33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamic modeling of sour gas mixture (CH4/C3H8/H2S) hydrate formation in the presence of thermodynamic inhibitors mono ethylene glycol, NaCl, and CaCl2 using the ion pair concept

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Adeniyi, K. I., E. Deering C, P. Nagabhushana G, A. Marriott, and R. Hydrogen. 2018. Sulfide hydrate dissociation in the presence of liquid water. Industrial and Engineering Chemistry Research 57 (45):15579–85.
  • Adisasmito, S., I. R. J. Frank, and J. E. D. Sloan. 1991. Hydrates of carbon dioxide and methane mixtures. Journal of Chemical & Engineering Data 36 (1):68–71. doi:10.1021/je00001a020.
  • Aghajanloo, M., Z. Taheri, T. J. Behbahani, A. H. Mohammadi, M. R. Ehsani, and H. Heydarian. 2020. Experimental determination and thermodynamic modeling of clathrate hydrate stability conditions in methane + hydrogen sulfide + water system. Journal of Natural Gas Science and Engineering 83:103549. doi:10.1016/j.jngse.2020.103549.
  • Altamash, T., M. F. Qureshi, S. Aparicio, M. Aminnaji, B. Tohidi, and M. Atilhan. 2017. Gas hydrates inhibition via combined biomolecules and synergistic materials at wide process conditions. Journal of Natural Gas Science and Engineering 46:873–83. doi:10.1016/j.jngse.2017.07.034.
  • Aminolroayaei, M. A., Z. Taheri Rizi, M. Mohammad-Taheri, A. Kamran Pirzaman, M. Dehbandi Baladehi, and M. R. Ehsani. 2022. Experimental measurements and thermodynamic modeling of CH4+ H2S + MEG hydrate phase-equilibrium conditions at 6.2–12.3 MPa. Journal of Chemical & Engineering Data 67 (9):2384–92. doi:10.1021/acs.jced.2c00111.
  • Behnammotlagh, M. A., R. Hashemi, Z. Taheri Rizi, M. Mohammadtaheri, and M. Mohammadi. 2022. Experimental study of the effect of the combined monoethylene glycol with NaCl/CaCl2 salts on sour gas hydrate inhibition with low-concentration hydrogen sulfide. Journal of Chemical & Engineering Data 67 (5):1250–8. doi:10.1021/acs.jced.1c00888.
  • Bhawangirkar, D. R., J. Adhikari, and J. S. Sangwai. 2018. Thermodynamic modeling of phase equilibria of clathrate hydrates formed from CH4, CO2, C2H6, N2 and C3H8, with different equations of state. Journal of Chemical Thermodynamics 117:180–92. doi:10.1016/j.jct.2017.09.024.
  • Carroll, J. J., and A. E. Mather. 1989. The solubility of hydrogen sulphide in water from 0 to 90 °C and pressures to 1 MPa. Geochimica et Cosmochimica Acta 53 (6):1163–70. doi:10.1016/0016-7037(89)90053-7.
  • Chen, C. C., and Y. Song. 2004. Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. American Institute of Chemical Engineers – Journals 50 (8):1928–41. doi:10.1002/aic.10151.
  • Deaton, W. M., and E. M. Frost. 1949. Gas hydrates and their relation to the operation of natural-gas pipe lines. United State Washington, D.C.: American Gas Association.
  • Delavar, H., and A. Haghtalab. 2015. Thermodynamic modeling of gas hydrate formation conditions in the presence of organic inhibitors, salts and their mixtures using UNIQUAC model. Fluid Phase Equilibria 394:101–17. doi:10.1016/j.fluid.2015.03.008.
  • Dhamu, V., M. F. Qureshi, S. Abubakar, A. Usadi, T. A. Barckholtz, A. B. Mhadeshwar, and P. Linga. 2023. Investigating high-pressure liquid CO2 hydrate formation, dissociation kinetics, and morphology in brine and freshwater static systems. Energy & Fuels 37 (12):8406–20. doi:10.1021/acs.energyfuels.3c01089.
  • Eslamimanesh, A., A. H. Mohammadi, and D. Richon. 2012. Thermodynamic modeling of phase equilibria of semi-clathrate hydrates of CO2, CH4, or N2+ tetra-n-butylammonium bromide aqueous solution. Chemical Engineering Science 81:319–28. doi:10.1016/j.ces.2012.07.006.
  • Gayet, P., C. Dicharry, G. Marion, A. Graciaa, J. Lachaise, and A. Nesterov. 2005. Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. Chemical Engineering Science 60 (21):5751–8. doi:10.1016/j.ces.2005.04.069.
  • Haghtalab, A., and S. H. Mazloumi. 2009. A nonelectrolyte local composition model and its application in the correlation of the mean activity coefficient of aqueous electrolyte solutions. Fluid Phase Equilibria 275 (1):70–7. doi:10.1016/j.fluid.2008.09.017.
  • Haghtalab, A., and A. Shojaeian. 2010. Modeling solubility of acid gases in alkanolamines using the nonelectrolyte Wilson-nonrandom factor model. Fluid Phase Equilibria 289 (1):6–14. doi:10.1016/j.fluid.2009.10.005.
  • Haghtalab, A., A. Shojaeian, and S. H. Mazloumi. 2011. Nonelectrolyte NRTL-NRF model to study thermodynamics of strong and weak electrolyte solutions. Journal of Chemical Thermodynamics 43 (3):354–63. doi:10.1016/j.jct.2010.10.004.
  • Jia, W., F. Yang, C. Li, T. Huang, and S. Song. 2021. A unified thermodynamic framework to compute the hydrate formation conditions of acidic gas/water/alcohol/electrolyte mixtures up to 186.2 MPa. Energy Elsevier 230:120735.
  • Keshavarzi, F., J. Javanmardi, K. Nasrifar, and A. H. Mohammadi. 2021. Determination of clathrate hydrates dissociation conditions in aqueous solutions of methanol and salt using the e-NRTL based model. Fluid Phase Equilibria 546:113121. doi:10.1016/j.fluid.2021.113121.
  • Klauda, J. B., and I. Sandler. 2000. A fugacity model for gas hydrate phase equilibria. Industrial & Engineering Chemistry Research 39 (9):3377–86. doi:10.1021/ie000322b.
  • Mahadev, K. N., and P. R. Bishnoi. 1999. Equilibrium conditions for the hydrogen sulfide hydrate formation in the presence of electrolytes and methanol. Canadian Journal of Chemical Engineering 77 (4):718–22. doi:10.1002/cjce.5450770413.
  • Mazloumi, S. H., and A. Shojaeian. 2019. Modified nonelectrolyte Wilson-NRF: A new model for strong and weak electrolyte solutions. Journal of Molecular Liquids 277:714–25. doi:10.1016/j.molliq.2019.01.013.
  • Mohammadi, A. H., W. Afzal, and D. Richon. 2008. Experimental data and predictions of dissociation conditions for ethane and propane simple hydrates in the presence of distilled water and methane, ethane, propane, and carbon dioxide simple hydrates in the presence of ethanol aqueous solutions. Journal of Chemical & Engineering Data 53 (1):73–6. doi:10.1021/je700383p.
  • Mohammadi, A. H., and D. Richon. 2008. Thermodynamic model for predicting liquid water − hydrate equilibrium of the water − hydrocarbon system. Industrial & Engineering Chemistry Research 47 (4):1346–50. doi:10.1021/ie0709640.
  • Mohammadi, A. H., and D. Richon. 2009. Development of predictive techniques for estimating liquid water-hydrate equilibrium of water-hydrocarbon system. Journal of Thermodynamics Hindawi 2009 :1-12.
  • Nasir, Q., K. K. Lau, B. Lal, and K. M. Sabil. 2014. Hydrate dissociation condition measurement of CO2-rich mixed gas in the presence of methanol/ethylene glycol and mixed methanol/ethylene glycol + electrolyte aqueous solution.
  • Nasrifar, K., M. Moshfeghian, and R. Maddox. 1998. Prediction of equilibrium conditions for gas hydrate formation in the mixtures of both electrolytes and alcohol. Fluid Phase Equilibria 146 (1–2):1–13. doi:10.1016/S0378-3812(98)00229-5.
  • Osfouri, S., R. Azin, R. Gholami, and A. A. Izadpanah. 2015a. Modeling hydrate formation conditions in the presence of electrolytes and polar inhibitor solutions. Journal of Chemical Thermodynamics, 89:251-263.
  • Osfouri, S., R. Azin, R. Gholami, and M. Moshfeghian. 2015b. Wilson non-random factor reference state based model for prediction of gas hydrate formation conditions in the presence of electrolyte and/or alcohol in solution. Journal of Solution Chemistry 44 (7):1382–406. doi:10.1007/s10953-015-0354-9.
  • Pahlavanzadeh, H., A. Kamran-Pirzaman, and A. H. Mohammadi. 2012. Thermodynamic modeling of pressure–temperature phase diagrams of binary clathrate hydrates of methane, carbon dioxide or nitrogen + tetrahydrofuran, 1,4-dioxane or acetone. Fluid Phase Equilibria 320:32–7. doi:10.1016/j.fluid.2012.01.010.
  • Parrish, W. R., and J. M. Prausnitz. 1972. Dissociation pressures of gas hydrates formed by gas mixtures. Industrial & Engineering Chemistry Process Design and Development 11 (1):26–35. doi:10.1021/i260041a006.
  • Peng, D.-Y., and D. B. Robinson. 1976. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals 15 (1):59–64. doi:10.1021/i160057a011.
  • Pourranjbar, M., H. Pahlavanzadeh, and A. H. Mohammadi. 2019. Experimental measurements and thermodynamic modeling of hydrate dissociation conditions for methane + TBAB + NaCl, MgCl 2, or NaCl-MgCl 2 + water systems.
  • Prausnitz, J. M., R. N. Lichtenthaler, and E. G. De Azevedo. 1998. Molecular thermodynamics of fluid-phase equilibria. Pearson Education, Englewood Cliffs: Prentice-Hall, United States.
  • Qureshi, M. F., V. Dhamu, A. Usadi, T. A. Barckholtz, A. B. Mhadeshwar, and P. Linga. 2022a. CO2 hydrate formation kinetics and morphology observations using high-pressure liquid CO2 applicable to sequestration. Energy & Fuels 36 (18):10627–41. doi:10.1021/acs.energyfuels.1c03840.
  • Qureshi, M. F., H. Khandelwal, A. Usadi, T. A. Barckholtz, A. B. Mhadeshwar, and P. Linga. 2022b. CO2 hydrate stability in oceanic sediments under brine conditions. Energy 256:124625. doi:10.1016/j.energy.2022.124625.
  • Qureshi, M. F., M. Khraisheh, and F. AlMomani. 2020. Experimentally measured methane hydrate phase equilibria and ionic liquids inhibition performance in Qatar’s seawater. Scientific Reports 10(1):19463.
  • Qureshi, M. F., J. Zheng, H. Khandelwal, P. Venkataraman, A. Usadi, T. A. Barckholtz, A. B. Mhadeshwar, and P. Linga. 2022c. Laboratory demonstration of the stability of CO2 hydrates in deep-oceanic sediments. Chemical Engineering Journal 432:134290. doi:10.1016/j.cej.2021.134290.
  • Reamer, H. H., F. T. Selleck, and B. H. Sage. 1952. Some properties of mixed paraffinic and olefinic hydrates. Journal of Petroleum Technology 4 (08):197–202. doi:10.2118/952197-G.
  • Robinson, D. B., and B. R. Metha. 1971. Hydrates in the propanecarbon dioxide-water system. Journal of Canadian Petroleum Technology OnePetro 10 (01).
  • Saberi, A., A. Alamdari, A. Shariati, and A. H. Mohammadi. 2018. Experimental measurement and thermodynamic modeling of equilibrium condition for natural gas hydrate in MEG aqueous solution. Fluid Phase Equilibria 459:110–8. doi:10.1016/j.fluid.2017.11.034.
  • Schroeter, J. P., R. Kobayashi, and M. A. Hildebrand. 1983. Hydrate decomposition conditions in the system H. Industrial & Engineering Chemistry Fundamentals 22 (4):361–4. doi:10.1021/i100012a001.
  • Shahnazar, S., and N. Hasan. 2014. Gas hydrate formation condition: Review on experimental and modeling approaches. Fluid Phase Equilibria 379:72–85. doi:10.1016/j.fluid.2014.07.012.
  • Sloan, E. D. Jr., and C. A. Koh. 2007. Clathrate hydrates of natural gases. Boca Raton: CRC Press.
  • Sun, J., Y. Xin, I. M. Chou, R. Sun, and L. Jiang. 2020. Hydrate stability in the H2S–H2O system—visual observations and measurements in a high-pressure optical cell and thermodynamic models. Journal of Chemical & Engineering Data 65 (8):3884–92. doi:10.1021/acs.jced.0c00217.
  • Van der Waals, H. J. H., and J. C. Platteeuw. 1959. Clathrate solutions. Advances in Chemical Physics 2:1-57.
  • Ward, Z. T., C. E. Deering, R. A. Marriott, A. K. Sum, E. D. Sloan, and C. A. Koh. 2015. Phase equilibrium data and model comparisons for H2S hydrates. Journal of Chemical & Engineering Data 60 (2):403–8. doi:10.1021/je500657f.
  • Ward, Z. T., R. A. Marriott, A. K. Sum, E. D. Sloan, and C. A. Koh. 2014. Equilibrium data of gas hydrates containing methane, propane, and hydrogen sulfide (V).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.