27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design and fabrication of 3D-printed gastric floating tablets of captopril: effect of geometry and thermal crosslinking of polymer on floating behavior and drug release

, &
Received 05 Jan 2024, Accepted 03 May 2024, Published online: 11 May 2024

References

  • Agapakis G, Siamidi A, Kikionis S, Vlachou M, Pippa N. 2024. A thermal-analysis-technique-based mechanistic approach toward the release of omeprazole from solid dosage forms. Sci. Pharm. 92(1):8. doi: 10.3390/scipharm92010008.
  • Algahtani MS, Mohammed AA, Ahmad J. 2018. Extrusion-based 3D printing for pharmaceuticals: contemporary research and applications. Curr Pharm Des. 24(42):4991–5008. doi: 10.2174/1381612825666190110155931.
  • Alqahtani AA, Mohammed AA, Fatima F, Ahmed MM. 2023. Fused deposition modelling 3D-printed gastro-retentive floating device for propranolol Hcl tablets. Polymers (Basel). 15(17):3554. doi: 10.3390/polym15173554.
  • Amin OM, El Qady HN, Abd El-Fattah MA. 2023. An intragastric delivery device employing FDM technology: 3D-printed tablet containing green developed mosapride-saccharin co-crystals. AAPS PharmSciTech. 24(5):127. doi: 10.1208/s12249-023-02578-9.
  • Anderson NH, Bauer M, Boussac N, Khan-Malek R, Munden P, Sardaro M. 1998. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 17(4-5):811–822. doi: 10.1016/s0731-7085(98)00011-9.
  • Bajpai AK, Bajpai J, Shukla S. 2002. Water sorption through a semi-interpenetrating polymer network (IPN) with hydrophilic and hydrophobic chains. React Funct Polym. 50(1):9–21. doi: 10.1016/S1381-5148(01)00085-2.
  • Berg J, Hiller T, Kissner MS, Qazi TH, Duda GN, Hocke AC, Hippenstiel S, Elomaa L, Weinhart M, Fahrenson C, et al. 2018. Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus. Sci Rep. 8(1):13877. doi: 10.1038/s41598-018-31880-x.
  • Brockmeier D, Voegele D, von Hattingberg HM. 1983. In vitro–in vivo correlation, a time scaling problem? Basic techniques for testing equivalence. Arzneimittelforschung. 33(4):598–601.
  • Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, Cai W, Tao T, Xiang X. 2017. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep. 7(1):2829. doi: 10.1038/s41598-017-03097-x.
  • Chareonying T, Akkaramongkolporn P, Opanasopit P. 2022. Development of floating 3D-printed devices for carvedilol tablet. KEM. 914:45–51. doi: 10.4028/p-fgf5qq.
  • Charoenying T, Opanasopit P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Patrojanasophon P. 2023. Development of a novel tablet-shaped floating 3D-printed device with adjustable floating time as floating drug delivery systems provided zero-order release kinetics. J Drug Delivery Sci Technol. 84:104506. doi: 10.1016/j.jddst.2023.104506.
  • Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. 2020. Fabrication of floating capsule-in- 3D-printed devices as gastro-retentive delivery systems of amoxicillin. J Drug Delivery Sci Technol. 55:101393. doi: 10.1016/j.jddst.2019.101393.
  • Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. 2020. Three-dimensional (3D)-printed devices composed of hydrophilic cap and hydrophobic body for improving buoyancy and gastric retention of domperidone tablets. Eur J Pharm Sci. 155:105555. doi: 10.1016/j.ejps.2020.105555.
  • Chen P, Liu J, Zhang K, Huang D, Huang S, Xie Q, Yang F, Huang J, Fang D, Huang Z, et al. 2021. 2021/08/10/ Preparation of clarithromycin floating core-shell systems (CSS) using multi-nozzle semi-solid extrusion-based 3D printing. Int J Pharm. 605:120837. doi: 10.1016/j.ijpharm.2021.120837.
  • Chen YC, Ho HO, Lee TY, Sheu MT. 2013. Physical characterizations and sustained release profiling of gastroretentive drug delivery systems with improved floating and swelling capabilities. Int J Pharm. 441(1-2):162–169. doi: 10.1016/j.ijpharm.2012.12.002.
  • Cheng WT, Wang SL, Lin SY. 2008. Solid-state interaction study on the captopril/lubricants systems accelerated by grinding process. J Phys Chem Solids. 69(4):1007–1016. doi: 10.1016/j.jpcs.2007.11.015.
  • Costa P, Sousa Lobo JM. 2001. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 13(2):123–133. doi: 10.1016/s0928-0987(01)00095-1.
  • Das U, Wadhwa P, Singh PK, Kalidindi DV, Nagpal K. 2022. The role of polymers and excipients for better gastric retention of captopril. Crit Rev Ther Drug Carrier Syst. 39(6):85–106. doi: 10.1615/CritRevTherDrugCarrierSyst.2022042122.
  • Djebbar M, Chaffai N, Bouchal F, Aouf N. 2019. 02/28 Effervescent floating tablets of metformin HCl developed by melt granulation. Part I: effect of hydrophilic polymer on biopharmaceutical properties. GSC Biol. and Pharm. Sci. 6(2):052–067. doi: 10.30574/gscbps.2019.6.2.0014.
  • Duchin KL, Singhvi SM, Willard DA, Migdalof BH, McKinstry DN. 1982. Captopril kinetics. Clin Pharmacol Ther. 31(4):452–458. doi: 10.1038/clpt.1982.59.
  • Falcone G, Real JP, Palma SD, Aquino RP, Del Gaudio P, Garofalo E, Russo P. 2022. Floating ricobendazole delivery systems: a 3D printing method by co-extrusion of sodium alginate and calcium chloride. Int J Mol Sci. 23(3):1280. doi: 10.3390/ijms23031280.
  • Ferguson RK, Turini GA, Brunner HR, Gavras H, McKinstry DN. 1977. A specific orally active inhibitor of angiotensin-converting enzyme in man. Lancet. 1(8015):775–778. doi: 10.1016/s0140-6736(77)92958-0.
  • Fouad SA, Malaak FA, El-Nabarawi MA, Abu Zeid K, Ghoneim AM. 2021. Preparation of solid dispersion systems for enhanced dissolution of poorly water soluble diacerein: in-vitro evaluation, optimization and physiologically based pharmacokinetic modeling. PLoS One. 16(1):e0245482. doi: 10.1371/journal.pone.0245482.
  • Fu J, Yin H, Yu X, Xie C, Jiang H, Jin Y, Sheng F. 2018. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int J Pharm. 549(1-2):370–379. doi: 10.1016/j.ijpharm.2018.08.011.
  • Gaur PK, Mishra S, Bhardwaj S, Puri D, Kumar SS. 2014. Ion exchange resins in gastroretentive drug delivery: characteristics, selection, formulation and applications. J Pharmaceut Sci Pharmacol. 1(4):304–312. doi: 10.1166/jpsp.2014.1037.
  • Gioumouxouzis CI, Tzimtzimis E, Katsamenis OL, Dourou A, Markopoulou C, Bouropoulos N, Tzetzis D, Fatouros DG. 2020. 2020/02/15/ Fabrication of an osmotic 3D printed solid dosage form for controlled release of active pharmaceutical ingredients. Eur J Pharm Sci. 143:105176. doi: 10.1016/j.ejps.2019.105176.
  • Giri BR, Poudel S, Kim DW. 2021. Cellulose and its derivatives for application in 3D printing of pharmaceuticals. J. Pharm. Investig. 51(1):1–22. doi: 10.1007/s40005-020-00498-5.
  • Giri BR, Song ES, Kwon J, Lee JH, Park JB, Kim DW. 2020. Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics. 12(1):77. doi: 10.3390/pharmaceutics12010077.
  • Gohil JM, Bhattacharya A, Ray P. 2006. 2006/04/01 Studies on the crosslinking of poly (vinyl alcohol). J Polym Res. 13(2):161–169. doi: 10.1007/s10965-005-9023-9.
  • Goyanes A, Buanz ABM, Hatton GB, Gaisford S, Basit AW. 2015. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 89:157–162. doi: 10.1016/j.ejpb.2014.12.003.
  • Hasimi A, Stavropoulou A, Papadokostaki KG, Sanopoulou M. 2008. Transport of water in polyvinyl alcohol films: effect of thermal treatment and chemical crosslinking. Eur Polym J. 44(12):4098–4107. doi: 10.1016/j.eurpolymj.2008.09.011.
  • Holländer J, Hakala R, Suominen J, Moritz N, Yliruusi J, Sandler N. 2018. 3D printed UV light cured polydimethylsiloxane devices for drug delivery. Int J Pharm. 544(2):433–442. doi: 10.1016/j.ijpharm.2017.11.016.
  • Huanbutta K, Sangnim T. 2019. 2019/08/01/ Design and development of zero-order drug release gastroretentive floating tablets fabricated by 3D printing technology. J Drug Delivery Sci Technol. 52:831–837. doi: 10.1016/j.jddst.2019.06.004.
  • Huanbutta K, Sriamornsak P, Kittanaphon T, Suwanpitak K, Klinkesorn N, Sangnim T. 2021. 2021/03/01 Development of a zero-order kinetics drug release floating tablet with anti–flip-up design fabricated by 3D-printing technique. J. Pharm. Investig. 51(2):213–222. doi: 10.1007/s40005-020-00507-7.
  • Huang CY, Hu KH, Wei ZH. 2016. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration. Sci Rep. 6(1):37960. doi: 10.1038/srep37960.
  • Jeong HM, Weon K-Y, Shin BS, Shin S. 2020. May 16 3D-Printed Gastroretentive Sustained Release Drug Delivery System by Applying Design of Experiment Approach. Molecules. 25(10):2330. doi: 10.3390/molecules25102330.
  • Jiménez-Martínez I, Quirino-Barreda T, Villafuerte-Robles L. 2008. Sustained delivery of captopril from floating matrix tablets. Int J Pharm. 362(1-2):37–43. doi: 10.1016/j.ijpharm.2008.05.040.
  • Karalia D, Siamidi A, Karalis V, Vlachou M. 2021. 3D-Printed oral dosage forms: mechanical properties, computational approaches and applications. Pharmaceutics. 13(9):1401. doi: 10.3390/pharmaceutics13091401.
  • Khan KA. 1975. The concept of dissolution efficiency. J Pharm Pharmacol. 27(1):48–49. doi: 10.1111/j.2042-7158.1975.tb09378.x.
  • Kharazmi A, Faraji N, Mat Hussin R, Saion E, Yunus WMM, Behzad K. 2015. Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. Beilstein J Nanotechnol. 6:529–536. doi: 10.3762/bjnano.6.55.
  • Khizer Z, Akram MR, Tahir MA, Liu W, Lou S, Conway BR, Ghori MU. 2023. Personalised 3D-printed mucoadhesive gastroretentive hydrophilic matrices for managing overactive bladder (OAB). Pharmaceuticals (Basel). 16(3):372. doi: 10.3390/ph16030372.
  • Lamichhane S, Park J-B, Sohn DH, Lee S. 2019. Customized novel design of 3D printed pregabalin tablets for intra-gastric floating and controlled release using fused deposition modeling. Pharmaceutics. 11(11):564. doi: 10.3390/pharmaceutics11110564.
  • Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H, Jia D, Hou J, Xu W, Yang X, et al. 2018. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 535(1-2):325–332. doi: 10.1016/j.ijpharm.2017.10.037.
  • Lin X, Fu H, Hou Z, Si Y, Shan W, Yang Y. 2021. Jun 15 Three-dimensional printing of gastro-floating tablets using polyethylene glycol diacrylate-based photocurable printing material. Int J Pharm. 603:120674. doi: 10.1016/j.ijpharm.2021.120674.
  • Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P. 2016. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm. 510(1):144–158. doi: 10.1016/j.ijpharm.2016.05.016.
  • Maroni A, Melocchi A, Parietti F, Foppoli A, Zema L, Gazzaniga A. 2017. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J Control Release. 268:10–18. doi: 10.1016/j.jconrel.2017.10.008.
  • Meka L, Kesavan B, Chinnala KM, Vobalaboina V, Yamsani MR. 2008. Preparation of a matrix type multiple-unit gastro retentive floating drug delivery system for captopril based on gas formation technique: in vitro evaluation. AAPS PharmSciTech. 9(2):612–619. doi: 10.1208/s12249-008-9090-4.
  • Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 2015. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Delivery Sci Technol. 30:360–367. doi: 10.1016/j.jddst.2015.07.016.
  • Miraftab M, Saifullah AN, Çay A. 2015. Physical stabilisation of electrospun poly(vinyl alcohol) nanofibres: comparative study on methanol and heat-based crosslinking. J Mater Sci. 50(4):1943–1957. doi: 10.1007/s10853-014-8759-1.
  • Mohammed AA, Algahtani MS, Ahmad MZ, Ahmad J, Kotta S. 2021. 3D Printing in medicine: technology overview and drug delivery applications. Ann 3D Printed Med. 4:100037. doi: 10.1016/j.stlm.2021.100037.
  • Mora-Castaño G, Millán-Jiménez M, Caraballo I. 2023. Mar 4 Hydrophilic High Drug-Loaded 3D Printed Gastroretentive System with Robust Release Kinetics. Pharmaceutics. 15(3):842. doi: 10.3390/pharmaceutics15030842.
  • Musuc AM, Anuta V, Atkinson I, Popa VT, Sarbu I, Mircioiu C, Abdalrb GA, Mitu MA, Ozon EA. 2020. Development and characterization of orally disintegrating tablets containing a captopril-cyclodextrin complex. Pharmaceutics. 12(8):744. doi: 10.3390/pharmaceutics12080744.
  • Nur AO, Zhang JS. 2000. Recent progress in sustained/controlled oral delivery of captopril: an overview. Int J Pharm. 194(2):139–146. doi: 10.1016/s0378-5173(99)00362-2.
  • Obaidat AA. 2012. Characterization and evaluation of the release kinetics of a model poorly water-soluble and low dose drug from matrix tablets composed of blends of swellable and erodible polymers: implications for controlled and complete release. J. App. Pharm. Sci. 2(4):147–153. doi: 10.7324/JAPS.2012.2427.
  • Pagar UN, Surawase RK. 2022. Formulation and Evaluation of Captopril Sustained Release Pellet Containing Tablet by Fluidized Bed Processing.
  • Pereira GG, Figueiredo S, Fernandes AI, Pinto JF. 2020. Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics. 12(9):795. doi: 10.3390/pharmaceutics12090795.
  • Placone JK, Engler AJ. 2018. Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthc Mater. 7(8):e1701161. doi: 10.1002/adhm.201701161.
  • Prajapati VD, Jani GK, Khutliwala TA, Zala BS. 2013. Raft forming system—An upcoming approach of gastroretentive drug delivery system. J Control Release. 168(2):151–165. doi: 10.1016/j.jconrel.2013.02.028.
  • Rahmatabadi D, Aberoumand M, Soltanmohammadi K, Soleyman E, Ghasemi I, Baniassadi M, Abrinia K, Zolfagharian A, Bodaghi M, Baghani M, et al. 2022. A new strategy for achieving shape memory effects in 4D printed two-layer composite structures. Polymers (Basel). 14(24):5446. doi: 10.3390/polym14245446.
  • Raza A, Hayat U, Wang H-J, Wang J-Y. 2020. Preparation and evaluation of captopril loaded gastro-retentive zein based porous floating tablets. Int J Pharm. 579:119185. doi: 10.1016/j.ijpharm.2020.119185.
  • Raza A, Shen N, Li J, Chen Y, Wang JY. 2019. Formulation of zein based compression coated floating tablets for enhanced gastric retention and tunable drug release. Eur J Pharm Sci. 132:163–173. doi: 10.1016/j.ejps.2019.01.025.
  • Reddy Dumpa N, Bandari S, M AR. 2020. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printing. Pharmaceutics. 12(1):52. doi: 10.3390/pharmaceutics12010052.
  • Salami M, Ibrahim W. 2022. Preparation and in-vitro evaluation for captopril floating capsules. Tishreen University Journal-Medical Sciences Series. 44(5):191–205.
  • Sarparanta MP, Bimbo LM, Mäkilä EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, et al. 2012. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials. 33(11):3353–3362. doi: 10.1016/j.biomaterials.2012.01.029.
  • Shah VP, Tsong Y, Sathe P, Liu JP. 1998. In vitro dissolution profile comparison—statistics and analysis of the similarity factor, f2. Pharm Res. 15(6):889–896. doi: 10.1023/a:1011976615750.
  • Shin S, Kim TH, Jeong SW, Chung SE, Lee DY, Kim D-H, Shin BS. 2019. Development of a gastroretentive delivery system for acyclovir by 3D printing technology and its in vivo pharmacokinetic evaluation in Beagle dogs. PLoS One. 14(5):e0216875. doi: 10.1371/journal.pone.0216875.
  • Siepmann J, Kranz H, Bodmeier R, Peppas NA. 1999. HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res. 16(11):1748–1756. doi: 10.1023/a:1018914301328.
  • Singh J, Robinson DH. 1988. Controlled release kinetics of captopril from tableted microcapsules. Drug Dev Ind Pharm. 14(4):545–560. doi: 10.3109/03639048809151883.
  • Sriamornsak P, Huanbutta K, Sangnim T. 2022. Recent advances in 3D printing for floating drug delivery platforms. Sci Eng Health Stud.16. 22010001–22010001.
  • Streubel A, Siepmann J, Bodmeier R. 2006. Gastroretentive drug delivery systems. Expert Opin Drug Deliv. 3(2):217–233. doi: 10.1517/17425247.3.2.217.
  • Sungthongjeen S, Puttipipatkhachorn S, Paeratakul O, Dashevsky A, Bodmeier R. 2004. Development of pulsatile release tablets with swelling and rupturable layers. J Control Release. 95(2):147–159. doi: 10.1016/j.jconrel.2003.10.023.
  • Tagami T, Fukushige K, Ogawa E, Hayashi N, Ozeki T. 2017. 3D Printing factors important for the fabrication of polyvinylalcohol filament-based tablets. Biol Pharm Bull. 40(3):357–364. doi: 10.1248/bpb.b16-00878.
  • Thitinan S, McConville JT. 2012. Development of a gastroretentive pulsatile drug delivery platform. J Pharm Pharmacol. 64(4):505–516. doi: 10.1111/j.2042-7158.2011.01428.x.
  • Tripathi J, Thapa P, Maharjan R, Jeong SH. 2019. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics. 11(4):193. doi: 10.3390/pharmaceutics11040193.
  • Vo AQ, Feng X, Morott JT, Pimparade MB, Tiwari RV, Zhang F, Repka MA. 2016. A novel floating controlled release drug delivery system prepared by hot-melt extrusion. Eur J Pharm Biopharm. 98:108–121. doi: 10.1016/j.ejpb.2015.11.015.
  • Vo AQ, Zhang J, Nyavanandi D, Bandari S, Repka MA. 2020. Oct 15 Hot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizine. Carbohydr Polym. 246:116519. doi: 10.1016/j.carbpol.2020.116519.
  • Wilding IR, Davis SS, Bakhshaee M, Stevens HN, Sparrow RA, Brennan J. 1992. Gastrointestinal transit and systemic absorption of captopril from a pulsed-release formulation. Pharm Res. 9(5):654–657. doi: 10.1023/a:1015806211556.
  • Windolf H, Chamberlain R, Quodbach J. 2021. Predicting drug release from 3D printed oral medicines based on the surface area to volume ratio of tablet geometry. Pharmaceutics. 13(9):1453. doi: 10.3390/pharmaceutics13091453.
  • Yang HS, Kim DW. 2023. Fabrication of gastro-floating famotidine tablets: hydroxypropyl methylcellulose-based semisolid extrusion 3D printing. Pharmaceutics. 15(2): 316. doi: 10.3390/pharmaceutics15020316.
  • Yang Y, Wang X, Lin X, Xie L, Ivone R, Shen J, Yang G. 2020. A tunable extruded 3D printing platform using thermo-sensitive pastes. Int J Pharm. 583:119360. doi: 10.1016/j.ijpharm.2020.119360.
  • Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. 2010. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. Aaps J. 12(3):263–271. doi: 10.1208/s12248-010-9185-1.
  • Zhao Q, Gao B, Ma L, Lian J, Deng L, Chen J. 2015. Innovative intragastric ascaridole floating tablets: development, optimization, and in vitro–in vivo evaluation. Int J Pharm. 496(2):432–439. doi: 10.1016/j.ijpharm.2015.10.007.
  • Zhao X, Wei W, Niu R, Li Q, Hu C, Jiang S. 2022. 3D printed intragastric floating and sustained-release tablets with air chambers. J Pharm Sci. 111(1):116–123. doi: 10.1016/j.xphs.2021.07.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.