 1997. Large porous particles for pulmonary drug delivery. Science. 276(5320):1868–1871. doi: 10.1126/science.276.5320.1868.
  • Edwards DA, Ben-Jebria A, Langer R. 1998. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J Appl Physiol. 85(2):379–385. doi: 10.1152/jappl.1998.85.2.379.
  • Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Mansour HM. 2021. Spray-dried inhalable powder formulations of therapeutic proteins and peptides. AAPS PharmSciTech. 22(5):185. doi: 10.1208/s12249-021-02043-5.
  • El-Kasabgy NA, Adel IM, Elmeligy MF. 2020. Respiratory tract: structure and attractions for drug delivery using dry powder inhalers. AAPS PharmSciTech. 21(7):238. doi: 10.1208/s12249-020-01757-2.
  • El-Sherbiny IM, El-Baz NM, Yacoub MH. 2015. Inhaled nano-and microparticles for drug delivery. Glob Cardiol Sci Pract. 2015(1):2. doi: 10.5339/gcsp.2015.2.
  • Emami F, Vatanara A, Park EJ, Na DH. 2018. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics. 10(3):131. doi: 10.3390/pharmaceutics10030131.
  • Emami F, Yazdi SJM, Na DH. 2019. Poly (lactic acid)/poly (lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J Pharm Investig. 49(4):427–442. doi: 10.1007/s40005-019-00443-1.
  • Esfandiari N. 2015. Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide. J Supercrit Fluids. 100:129–141. doi: 10.1016/j.supflu.2014.12.028.
  • Espinal L. 2002. Porosity and its measurement. Characterization of Materials. 1:1–10.
  • Farinha S, Sá JV, Lino PR, Galésio M, Pires J, Rodrigues MÂ, Henriques J. 2023. Spray freeze drying of biologics: a review and applications for inhalation delivery. Pharm Res. 40(5):1115–1140. doi: 10.1007/s11095-022-03442-4.
  • Feng J, Huang Z, Dong Y. 2019. Preparation of ice microspheres and their application in the preparation of porous poly (l-lactic acid)(PLLA) scaffolds. J Mater Sci. 54(4):3661–3670. doi: 10.1007/s10853-018-3086-6.
  • Forbes B, O’Lone R, Allen PP, Cahn A, Clarke C, Collinge M, Dailey LA, Donnelly LE, Dybowski J, Hassall D, et al. 2014. Challenges for inhaled drug discovery and development: induced alveolar macrophage responses. Adv Drug Deliv Rev. 71:15–33. doi: 10.1016/j.addr.2014.02.001.
  • Gaskell SJ. 1997. Electrospray: principles and practice. J Mass Spectrom. 32(7):677–688. doi: 10.1002/(SICI)1096-9888(199707)32:7<677::AID-JMS536>3.0.CO;2-G.
  • Geller DE, Weers J, Heuerding S. 2011. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere™ technology. J Aerosol Med Pulm Drug Deliv. 24(4):175–182. doi: 10.1089/jamp.2010.0855.
  • Gharse S, Fiegel J. 2016. Large porous hollow particles: lightweight champions of pulmonary drug delivery. Curr Pharm Des. 22(17):2463–2469. doi: 10.2174/1381612822666160128145356.
  • Goudanavar P. 2023. Inhalable microparticulate system for tuberculosis: an updated review. Indian J Pharmaceut Educ Res. 57(3): 640–647.
  • Gradon L, Sosnowski TR. 2014. Formation of particles for dry powder inhalers. Adv Powder Technol. 25(1):43–55. doi: 10.1016/j.apt.2013.09.012.
  • Gupta M, Aina A, Boukari Y, Doughty S, Morris A, Billa N. 2018. Effect of volume of porogens on the porosity of PLGA scaffolds in pH-controlled environment. Pharm Dev Technol. 23(2):207–210. doi: 10.1080/10837450.2017.1304415.
  • Hasyyati US, Surini S, Suhariyono GS. 2023. Prospective pulmonary drug delivery system of pirfenidone microparticles for pulmonary fibrosis. J Appl Pharm Sci. 13(9):095–105. doi: 10.7324/JAPS.2023.125985.
  • He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. 2022. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology. 20(1):101. doi: 10.1186/s12951-022-01307-x.
  • Hong Y, Zhou JG, Yao D. 2014. Porogen templating processes: an overview. J Manufact Sci Eng. 136(3):99. doi: 10.1115/1.4026899.
  • Horvat G, Pantić M, Knez Ž, Novak Z. 2022. A brief evaluation of pore structure determination for bioaerogels. Gels. 8(7):438. doi: 10.3390/gels8070438.
  • Hořavová H, Gajdziok J, Vetchý D. 2020. Typy a příprava lipozomálních přípravků pro plicní podání. [Types and preparation of liposomal preparations for pulmonary administration]. Chemické Listy. 114(5):322–328.
  • Indermun S, Govender M, Kumar P, Choonara YE, Pillay V. 2020. Porous particulate platforms for enhanced pulmonary delivery of bioactives. Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems. :359–373.
  • Ishwarya SP, Anandharamakrishnan C, Stapley AG. 2015. Spray-freeze-drying: a novel process for the drying of foods and bioproducts. Trends Food Sci Technol. 41(2):161–181. doi: 10.1016/j.tifs.2014.10.008.
  • Jain MS, Lohare GB, Bari MM, Chavan RB, Barhate SD, Shah CB. 2012. Spray drying in pharmaceutical industry: a review. Res J Pharma Dosage Forms Technol. 4(2):74–79.
  • Jain H, Bairagi A, Srivastava S, Singh SB, Mehra NK. 2020. Recent advances in the development of microparticles for pulmonary administration. Drug Discov Today. 25(10):1865–1872. doi: 10.1016/j.drudis.2020.07.018.
  • Kasten G, Silva LFC, Lemos-Senna E. 2016. Development of low density azithromycin-loaded polycaprolactone microparticles for pulmonary delivery. Drug Dev Ind Pharm. 42(5):776–787. doi: 10.3109/03639045.2015.1075032.
  • Karas J, Pavloková S, Hořavová H, Gajdziok J. 2023. Optimization of spray drying process parameters for the preparation of inhalable mannitol-based microparticles using a Box-Behnken experimental design. Pharmaceutics. 15(2):496. doi: 10.3390/pharmaceutics15020496.
  • Kasvayee KA. 2011. Synthesis of Li-ion battery cathode materials via freeze granulation [master’s thesis]. Gothenburg, Sweden: Chalmers University of Technology.
  • Karimi M, Kamali H, Mohammadi M, Tafaghodi M. 2022. Evaluation of various techniques for production of inhalable dry powders for pulmonary delivery of peptide and protein. J Drug Delivery Sci Technol. 69:103186. doi: 10.1016/j.jddst.2022.103186.
  • Kim HK, Chung HJ, Park TG. 2006. Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone. J Control Release. 112(2):167–174. doi: 10.1016/j.jconrel.2006.02.004.
  • Kim HU, Park HI, Lee JH, Lee ES, Oh KT, Yoon JH. 2010. Pharmaceutical potential of gelatin as a pH-responsive porogen for manufacturing porous poly (d, l-lactic-co-glycolic acid) microspheres. J Pharma Investigat. 40(4):245–250.
  • Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT, Shin BS, Lee KC, Youn YS. 2013. Doxorubicin-loaded porous PLGA microparticles with surface attached trail for the inhalation treatment of metastatic lung cancer. Biomaterials. 34(27):6444–6453. doi: 10.1016/j.biomaterials.2013.05.018.
  • Komárek P. 2006. Technologie léků [Drug Technology]. 3rd ed. Praha: Galenika. Czech.
  • Koushik K, Kompella UB. 2004. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Pharm Res. 21(3):524–535. doi: 10.1023/B:PHAM.0000019308.25479.a4.
  • Kuriakose AE, Hu W, Nguyen KT, Menon JU. 2019. Scaffold-based lung tumor culture on porous PLGA microparticle substrates. PLoS One. 14(5):e0217640. doi: 10.1371/journal.pone.0217640.
  • Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. 2020. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater. 9(4):153–174. doi: 10.1007/s40204-020-00139-y.
  • Lajhar FAA. 2018. Electrospray for pulmonary drug delivery [dissertation]. United Kingdom: The University of Manchester.
  • Lazo REL, de Paula Oliveira B, de Fátima Cobre A, Ferreira LM, Felipe KB, de Oliveira PR, Murakami FS. 2023. Engineering porous PLGA microparticles for pulmonary delivery of sildenafil citrate. Powder Technol. 430:118999. doi: 10.1016/j.powtec.2023.118999.
  • Leclaire P, Umnova O, Horoshenkov KV, Maillet L. 2003. Porosity measurement by comparison of air volumes. Rev Scient Instrum. 74(3):1366–1370. doi: 10.1063/1.1542666.
  • Lee HW, Seo SH, Kum CH, Park BJ, Joung YK, Son TI, Han DK. 2014. Fabrication and characteristics of anti-inflammatory magnesium hydroxide incorporated PLGA scaffolds formed with various porogen materials. Macromol Res. 22(2):210–218. doi: 10.1007/s13233-014-2040-y.
  • Lemr K, Borovcová L. 2020. Ionizace elektrosprejem. [Electrospray ionization]. Chemické Listy. 114(3):169–178.
  • Li Y, Han M, Liu T, Cun D, Fang L, Yang M. 2017. Inhaled hyaluronic acid microparticles extended pulmonary retention and suppressed systemic exposure of a short-acting bronchodilator. Carbohydr Polym. 172:197–204. doi: 10.1016/j.carbpol.2017.05.020.
  • Liang W, Chan AY, Chow MY, Lo FF, Qiu Y, Kwok PC, Lam JK. 2018. Spray freeze drying of small nucleic acids as inhaled powder for pulmonary delivery. Asian J Pharm Sci. 13(2):163–172. doi: 10.1016/j.ajps.2017.10.002.
  • Liang Z, Ni R, Zhou J, Mao S. 2015. Recent advances in controlled pulmonary drug delivery. Drug Discov Today. 20(3):380–389. doi: 10.1016/j.drudis.2014.09.020.
  • Mane S. 2016. Effect of porogens (type and amount) on polymer porosity: a review. Can Chem Trans. 4(2):210–225.
  • Marante T, Viegas C, Duarte I, Macedo AS, Fonte P. 2020. An overview on spray-drying of protein-loaded polymeric nanoparticles for dry powder inhalation. Pharmaceutics. 12(11):1032. doi: 10.3390/pharmaceutics12111032.
  • Mehta M, Sharma N, Vyas M, Khurana N, Maurya PK, Singh H, Andreoli de Jesus TP, Dureja H, Chellappan DK, Gupta G, Wadhwa R. 2019. Interactions with the macrophages: an emerging targeted approach using novel drug delivery systems in respiratory diseases.Chem Biol Interact. 304:10–19. doi: 10.1016/j.cbi.2019.02.021.
  • Munir M, Jena L, Kett VL, Dunne NJ, McCarthy HO. 2022. Spray drying: inhalable powders for pulmonary gene therapy. Biomater Adv. 133:112601. doi: 10.1016/j.msec.2021.112601.
  • Naidoo K, Rolfes H, Easton K, Moolman S, Chetty A, Richter W, Nilen R. 2008. An emulsion preparation for novel micro-porous polymeric hemi-shells. Mater Lett. 62(2):252–254. doi: 10.1016/j.matlet.2007.05.012.
  • Nair VV, Smyth HD. 2023. Inhalable excipient-free dry powder of tigecycline for the treatment of pulmonary infections. Mol Pharm. 20(9):4640–4653. doi: 10.1021/acs.molpharmaceut.3c00395.
  • Nasr M, Awad GA, Mansour S, Taha I, Al Shamy A, Mortada ND. 2011. Different modalities of NaCl osmogen in biodegradable microspheres for bone deposition of risedronate sodium by alveolar targeting. Eur J Pharm Biopharm. 79(3):601–611. doi: 10.1016/j.ejpb.2011.07.010.
  • Ni R, Muenster U, Zhao J, Zhang L, Becker-Pelster EM, Rosenbruch M, Mao S. 2017. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: in vitro and in vivo characterization. J Control Release. 249:11–22. doi: 10.1016/j.jconrel.2017.01.023.
  • Oh YJ, Lee J, Seo JY, Rhim T, Kim SH, Yoon HJ, Lee KY. 2011. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. J Control Release. 150(1):56–62. doi: 10.1016/j.jconrel.2010.11.001.
  • Orellano MS, Sanz O, Camarero-Espinosa S, Beloqui A, Calderón M. 2022. Recent advances and future perspectives of porous materials for biomedical applications. Nanomedicine (Lond). 17(4):197–200. doi: 10.2217/nnm-2021-0436.
  • Parhi R, Suresh P. 2013. Supercritical fluid technology: a review. J Adv Pharm Sci Technol. 1(1):13–36. doi: 10.14302/issn.2328-0182.japst-12-145.
  • Park S, Kwag DS, Lee UY, Lee DJ, Oh KT, Youn YS, Lee ES. 2014. Highly porous poly (lactide‐co‐glycolide) microparticles for sustained tiotropium release. Polym Adv Techs. 25(1):16–20. doi: 10.1002/pat.3198.
  • Paul M, Lau R. 2020. Potentials and challenges of levodopa particle formulation for treatment of Parkinson’s disease through intranasal and pulmonary delivery. Adv Powder Technol. 31(6):2357–2365. doi: 10.1016/j.apt.2020.03.028.
  • Peng T, Zhang X, Huang Y, Zhao Z, Liao Q, Xu J, Huang Z, Zhang J, Wu C-Y, Pan X, et al. 2017. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation. Sci Rep. 7(1):46517. doi: 10.1038/srep46517.
  • Petkov MP, Wang CL, Weber MH, Lynn KG, Rodbell KP. 2003. Positron annihilation techniques suited for porosity characterization of thin films. J Phys Chem B. 107(12):2725–2734. doi: 10.1021/jp013947b.
  • Pham DD, Grégoire N, Couet W, Gueutin C, Fattal E, Tsapis N. 2015. Pulmonary delivery of pyrazinamide-loaded large porous particles. Eur J Pharm Biopharm. 94:241–250. doi: 10.1016/j.ejpb.2015.05.021.
  • Pulivendala G, Bale S, Godugu C. 2020. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv Transl Res. 10(2):339–353. doi: 10.1007/s13346-019-00690-7.
  • Revillon A. 1994. Possibility of chromatographic characterization of porous matrerials, specially by Inverse Size Exclusion Chromatography. Stud Surf Sci Catal. 87:363–372.
  • Rohani SSR, Abnous K, Tafaghodi M. 2014. Preparation and characterization of spray-dried powders intended for pulmonary delivery of insulin with regard to the selection of excipients. Int J Pharm. 465(1-2):464–478. doi: 10.1016/j.ijpharm.2014.02.030.
  • Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK. 1994. Recommendations for the characterization of porous solids, Technical Report. Pure Appl Chem. 66(8):1739–1758. doi: 10.1351/pac199466081739.
  • Sánchez-Trasviña C, Fuks P, Mushagasha C, Kimerer L, Mayolo-Deloisa K, Rito-Palomares M, Carta G. 2020. Structure and functional properties of Capto™ Core 700 core-shell particles. J Chromatogr A. 1621:461079. doi: 10.1016/j.chroma.2020.461079.
  • Sawatdee S, Changsan N, Srichana T, Nanjwade B. 2023. Porous particle technology: novel approaches to deep lung delivery. In Pulmonary Drug Delivery Systems: material and Technological Advances. :131–175.
  • Schlumberger C, Thommes M. 2021. Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry-a tutorial review. Adv Materials Inter. 8(4):2002181. doi: 10.1002/admi.202002181.
  • Shelke NB, Rokhade AP, Aminabhavi TM. 2010. Preparation and evaluation of novel blend microspheres of poly (lactic‐co‐glycolic) acid and pluronic F68/127 for controlled release of repaglinide. J Appl Polymer Sci. 116(1):366–372. doi: 10.1002/app.30173.
  • Son HY, Lee DJ, Lee JB, Park CH, Seo M, Jang J, Kim SJ, Yoon MS, Nam YS. 2014. In situ functionalization of highly porous polymer microspheres with silver nanoparticles via bio-inspired chemistry. RSC Adv. 4(98):55604–55609. doi: 10.1039/C4RA08685F.
  • Stigliani M, Manniello MD, Zegarra-Moran O, Galietta L, Minicucci L, Casciaro R, Garofalo E, Incarnato L, Aquino RP, Del Gaudio P, et al. 2016. Rheological properties of cystic fibrosis bronchial secretion and in vitro drug permeation study: the effect of sodium bicarbonate. J Aerosol Med Pulm Drug Deliv. 29(4):337–345. doi: 10.1089/jamp.2015.1228.
  • Straub J, Bernstein H, Chichering DE III, Sarwat K, Randall G. 2000. Porous drug matrices and methods of manufacture thereof. United States Patent US6932983.
  • Tanhaei A, Mohammadi M, Hamishehkar H, Hamblin MR. 2021. Electrospraying as a novel method of particle engineering for drug delivery vehicles. J Control Release. 330:851–865. doi: 10.1016/j.jconrel.2020.10.059.
  • Taheri A, Jafari SM. 2019. Nanostructures of gums for encapsulation of food ingredients. In Biopolymer Nanostructures for Food Encapsulation Purposes. 1:521–578.
  • Taskin MB, Klausen LH, Dong M, Chen M. 2020. Emerging wet electrohydrodynamic approaches for versatile bioactive 3D interfaces. Nano Res. 13(2):315–327. doi: 10.1007/s12274-020-2635-x.
  • Tena AF, Clarà PC. 2012. Deposition of inhaled particles in the lungs. Archivos de Bronconeumología, English Edition. 48(7):240–246.
  • Thakur AK, Chellappan DK, Dua K, Mehta M, Satija S, Singh I. 2020. Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert Opin Ther Pat. 30(5):375–387. doi: 10.1080/13543776.2020.1741547.
  • Thompson DO, Chimenti DE. 1986. Review of progress in quantitative nondestructive evaluation. Volumes 5A and 5B-Proceedings of the Twelfth Annual Review, June 23–28; Williamsburg, VA.
  • Ungaro F, Giovino C, Coletta C, Sorrentino R, Miro A, Quaglia F. 2010. Engineering gas-foamed large porous particles for efficient local delivery of macromolecules to the lung. Eur J Pharm Sci. 41(1):60–70. doi: 10.1016/j.ejps.2010.05.011.
  • Valente SA, Silva LM, Lopes GR, Sarmento B, Coimbra MA, Passos CP. 2022. Polysaccharide-based formulations as potential carriers for pulmonary delivery–a review of their properties and fates. Carbohydr Polym. 277:118784. doi: 10.1016/j.carbpol.2021.118784.
  • Van Ekeren PJ. 1998. Thermodynamic background to thermal analysis and calorimetry. Handbook Thermal Anal Calorimetry. 1:75–145.
  • Vishali DA, Monisha J, Sivakamasundari SK, Moses JA, Anandharamakrishnan C. 2019. Spray freeze drying: emerging applications in drug delivery. J Control Release. 300:93–101. doi: 10.1016/j.jconrel.2019.02.044.
  • Vivek K, Mishra S, Pradhan RC. 2020. Characterization of spray dried probiotic Sohiong fruit powder with Lactobacillus plantarum. Lwt. 117:108699. doi: 10.1016/j.lwt.2019.108699.
  • Vranić E, Sirbubalo M, Tucak A, Hadžiabdić J, Rahić O, Elezović A. 2020. Development of inhalable dry gene powders for pulmonary drug delivery by spray-freeze-drying. In CMBEBIH 2019: Proceedings of the International Conference on Medical and Biological Engineering. p. 533–537.
  • Vraníková B, Gajdziok J. 2015. Metody používané ve farmaceutické technologii ke zvyšování biologické dostupnosti špatně rozpustných léčiv po perorálním podání [Methods used in pharmaceutical technology to increase the bioavailability of poorly soluble drugs after oral administration]. Čes Slov Farm. 64:159–172.
  • Vysloužil J, Dvořáčková K, Kejdušová M, Rabišková M. 2013. Příprava léčivých mikročástic metodou odpařování rozpouštědla. [Preparation of medicinal microparticles by solvent evaporation method]. Chemické Listy. 107(1):16–23. Czech.
  • Wang J, Ben-Jebria A, Edwards DA. 1999. Inhalation of estradiol for sustained systemic delivery. J Aerosol Med. 12(1):27–36. doi: 10.1089/jam.1999.12.27.
  • Wang X, Peng Y, Wang J, Zeng Q. 2019. Pore structure damages in cement-based materials by mercury intrusion: a non-destructive assessment by X-ray computed tomography. Materials. 12(14):2220. doi: 10.3390/ma12142220.
  • Wang Y, Zhu LH, Chen AZ, Xu Q, Hong YJ, Wang SB. 2016. One-step method to prepare PLLA porous microspheres in a high-voltage electrostatic anti-solvent process. Materials. 9(5):368. doi: 10.3390/ma9050368.
  • Weers JG, Miller DP, Tarara TE. 2019. Spray-dried PulmoSphere™ formulations for inhalation comprising crystalline drug particles. AAPS PharmSciTech. 20(3):103. doi: 10.1208/s12249-018-1280-0.
  • Yaqoubi S, Adibkia K, Nokhodchi A, Emami S, Alizadeh AA, Hamishehkar H, Barzegar-Jalali M. 2020. Co-electrospraying technology as a novel approach for dry powder inhalation formulation of montelukast and budesonide for pulmonary co-delivery. Int J Pharm. 591:119970. doi: 10.1016/j.ijpharm.2020.119970.
  • Yu X, Pan Q, Zheng Z, Chen Y, Chen Y, Weng S, Huang L. 2018. pH-responsive and porous vancomycin-loaded PLGA microspheres: evidence of controlled and sustained release for localized inflammation inhibition in vitro. RSC Adv. 8(65):37424–37432. doi: 10.1039/c8ra06659k.
  • Zhai W, Zhou W, Nai SML, Wei J. 2020. Characterization of nanoparticle mixed 316 L powder for additive manufacturing. J Mat Sci Technol. 47:162–168. doi: 10.1016/j.jmst.2020.02.019.
  • Zhang S, Lei H, Gao X, Xiong X, Wu WD, Wu Z, Chen XD. 2018. Fabrication of uniform enzyme-immobilized carbohydrate microparticles with high enzymatic activity and stability via spray drying and spray freeze drying. Powder Technol. 330:40–49. doi: 10.1016/j.powtec.2018.02.020.
  • Zhang X, Qin L, Su J, Sun Y, Zhang L, Li J, Beck-Broichsitter M, Muenster U, Chen L, Mao S. 2020. Engineering large porous microparticles with tailored porosity and sustained drug release behavior for inhalation. Eur J Pharm Biopharm. 155:139–146. doi: 10.1016/j.ejpb.2020.08.021.
  • Zhu L, Li M, Liu X, Jin Y. 2017. Drug-loaded PLGA electrospraying porous microspheres for the local therapy of primary lung cancer via pulmonary delivery. ACS Omega. 2(5):2273–2279. doi: 10.1021/acsomega.7b00456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.