19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Brilliant green decolorization by dye decolorizing peroxidase producing bacterium, Achromobacter insolitus isolated from Forest soils of Similipal Biosphere Reserve, Odisha

, , &

References

  • Abd El-Rahim, W. M., A. Z. A. Azeiz, H. Moawad, and M. J. Sadowsky. 2019. Identification and characterization of two peroxidases from Lichtheimia corymbifera. Biocatalysis and Agricultural Biotechnology 18:100995. doi:10.1016/j.bcab.2019.01.033.
  • Abd El-Rahim, W. M., H. Moawad, A. Z. A. Azeiz, and M. J. Sadowsky. 2021. Biodegradation of azo dyes by bacterial or fungal consortium and identification of the biodegradation products. Egyptian Journal of Aquatic Research 47 (3):269–76. doi:10.1016/j.ejar.2021.06.002.
  • Abdul Rahman, N. H., N. A. Abdul Rahman, S. Abd Aziz, and M. A. Hassan. 2013. Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils. BioResources 8 (4):6136–50. doi:10.15376/biores.8.4.6136-6150.
  • Alalewi, A., and C. Jiang. 2012. Bacterial influence on textile wastewater decolorization. Journal of Environmental Protection 03 (08):889–903. doi:10.4236/jep.2012.328104.
  • Arabaci, G., and A. Usluoglu. 2014. The enzymatic decolorization of textile dyes by the immobilized polyphenol oxidase from quince leaves. TheScientificWorldJournal 2014:685975– doi:10.1155/2014/685975.
  • Arslan‐Alaton, I. 2003. A review of the effects of dye‐assisting chemicals on advanced oxidation of reactive dyes in wastewater. Coloration Technology 119 (6):345–53. doi: Org/10/1111/j.1478-4408.2003.tb00196.x. doi:10.1111/j.1478-4408.2003.tb00196.x.
  • Bergey, D. H. 1994. Bergey’s manual of determinative bacteriology. Baltimore: Williams & Wilkins Company.
  • Bugg, T. D., M. Ahmad, E. M. Hardiman, and R. Rahmanpour. 2011. Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports 28 (12):1883–96. doi:10.1039/C1NP00042J.
  • Chen, C., and T. Li. 2016. Bacterial dye-decolorizing peroxidases: Biochemical properties and biotechnological opportunities. Physical Sciences Reviews 1 (9):20160051. doi:10.1515/psr-2016-0051.
  • Chen, X., Y. Wang, F. Yang, Y. Qu, and X. Li. 2015. Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase. Annals of Microbiology 65 (3):1699–707. doi:10.1007/s13213-014-1009.
  • Collee, J. G., R. S. Miles, and B. Watt. 1996. Tests for identification of bacteria. Mackie and McCartney Practical Medical Microbiology 14:131–49.
  • Dhankhar, P., V. Dalal, A. K. Sharma, and P. Kumar. 2022. Structural insights at acidic pH of dye‐decolorizing peroxidase from Bacillus subtilis. Proteins 91 (4):508–17. doi:10.1002/prot.26444.
  • Dhankhar, P., V. Dalal, V. Singh, A. K. Sharma, and P. Kumar. 2021. Structure of dye-decolorizing peroxidase from Bacillus subtilis in complex with veratryl alcohol. International Journal of Biological Macromolecules 193 (Pt A):601–8. doi:10.1016/j.ijbiomac.2021.10.100.
  • Doddapaneni, K. K., R. Tatineni, R. Potumarthi, and L. N. Mangamoori. 2007. Optimization of media constituents through response surface methodology for improved production of alkaline proteases by Serratia rubidaea. Journal of Chemical Technology & Biotechnology 82 (8):721–9. doi:10.1002/jctb.1714.
  • Falade, A. O., O. A. Eyisi, L. V. Mabinya, U. U. Nwodo, and A. I. Okoh. 2017. Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. Biotechnology Reports (Amsterdam, Netherlands)16:12–7. doi:10.1016/j.btrc.2017.10.001.
  • Gita, S., A. Hussan, and T. G. Choudhury. 2017. Impact of textile dyes waste on aquatic environments and its treatment. Environmental Ecology 35 (3C):2349–53.
  • Gunst, R. F., and G. C. McDonald. 1996. The importance of outcome dynamics, simple geometry, and pragmatic statistical arguments in exposing deficiencies of experimental design strategies. The American Statistician 50 (1):44–50. doi:10.1080/00031305.
  • Harish, B. S., T. Thayumanavan, R. Subashkumar, K. Gopal, and N. Kowsik Raj. 2023. Kinetics of dye decolorization using heterogeneous catalytic system with immobilized Achromobacter xylosoxidans DDB6. Preparative Biochemistry & Biotechnology 53:1–9. doi:10.1080/10826068.2023.2273487.
  • Kheti, N. K., S. Rath, and H. Thatoi. 2023. Screening and Optimization of Manganese Peroxidase (MnP) production by Pseudoduganella violacea (SMB4), a bacterial isolate from Similipal Biosphere Reserve, Odisha and evaluation of Maillard reaction products degradation. Sustainable Chemistry for the Environment 2:100009. doi:10.1016/j.scenv.2023.100009.
  • Kumar, R., and M. A. Barakat. 2013. Decolourization of hazardous brilliant green from aqueous solution using binary oxidized cactus fruit peel. Chemical Engineering Journal 226:377–83. doi:10.1016/j.cej.2013.04.063.
  • Lacey, L. A. 1997. Initial handling and diagnosis of diseased insects. Manual of techniques in insect pathology. Academic Press: 1-VIII. doi:10.1016/B978-012432555-5/50004-X.
  • Larkin, A. A., and A. C. Martiny. 2017. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environmental Microbiology Reports 9 (2):55–70. doi:10.1111/1758-2229.12523.
  • Linde, D., C. Coscolín, C. Liers, M. Hofrichter, A. T. Martínez, and F. J. Ruiz-Dueñas. 2014. Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae. Protein Expression and Purification 103:28–37. doi:10.1016/J.pep.2014.08.007.
  • Maniyam, M. N., A. L. Ibrahim, and A. E. Cass. 2020. Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016. Environmental Technology 41 (1):71–85. doi:10.1080/09593330.2018.1491634.
  • Min, K., G. Gong, H. M. Woo, Y. Kim, and Y. Um. 2015. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Scientific Reports 5 (1):8245. doi:10.1038/srep08245.
  • Mohapatra, S., S. Padhy, P. K. D. Mohapatra, and H. N. Thatoi. 2018. Enhanced reducing sugar production by saccharification of lignocellulosic biomass, Pennisetum species through cellulase from a newly isolated Aspergillus fumigatus. Bioresource Technology 253:262–72. doi:10.1016/j.biortech.2018.01.023.
  • Pelczar, M. J. Jr, 1957. Manual of microbiological methods. New York: McGrow-Hill Book Co. Inc.
  • Raina, N., P. S. Slathia, and P. Sharma. 2020. Response surface methodology (RSM) for optimization of thermochemical pretreatment method and enzymatic hydrolysis of deodar sawdust (DS) for bioethanol production using separate hydrolysis and co-fermentation (SHCF). Biomass Conversion and Biorefinery 12 (11):5175–95. doi:10.1007/s13399-020-00970-0.
  • Rath, S., M. Paul, H. K. Behera, and H. Thatoi. 2022. Response surface methodology mediated optimization of Lignin peroxidase from Bacillus mycoides isolated from Simlipal Biosphere Reserve, Odisha, India. Journal, Genetic Engineering & Biotechnology 20 (1):2. doi:10.1186/s43141-021-00284-2.
  • Santos, A., S. Mendes, V. Brissos, and L. O. Martins. 2014. New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: Towards biotechnological applications. Applied Microbiology and Biotechnology 98 (5):2053–65. doi:10.1007/s00253-013-5041-4.
  • Singh, A. K., M. Bilal, H. M. Iqbal, A. S. Meyer, and A. Raj. 2021. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. The Science of the Total Environment 777:145988. doi:10.1016/j.scitotenv.2021.145988.
  • Singh, R. P., P. K. Singh, and R. L. Singh. 2014. Bacterial decolorization of textile azo dye acid orange by Staphylococcus hominis RMLRT03. Toxicology International 21 (2):160–6. doi:10.4103/0971-6580.139797.
  • Smitha, K. V., and B. V. Pradeep. 2017. Application of Box-Behnken design for the optimization of culture conditions for novel fibrinolytic enzyme production by Bacillus altitudinis S-CSR 0020. Journal of Pure and Applied Microbiology 11 (3):1447–56. doi:10.22207/JPAM.11.3.28.
  • Song, J., G. Han, Y. Wang, X. Jiang, D. Zhao, M. Li, Z. Yang, Q. Ma, R. E. Parales, Z. Ruan, et al. 2020. Pathway and kinetics of malachite green biodegradation by Pseudomonas veronii. Scientific Reports 10 (1):4502. doi:10.1038/s41598-020-61442-z.
  • Sugano, Y., Y. Matsushima, K. Tsuchiya, H. Aoki, M. Hirai, and M. Shoda. 2009. Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec 1. Biodegradation 20 (3):433–40. doi:10.1007/s10532-008-9234-y.
  • Thatoi, H., S. Rath, and N. K. Kheti. 2023. Optimisation of Manganese Peroxidase (MnP) activity of Enterobacter wuhouensis using Response Surface Method and evaluation of Its maillard reaction products along with lignin degradation ability. Indian Journal of Microbiology 63 (4):604–20. doi:10.1007/s12088-023-01120-6.
  • Yang, X. Q., X. X. Zhao, C. Y. Liu, Y. Zheng, and S. J. Qian. 2009. Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochemistry 44 (10):1185–9. doi:10.1016/j.procbio.2009.06.015.
  • Yolmeh, M., and S. M. Jafari. 2017. Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology 10 (3):413–33. doi:10.1007/s11947-016-1855-2.
  • Yu, W., W. Liu, H. Huang, F. Zheng, X. Wang, Y. Wu, K. Li, X. Xie, and Y. Jin. 2014. Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp. PloS One 9 (10):e110319. doi:10.1371/journal.pone.0110319.
  • Zabłocka-Godlewska, E., W. Przystaś, and E. Grabińska-Sota. 2014. Decolourisation of different dyes by two Pseudomonas strains under various growth conditions. Water, Air, and Soil Pollution 225 (2):1846. doi:10.1007/s11270-013-1846-0.
  • Zámocký, M., S. Hofbauer, I. Schaffner, B. Gasselhuber, A. Nicolussi, M. Soudi, K. F. Pirker, P. G. Furtmüller, and C. Obinger. 2015. Independent evolution of four heme peroxidase superfamilies. Archives of Biochemistry and Biophysics 574:108–19. doi:10.1016/j.abb.2014.12.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.