11
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimum conditions for growth and copper (II) removal from leachate by Chlorella vulgaris, Spirogyra ellipsospora and Ulva lactuca

, &

References

  • Ahmad, S., A. Pandey, V. V. Pathak, V. V. Tyagi, and R. Kothari. 2020. Phycoremediation: Algae as eco-friendly tools for the removal of heavy metals from wastewaters. In Bioremediation of industrial waste for environmental safety, ed. Ram N. Bharagava and Gaurav Saxena, 53–76. Singapore: Springer. doi:10.1007/978-981-13-3426-9_3.
  • Almeida, Â., J. Cotas, L. Pereira, and P. Carvalho. 2023. Potential role of Spirogyra sp. and Chlorella sp. in bioremediation of mine drainage: A review. Phycology 3 (1):186–201. doi:10.3390/phycology3010012.
  • Ardali, Y., N. Turan, and F. Temel. 2014. Cu (II) removal from industrial waste leachate by adsorption using expanded perlite. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19 (1–2):54–61.
  • Atoku, D. I., O. Z. Ojekunle, A. M. Taiwo, and O. B. Shittu. 2021. Evaluating the efficiency of Nostoc commune, Oscillatoria limosa and Chlorella vulgaris in a phycoremediation of heavy metals contaminated industrial wastewater. Scientific African 12:e00817. doi:10.1016/j.sciaf.2021.e00817.
  • Babiak, W., and I. Krzemińska. 2021. Extracellular polymeric substances (EPS) as microalgal bioproducts: A review of factors affecting EPS synthesis and application in flocculation processes. Energies 14 (13):4007. doi:10.3390/en14134007.
  • Bao, M., J. S. Park, Q. Xing, P. He, J. Zhang, C. Yarish, H. I. Yoo, and J. K. Kim. 2022. Comparative analysis of physiological responses in two Ulva prolifera strains revealed the effect of eutrophication on high temperature and copper stress tolerance. Frontiers in Marine Science 9:863918. doi:10.3389/fmars.2022.863918.
  • Cheng, S. Y., P. L. Show, B. F. Lau, J. S. Chang, and T. C. Ling. 2019. New prospects for modified algae in heavy metal adsorption. Trends in Biotechnology 37 (11):1255–68. doi:10.1016/j.tibtech.2019.04.007.
  • Cheng, J., W. Yin, Z. Chang, N. Lundholm, and Z. Jiang. 2017. Biosorption capacity and kinetics of cadmium (II) on live and dead Chlorella vulgaris. Journal of Applied Phycology 29 (1):211–21. doi:10.1007/s10811-016-0916-2.
  • Ciobanu, A. A., D. Bulgariu, I. A. Ionescu, D. M. Puiu, G. G. Vasile, and L. Bulgariu. 2023. Evaluation of thermodynamic parameters for Cu (II) ions biosorption on algae biomass and derived biochars. Symmetry 15 (8):1500. doi:10.3390/sym15081500.
  • Ciobanu, A. A., G. Vasile, and L. Bulgariu. 2023. Biosorption of Cu (II) ions on algae biomass and derived biochar. Environmental Engineering and Management Journal 22 (5):899–907. doi:10.30638/eemj.2023.072.
  • Costa, A. M., R. G. D. S. M. Alfaia, and J. C. Campos. 2019. Landfill leachate treatment in Brazil–An overview. Journal of Environmental Management 232:110–116. doi:10.1016/j.jenvman.2018.11.006.
  • Danouche, M., N. El Ghachtouli, and H. El Arroussi. 2021. Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7 (7):e07609. doi:10.1016/j.heliyon.2021.e07609.
  • Darienko, T., L. Gustavs, O. Mudimu, C. R. Menendez, R. Schumann, U. Karsten, T. Friedl, and T. Pröschold. 2010. Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta.). European Journal of Phycology 45 (1):79–95. doi:10.1080/09670260903362820.
  • Dhamsaniya, M., D. Sojitra, H. Modi, M. A. Shabiimam, and A. Kandya. 2023. A review of the techniques for treating the landfill leachate. Materials Today: Proceedings 77:358–64. doi:10.1016/j.matpr.2022.11.496.
  • Dominguez, H., and E. P. Loret. 2019. Ulva lactuca, a source of troubles and potential riches. Marine Drugs 17 (6):357. doi:10.3390/md17060357.
  • El-Nemr, M. A., U. O. Aigbe, M. A. Hassaan, K. E. E. Ukhurebor, S. Ragab, R. B. Onyancha, O. A. Osibote, and A. El Nemr. 2022. The use of biochar-NH 2 produced from watermelon peels as a natural adsorbent for the removal of Cu (II) ion from water. Biomass Conversion and Biorefinery 14 (2):1975–91. doi:10.1007/s13399-022-02327-1.
  • Gupta, H., and P. R. Gogate. 2016. Intensified removal of copper from waste water using activated watermelon based biosorbent in the presence of ultrasound. Ultrasonics Sonochemistry 30:113–22. doi:10.1016/j.ultsonch.2015.11.016.
  • Gupta, V. K., A. Rastogi, V. K. Saini, and N. Jain. 2006. Biosorption of copper (II) from aqueous solutions by Spirogyra species. Journal of Colloid and Interface Science 296 (1):59–63. doi:10.1016/j.jcis.2005.08.033.
  • Hena, S., L. Gutierrez, and J. P. Croué. 2021. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. Journal of Hazardous Materials 403:124041. doi:10.1016/j.jhazmat.2020.124041.
  • Huynh, M., and N. Serediak. 2006. Algae identification field guide. Canada: Agriculture and Agri-Food Canada.
  • Ibrahim, W. M., A. F. Hassan, and Y. A. Azab. 2016. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egyptian Journal of Basic and Applied Sciences 3 (3):241–9. doi:10.1016/j.ejbas.2016.07.005.
  • Ilyas, N., S. Ilyas, S. U. Sajjad-Ur-Rahman, S. Yousaf, A. Zia, and S. Sattar. 2018. Removal of copper from an electroplating industrial effluent using the native and modified Spirogyra. Water Science and Technology: A Journal of the International Association on Water Pollution Research 78 (1–2):147–155. doi:10.2166/wst.2018.226.
  • Iqbal, J., A. Javed, and M. A. Baig. 2022. Heavy metals removal from dumpsite leachate by algae and cyanobacteria. Bioremediation Journal 26 (1):31–40. doi:10.1080/10889868.2021.1884530.
  • Shamshad, Isha, Sardar Khan, Muhammad Waqas, Nadeem Ahmad, Kifayatullah Khan, and Khushnood-Ur-Rehman. 2015. Removal and bioaccumulation of heavy metals from aqueous solutions using freshwater algae. Water Science and Technology: A Journal of the International Association on Water Pollution Research 71 (1): 38–44. doi:10.2166/wst.2014.458.
  • Kang, Y., M. Kim, C. Shim, S. Bae, and S. Jang. 2021. Potential of algae–bacteria synergistic effects on vegetable production. Frontiers in Plant Science 12:656662. doi:10.3389/fpls.2021.656662.
  • Lambert, A., P. Drogui, R. Daghrir, F. Zaviska, and M. Benzaazoua. 2014. Removal of copper in leachate from mining residues using electrochemical technology. Journal of Environmental Management 133:78–85. doi:10.1016/j.jenvman.2013.11.036.
  • Lee, Y. C., and S. P. Chang. 2011. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology 102 (9):5297–304. doi:10.1016/j.biortech.2010.12.103.
  • Manzoor, F., A. Karbassi, and A. Golzary. 2019. Removal of heavy metal contaminants from wastewater by using Chlorella vulgaris Beijerinck: A review. Current Environmental Management 6 (3):174–187. doi:10.2174/2212717806666190716160536.
  • Miretzky, P., A. Saralegui, and A. F. Cirelli. 2006. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62 (2):247–254. doi:10.1016/j.chemosphere.2005.05.010.
  • Musah, B. I., P. Wan, Y. Xu, C. Liang, and L. Peng. 2022. Contrastive analysis of nickel (II), iron (II), copper (II), and chromium (VI) removal using modified Chlorella vulgaris and Spirulina platensis: Characterization and recovery studies. Journal of Environmental Chemical Engineering 10 (5):108422. doi:10.1016/j.jece.2022.108422.
  • Napiórkowska-Krzebietke, A., M. Hussian, A. M. Abd El-Monem, M. E. Goher, A. M. Abdel-Satar, and M. H. Ali. 2016. Biosorption of some toxic metals from aqueous solution using non-living algal cells of Chlorella vulgaris. Journal of Elementology 21 (3):703–714. doi:10.5601/jelem.2015.20.4.1037.
  • Phuengphai, P., T. Singjanusong, N. Kheangkhun, and A. Wattanakornsiri. 2021. Removal of copper (II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Science and Engineering 14 (4):286–294. doi:10.1016/j.wse.2021.08.003.
  • Saleh, B. 2015. Physiological response of the green algae Ulva lactuca (Chlorophyta) to heavy metals stress. Journal of Stress Physiology & Biochemistry 11 (3):38–51.
  • Shah, N., S. Sohani, S. Thakkar, H. Doshi, and G. Gupta. 2022. Potential of live Spirogyra sp. in the bioaccumulation of copper and nickel ions: A study on suitability and sustainability. Journal of Applied Microbiology 132 (1):331–339. doi:10.1111/jam.15188.
  • Sherwood, A. R., J. M. Neumann, M. Dittbern-Wang, and K. Y. Conklin. 2018. Diversity of the green algal genus Spirogyra (Conjugatophyceae) in the Hawaiian Islands. Phycologia 57 (3):331–344. doi:10.2216/17-111.1.
  • Suzuki, Y., T. Kametani, and T. Maruyama. 2005. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Research 39 (9):1803–1808. doi:10.1016/j.watres.2005.02.020.
  • Tillmann, U., and P. J. Hansen. 2009. Allelopathic effects of Alexandrium tamarense on ther algae: Evidence from mixed growth experiments. Aquatic Microbial Ecology 57 (1):101–112. doi:10.3354/ame01329.
  • Vaverková, M. D., J. Elbl, E. Koda, D. Adamcová, A. Bilgin, V. Lukas, A. Podlasek, A. Kintl, M. Wdowska, M. Brtnický, et al. 2020. Chemical composition and hazardous effects of leachate from the active municipal solid waste landfill surrounded by farmlands. Sustainability 12 (11):4531. doi:10.3390/su12114531.
  • Vetrivel, S. A., M. Diptanghu, M. R. Ebhin, S. Sydavalli, N. Gaurav, and K. P. Tiger. 2017. Green algae of the genus Spirogyra: A potential absorbent for heavy metal from coal mine water. Remediation Journal 27 (3):81–90. doi:10.1002/rem.21522.
  • Xiao, R., and Y. Zheng. 2016. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances 34 (7):1225–1244. doi:10.1016/j.biotechadv.2016.08.004.
  • Yousefi, Y., P. Hanachi, M. Samadi, and M. Khoshnamvand. 2023. Heavy metals (copper and iron) and nutrients (nitrate and phosphate) removal from aqueous medium by microalgae Chlorella vulgaris and Scendesmus obliquus, and their biofilms. Marine Environmental Research 188:105989. doi:10.1016/j.marenvres.2023.105989.
  • Zeraatkar, A. K., H. Ahmadzadeh, A. F. Talebi, N. R. Moheimani, and M. P. McHenry. 2016. Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management 181:817–831. doi:10.1016/j.jenvman.2016.06.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.