969
Views
80
CrossRef citations to date
0
Altmetric
Reviews

Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review

, , &

References

  • Abdalaziz, M. A., B. Annangi, and R. Marcos. 2014. Testing the genotoxic potential of nanomaterials using Drosophila. In Genotoxicity and DNA repair, edited by L.M. Sierra and I. Gaivao, 297–304. New York, NY: Springer.
  • Abolaji, A. O., J. P. Kamdem, E. O. Farombi, and J. B. T. Rocha. 2013. Drosophila melanogaster as a promising model organism in toxicological studies. Archives of Basic and Applied Medicine 1:33–38.
  • Adam, N., A. Vakurov, D. Knapen, and R. Blust. 2015. The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna. Journal of Hazardous Materials 283:416–22. doi:10.1016/j.jhazmat.2014.09.037.
  • Adams, M. D., S. E. Celniker, R. A. Holt, C. A. Evans, J. D. Gocayne, P. G. Amanatides, S. E. Scherer, P. W. Li, R. A. Hoskins, R. F. Galle, R. A. George, S. E. Lewis, S. Richards, M. Ashburner, S. N. Henderson, G. G. Sutton, J. R. Wortman, M. D. Yandell, Q. Zhang, L. X. Chen, R. C. Brandon, Y. H. Rogers, R. G. Blazej, M. Champe, B. D. Pfeiffer, K. H. Wan, C. Doyle, E. G. Baxter, G. Helt, C. R. Nelson, G. L. Gabor, J. F. Abril, A. Agbayani, H. J. An, C. Andrews-Pfannkoch, D. Baldwin, R. M. Ballew, A. Basu, J. Baxendale, L. Bayraktaroglu, E. M. Beasley, K. Y. Beeson, P. V. Benos, B. P. Berman, D. Bhandari, S. Bolshakov, D. Borkova, M. R. Botchan, J. Bouck, P. Brokstein, P. Brottier, K. C. Burtis, D. A. Busam, H. Butler, E. Cadieu, A. Center, I. Chandra, J. M. Cherry, S. Cawley, C. Dahlke, L. B. Davenport, P. Davies, B. De Pablos, A. Delcher, Z. Deng, A. D. Mays, I. Dew, S. M. Dietz, K. Dodson, L. E. Doup, M. Downes, S. Dugan-Rocha, B. C. Dunkov, P. Dunn, K. J. Durbin, C. C. Evangelista, C. Ferraz, S. Ferriera, W. Fleischmann, C. Fosler, A. E. Gabrielian, N. S. Garg, W. M. Gelbart, K. Glasser, A. Glodek, F. Gong, J. H. Gorrell, Z. Gu, P. Guan, M. Harris, N. L. Harris, D. Harvey, T. J. Heiman, J. R. Hernandez, J. Houck, D. Hostin, K. A. Houston, T. J. Howland, M. H. Wei, C. Ibegwam, M. Jalali, F. Kalush, G. H. Karpen, Z. Ke, J. A. Kennison, K. A. Ketchum, B. E. Kimmel, C. D. Kodira, C. Kraft, S. Kravitz, D. Kulp, Z. Lai, P. Lasko, Y. Lei, A. A. Levitsky, J. Li, Z. Li, Y. Liang, X. Lin, X. Liu, B. Mattei, T. C. McIntosh, M. P. McLeod, D. McPherson, G. Merkulov, N. V. Milshina, C. Mobarry, J. Morris, A. Moshrefi, S. M. Mount, M. Moy, B. Murphy, L. Murphy, D. M. Muzny, D. L. Nelson, D. R. Nelson, K. A. Nelson, K. Nixon, D. R. Nusskern, J. M. Pacleb, M. Palazzolo, G. S. Pittman, S. Pan, J. Pollard, V. Puri, M. G. Reese, K. Reinert, K. Remington, R. D. Saunders, F. Scheeler, H. Shen, B. C. Shue, I. Sidén-Kiamos, M. Simpson, M. P. Skupski, T. Smith, E. Spier, A. C. Spradling, M. Stapleton, R. Strong, E. Sun, R. Svirskas, C. Tector, R. Turner, E. Venter, A. H. Wang, X. Wang, Z. Y. Wang, D. A. Wassarman, G. M. Weinstock, J. Weissenbach, S. M. Williams, T. Woodage, K. C. Worley, D. Wu, S. Yang, Q. A. Yao, J. Ye, R. F. Yeh, J. S. Zaveri, M. Zhan, G. Zhang, Q. Zhao, L. Zheng, X. H. Zheng, F. N. Zhong, W. Zhong, X. Zhou, S. Zhu, X. Zhu, H. O. Smith, R. A. Gibbs, E. W. Myers, G. M. Rubin, and J. C. Venter. 2000. The genome sequence of Drosophila melanogaster. Science 287:2185–95. doi:10.1126/science.287.5461.2185.
  • Adolfsson, K., M. Schneider, G. Hammarin, U. Häcker, and C. N. Prinz. 2013. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function. Nanotechnology 24:285101. doi:10.1088/0957-4484/24/28/285101.
  • Ahamed, M., R. Posgai, T. J. Gorey, M. Nielsen, S. M. Hussain, and J. J. Rowe. 2010a. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicology and Applied Pharmacology 242:263–69. doi:10.1016/j.taap.2009.10.016.
  • Ahamed, M., M. A. Siddiqui, M. J. Akhtar, I. Ahmad, A. B. Pant, and H. A. Alhadlaq. 2010b. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications 396:578–83. doi:10.1016/j.bbrc.2010.04.156.
  • Aillon, K. L., Y. Xie, N. El-Gendy, C. J. Berkland, and M. L. Forrest. 2009. Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews 61:457–66. doi:10.1016/j.addr.2009.03.010.
  • Akhtar, M. J., S. Kumar, H. A. Alhadlaq, S. A. Alrokayan, K. M. Abu-Salah, and M. Ahamed. 2013. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicology and Industrial Health. doi:10.1177/0748233713511512.
  • Alaraby, M., B. Annangi, A. Hernández, A. Creus, and R. Marcos. 2015a. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. Journal of Hazardous Materials 296:166–74. doi:10.1016/j.jhazmat.2015.04.053.
  • Alaraby, M., E. Demir, A. Hernández, and R. Marcos. 2015b. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model. Science of The Total Environment 530–31:66–75. doi:10.1016/j.scitotenv.2015.05.069.
  • Alaraby, M., A. Hernández, B. Annangi, E. Demir, J. Bach, L. Rubio, A. Creus, and R. Marcos. 2015c. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology 9:749–59. doi:10.3109/17435390.2014.976284.
  • Alaraby, M., A. Hernández, and R. Marcos. 2015d. New insights in the toxic/genotoxic effects of CuO nanoparticles in the in vivo Drosophila model. Nanotoxicology. doi:10.3109/17435390.2015.1121413.
  • Ali, D., S. Alarifi, S. Alkahtani, A. A. AlKahtane, and A. Almalik. 2015. Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells. Cell Biochemistry and Biophysics 71:1643–51. doi:10.1007/s12013-014-0386-6.
  • Alkilany, A. M., and C. J. Murphy. 2010. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? Journal of Nanoparticle Research 12:2313–33. doi:10.1007/s11051-010-9911-8.
  • Ambegaokar, S. S., B. Roy, and G. R. Jackson. 2010. Neurodegenerative models in Drosophila: Polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiology of Disease 40:29–39. doi:10.1016/j.nbd.2010.05.026.
  • Annangi, B., J. Bach, G. Vales, L. Rubio, R. Marcos, and A. Hernández. 2015b. Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage. Nanotoxicology 9:138–47. doi:10.3109/17435390.2014.900582.
  • Annangi, B., L. Rubio, M. Alaraby, J. Bach, R. Marcos, and A. Hernández. 2015a. Acute and long-term in vitro effects of zinc oxide nanoparticles. Archives of Toxicology. doi:10.1007/s00204-015-1613-7.
  • Arami, H., A. Khandhar, D. Liggitt, and K. M. Krishnan. 2015. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chemical Society Reviews 44:8576–607. doi:10.1039/C5CS00541H.
  • Armstrong, N., M. Ramamoorthy, D. Lyon, K. Jones, and A. Duttaroy. 2013. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PloS ONE 8:e53186. doi:10.1371/journal.pone.0053186.
  • Asakura, M., T. Sasaki, T. Sugiyama, M. Takaya, S. Koda, K. Nagano, H. Arito, and S. Fukushima. 2010. Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured Chinese hamster lung cells in comparison with chrysotile A fibers. Journal of Occupational Health 52:155–66. doi:10.1539/joh.L9150.
  • AshaRani, P. V., G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil. 2008. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–90. doi:10.1021/nn800596w.
  • Austin, L. A., M. A. Mackey, E. C. Dreaden, and M. A. El-Sayed. 2014. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Archives of Toxicology 88:1391–417. doi:10.1007/s00204-014-1245-3.
  • Avalos, A., A. I. Haza, E. Drosopoulou, P. Mavragani-Tsipidou, and P. Morales. 2015. In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food and Chemical Toxicology 85:114–19. doi:10.1016/j.fct.2015.06.024.
  • Baeza, A., and M. Vallet-Regí. 2015. Smart mesoporous silica nanocarriers for antitumoral therapy. Current Topics Medica Chemical 15:2306–15. doi:10.2174/1568026615666150605114826.
  • Balakrishnan, V., H. A. Ab Wab, K. A. Razak, and S. Shamsuddin. 2013. In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. Journal of Nanomaterials 2013:4.
  • Barandeh, F., P. L. Nguyen, R. Kumar, G. J. Iacobucci, M. L. Kuznicki, A. Kosterman, E. J. Bergeyn, P. N. Prasad, and S. Gunawardena. 2012. Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS ONE 7:e29424. doi:10.1371/journal.pone.0029424.
  • Barnes, C. A., A. Elsaesser, J. Arkusz, A. Smok, J. Palus, A. Lesniak, A. Salvati, J. P. Hanrahan, W. H. Jong, E. Dziubałtowska, M. Stepnik, K. Rydzyński, G. McKerr, I. Lynch, K. A. Dawson, and C. V. Howard. 2008. Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Letters 8:3069–74. doi:10.1021/nl801661w.
  • Bharali, D. J., I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak. 2005. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proceedings of the National Academy of Sciences 102:11539–44. doi:10.1073/pnas.0504926102.
  • Bianco, A., K. Kostarelos, and M. Prato. 2005. Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology 9:674–79. doi:10.1016/j.cbpa.2005.10.005.
  • Biedermann, L., and G. Rogler. 2015. The intestinal microbiota: Its role in health and disease. European Journal of Pediatrics 174:151–67. doi:10.1007/s00431-014-2476-2.
  • Bilen, J., and N. M. Bonini. 2005. Drosophila as a model for human neurodegenerative disease. Annual Review of Genetics 39:153–71. doi:10.1146/annurev.genet.39.110304.095804.
  • Bishop, A. J., and R. H. Schiestl. 2003. Role of homologous recombination in carcinogenesis. Experimental and Molecular Pathology 74:94–105. doi:10.1016/S0014-4800(03)00010-8.
  • Braz, M. G., J. P. De Castro Marcondes, M. A. Matsumoto, M. H. Duarte, D. M. F. Salvadori, and D. A. Ribeiro. 2008. Genotoxicity in primary human peripheral lymphocytes after exposure to radiopacifiers in vitro. Journal Materials Science Materials in Medicine 19:601–05.
  • Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–16. doi:10.1126/science.281.5385.2013.
  • Brunetti, V., H. Chibli, R. Fiammengo, A. Galeone, M. A. Malvindi, G. Vecchio, R. Cingolani, J. L. Nadeau, and P. P. Pompa. 2013. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: In vitro and in vivo toxicity assessment. Nanoscale 5:307–17.
  • Buerki-Thurnherr, T., L. Xiao, L. Diener, O. Arslan, C. Hirsch, X. Maeder-Althaus, K. Grieder, B. Wampfler, S. Mathur, P. Wick, and H. F. Krug. 2013. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7:402–16. doi:10.3109/17435390.2012.666575.
  • Carmona, E. R., B. Escobar, G. Vales, and R. Marcos. 2015a. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 778:12–21. doi:10.1016/j.mrgentox.2014.12.004.
  • Carmona, E. R., T. N. Guecheva, A. Creus, and R. Marcos. 2011. Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. Environmental and Molecular Mutagenesis 52:165–69. doi:10.1002/em.v52.2.
  • Carmona, E. R., C. Inostroza-Blancheteau, L. Rubio, and R. Marcos. 2015b. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicology and Industrial Health. 10.1177/0748233715599472.
  • Carmona, E. R., C. Inostroza-Blancheteau, L. Rubio, and R. Marcos. 2015c. Genotoxic effects of copper oxide nanoparticles in Drosophila melanogaster. Mutation Research 791:1–11. doi:10.1016/j.mrgentox.2015.07.006.
  • Celardo, I., J. Z. Pedersen, E. Traversa, and L. Ghibelli. 2011. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411–20. doi:10.1039/c0nr00875c.
  • Charroux, B., and J. Royet. 2012. Gut-microbiota interactions in non-mammals: What can we learn from Drosophila? Seminars in Immunology 24:17–24. doi:10.1016/j.smim.2011.11.003.
  • Chatterjee, N., H. J. Eom, and J. Choi. 2014b. Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environmental and Molecular Mutagenesis 55:122–33. doi:10.1002/em.v55.2.
  • Chatterjee, N., J. Yang, H.-M. Kim, E. Jo, P.-J. Kim, K. Choi, and J. Choi. 2014a. Potential Toxicity of differential functionalized multiwalled carbon nanotubes (MWCNT) in human cell line (BEAS2B) and Caenorhabditis elegans. Journal of Toxicology and Environmental Health, Part A 77:1399–408. doi:10.1080/15287394.2014.951756.
  • Chen, H., B. Wang, W. Feng, W. Du, H. Ouyang, Z. Chai, and X. Bi. 2015. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence. Nanotoxicology 9:302–12. doi:10.3109/17435390.2014.929189.
  • Chen, J., X. Dong, J. Zhao, and G. Tang. 2009. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. Journal of Applied Toxicology 29:330–37. doi:10.1002/jat.v29:4.
  • Chen, T., J. Yan, and Y. Li. 2014. Genotoxicity of titanium dioxide nanoparticles. Journal of Food and Drug Analysis 22:95–104. doi:10.1016/j.jfda.2014.01.008.
  • Chin, C. D., T. Laksanasopin, Y. K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwambarangwe, S. L. Braunstein, J. Van De Wijgert, R. Sahabo, J. E. Justman, W. El-Sadr, and S. K. Sia. 2011. Microfluidics-based diagnostics of infectious diseases in the developing world. Nature Medicine 17:1015–19. doi:10.1038/nm.2408.
  • Choi, H.-S., Y.-J. Kim, M. Song, M.-K. Song, and J.-C. Ryu. 2011. Genotoxicity of nano-silica in mammalian cell lines. Toxicogical Environment Health Sciences 3:7–13. doi:10.1007/s13530-011-0072-7.
  • Clift, M. J. D., M. S. P. Boyles, D. M. Brown, and V. Stone. 2010. An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signaling in vitro. Nanotoxicology 4:139–49. doi:10.3109/17435390903276925.
  • Cohen, C. A., J. A. Karfakis, M. D. Kurnick, and B. Rzigalinski. 2008. Cerium oxide nanoparticles reduce free radical-mediated toxicity in Drosophila melanogaster. FASEB Journal 22: 624–1. (abstract).
  • Contado, C. 2015. Nanomaterials in consumer products: A challenging analytical problem. Frontiers Chemical 3:48. doi:10.3389/fchem.2015.00048.
  • Contreras, E. Q., M. Cho, H. Zhu, H. L. Puppala, G. Escalera, W. Zhong, and V. L. Colvin. 2012. Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure. Environmental Science & Technology 47:1148–54. doi:10.1021/es3036785.
  • Corma, A., P. Atienzar, H. Garcia, and J.-Y. Chane-Ching. 2004. Hierarchically meso structured doped CeO2 with potential for solar-cell use. Nature Materials 3:394–97. doi:10.1038/nmat1129.
  • Couvreur, P., G. Barratt, E. Fattal, and C. Vauthier. 2002. Nanocapsule technology: A review. Critical Reviews in Therapeutic Drug Carrier Systems 19:99–134. doi:10.1615/CritRevTherDrugCarrierSyst.v19.i2.
  • Dabbousi, B. O., J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi. 1997. (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. Journal of Physical Chemistry. B 101:9463–75. doi:10.1021/jp971091y.
  • Das, S., J. M. Dowding, K. E. Klump, J. F. McGinnis, W. Self, and S. Seal. 2013. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine (London) 8:1483–508. doi:10.2217/nnm.13.133.
  • de Andrade, L. R., A. S. Brito, A. M. G. de Souza Melero, H. Zanin, H. J. Ceragioli, V. Baranauskas, K. S. Cunha, and S. P. Irazusta. 2014. Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test. Ecotoxicology and Environmental Safety 99:92–97. doi:10.1016/j.ecoenv.2013.10.013.
  • Dedeh, A., A. Ciutat, M. Treguer-Delapierre, and J.-P. Bourdineaud. 2015. impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology 9:71–80. doi:10.3109/17435390.2014.889238.
  • Demir, E., S. Aksakal, F. Turna, B. Kaya, and R. Marcos. 2015. In vivo genotoxic effects of four different nano-sizes forms of silica nanoparticles in Drosophila melanogaster. Journal of Hazardous Materials 283:260–66. doi:10.1016/j.jhazmat.2014.09.029.
  • Demir, E., D. Burgucu, F. Turna, S. Aksakal, and B. Kaya. 2013b. Determination of TiO2, ZrO2, and Al2O3 nanoparticles on genotoxic responses in human peripheral blood lymphocytes and cultured embyronic kidney cells. Journal of Toxicology and Environmental Health, Part A 76:990–100. doi:10.1080/15287394.2013.830584.
  • Demir, E., A. Creus, and R. Marcos. 2014. Genotoxicity and DNA repair processes of zinc oxide nanoparticles. Journal of Toxicology and Environmental Health, Part A 77:1292–303. doi:10.1080/15287394.2014.935540.
  • Demir, E., F. Turna, G. Vales, B. Kaya, A. Creus, and R. Marcos. 2013a. In vivo genotoxicity assessment of titanium, zirconium and aluminium nanoparticles, and their microparticulated forms, in Drosophila. Chemosphere 93:2304–10. doi:10.1016/j.chemosphere.2013.08.022.
  • Demir, E., G. Vales, B. Kaya, A. Creus, and R. Marcos. 2011. Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5:417–24. doi:10.3109/17435390.2010.529176.
  • Dobrzyńska, M. M., A. Gajowik, J. Radzikowska, A. Lankoff, M. Dušinská, and M. Kruszewski. 2014. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology 315:86–91. doi:10.1016/j.tox.2013.11.012.
  • Dong, J., and Q. Ma. 2015. Suppression of basal and carbon nanotube-induced oxidative stress, inflammation and fibrosis in mouse lungs by Nrf2. Nanotoxicology 1–11. [Epub ahead of print]. doi:10.3109/17435390.2015.1110758.
  • Dreher, K. L. 2004. Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicological Sciences 77:3–5. doi:10.1093/toxsci/kfh041.
  • Dresselhaus, M. S., G. Dresselhaus, and A. Jorio. 2004. Unusual properties and structure of carbon nanotubes. Annual Review of Materials Research 34:247–78. doi:10.1146/annurev.matsci.34.040203.114607.
  • Eom, H.-J., and J. Choi. 2009. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicology Letters 187:77–83. doi:10.1016/j.toxlet.2009.01.028.
  • Foriel, S., P. Willems, J. Smeitink, A. Schenck, and J. Beyrath. 2015. Mitochondrial diseases: Drosophila melanogaster as a model to evaluate potential therapeutics. International Journal of Biochemistry & Cell Biology 63:60–65. doi:10.1016/j.biocel.2015.01.024.
  • Fruijtier-Pölloth, C. 2012. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology 294:61–79. doi:10.1016/j.tox.2012.02.001.
  • Gagné, F., J. Auclair, P. Turcotte, M. Fournier, C. Gagnon, S. Sauvé, and C. Blaise. 2008. Ecotoxicity of CdTe quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity. Aquatic Toxicology 86:333–40. doi:10.1016/j.aquatox.2007.11.013.
  • Gagne, F., J. Auclair, P. Turcotte, and C. Gagnon. 2013. Sublethal effects of silver nanoparticles and dissolved silver in freshwater mussels. Journal of Toxicology and Environmental Health, Part A 76:479–90. doi:10.1080/15287394.2013.779561.
  • Galeone, A., G. Vecchio, M. A. Malvindi, V. Brunetti, R. Cingolani, and P. P. Pompa. 2012. In vivo assessment of CdSe–ZnS quantum dots: Coating dependent bioaccumulation and genotoxicity. Nanoscale 4:6401–07. doi:10.1039/c2nr31826a.
  • Gebel, T., H. Foth, G. Damm, A. Freyberger, P.-J. Kramer, W. Lilienblum, C. Röhl, T. Schupp, C. Weiss, K.-M. Wollin, and J. G. Hengstler. 2014. Manufactured nanomaterials: Categorization and approaches to hazard assessment. Archives of Toxicology 88:2191–211. doi:10.1007/s00204-014-1383-7.
  • Giljohann, D. A., D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin. 2010. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition 49:3280–94. doi:10.1002/anie.200904359.
  • Godwin, H., C. Nameth, D. Avery, L. L. Bergeson, D. Bernard, E. Beryt, W. Boyes, S. Brown, A. J. Clippinger, Y. Cohen, M. Doa, C. O. Hendren, P. Holden, K. Houck, A. B. Kane, F. Klaessig, T. Kodas, R. Landsiedel, I. Lynch, T. Malloy, M. B. Miller, J. Muller, G. Oberdorster, E. J. Petersen, R. C. Pleus, P. Sayre, V. Stone, K. M. Sullivan, J. Tentschert, P. Wallis, and E. Nel. 2015. Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9:3409–17. doi:10.1021/acsnano.5b00941.
  • Golbamaki, N., B. Rasulev, A. Cassano, R. L. Marchese Robinson, E. Benfenati, J. Leszczynski, and M. T. D. Cronin. 2015. Genotoxicity of metal oxide nanomaterials: Review of recent data and discussion of possible mechanisms. Nanoscale 7:2154–98. doi:10.1039/C4NR06670G.
  • Gomes, T., O. Araujo, R. Pereira, A. C. Almeida, A. Cravo, and M. J. Bebianno. 2013. Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Marine Environmental Research 84:51–59. doi:10.1016/j.marenvres.2012.11.009.
  • Gonzalez, C. 2013. Drosophila melanogaster: A model and a tool to investigate malignancy and identify new therapeutics. Nature Reviews Cancer 13:172–83. doi:10.1038/nrc3461.
  • Gorth, D. J., D. M. Rand, and T. J. Webster. 2011. Silver nanoparticle toxicity in Drosophila: Size does matter. International Journal Nanomed 6:343–50.
  • Haberl, N., S. Hirn, A. Wenk, J. Diendorf, M. Epple, B. D. Johnston, F. Krombach, W. G. Kreyling, and C. Schleh. 2013. Cytotoxic and proinflammatory effects of PVP-coated silver nanoparticles after intratracheal instillation in rats. Beilstein Journal of Nanotechnology 4:933–40. doi:10.3762/bjnano.4.105.
  • Hadrup, N., A. K. Sharma, M. Poulsen, and E. Nielsen. 2015. Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles—A review. Regulatory Toxicology and Pharmacology 72:216–21. doi:10.1016/j.yrtph.2015.04.017.
  • Han, X., B. Geller, K. Moniz, P. Das, A. K. Chippindale, and V. K. Walker. 2014. Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes. Science of the Total Environment 487:822–29. doi:10.1016/j.scitotenv.2013.12.129.
  • Handy, R. D., N. Van Den Brink, M. Chappell, M. Mühling, R. Behra, M. Dušinská, P. Simpson, J. Ahtiainen, A. N. Jha, J. Seiter, A. Bednar, A. Kennedy, T. F. Fernandes, and M. Riediker. 2012. Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: What have we learnt so far? Ecotoxicology 21:933–72. doi:10.1007/s10646-012-0862-y.
  • Hartmann, N. B., K. A. Jensen, A. Baun, K. Rasmussen, H. Rauscher, R. Tantra, D. Cupi, D. Gilliland, F. Pianella, and J. M. Riego Sintes. 2015. Techniques and protocols for dispersing nanoparticle powders in aqueous media—Is there a rationale for harmonization? Journal of Toxicology and Environmental Health, Part B 18:299–326. doi:10.1080/10937404.2015.1074969.
  • Hawkins, A. D., A. D. Hawkins, C. Thornton, A. J. Kennedy, K. Bu, J. Cizdziel, B. W. Jones, J. A. Steevens, and K. L. Willett. 2015. Gill histopathologies following exposure to nanosilver or silver nitrate. Journal of Toxicology and Environmental Health, Part A 78:301–15. doi:10.1080/15287394.2014.971386.
  • Hayakawa, T., Y. Shitomi, K. Miyamoto, and H. Hori. 2004. GalNAc pretreatment inhibits trapping of Bacillus thuringiensis Cry1Ac on the peritrophic membrane of Bombyx mori. FEBS Letters 576:331–35. doi:10.1016/j.febslet.2004.09.029.
  • Hayashi, Y., P. Engelmann, R. Foldbjerg, M. Szabó, I. Somogyi, E. Pollák, L. Molnár, H. Autrup, D. S. Sutherland, J. Scott-Fordsmand, and L.-H. Heckmann. 2012. Earthworms and humans in vitro: Characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environmental Science & Technology 46:4166–73. doi:10.1021/es3000905.
  • He, X., W. G. Aker, and H.-M. Hwang. 2014. An in vivo study on the photo-enhanced toxicities of S-doped TiO2 nanoparticles to zebrafish embryos (Danio rerio) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage. Nanotoxicology 8:185–95. doi:10.3109/17435390.2013.874050.
  • Hegedus, D., M. Erlandson, C. Gillott, and U. Toprak. 2009. New insights into peritrophic matrix synthesis, architecture, and function. Annual Review of Entomology 54:285–302. doi:10.1146/annurev.ento.54.110807.090559.
  • Hirsch, A. 2002. Functionalization of single-walled carbon nanotubes. Angewandte Chemie International Edition 41:1853–59. doi:10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N.
  • Huang, N., Y. Yan, Y. Xu, Y. Jin, J. Lei, X. Zou, D. Ran, H. Zhang, S. Luan, and H. Gu. 2013. Alumina nanoparticles alter rhythmic activities of local interneurons in the antennal lobe of Drosophila. Nanotoxicology 7:212–20. doi:10.3109/17435390.2011.648668.
  • Hunt, P. R., B. J. Marquis, K. M. Tyner, S. Conklin, N. Olejnik, B. C. Nelson, and R. L. Sprando. 2013. Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. Journal of Applied Toxicology : JAT 33:1131–42. doi:10.1002/jat.v33.10.
  • Hussain, S. M., K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro 19:975–83. doi:10.1016/j.tiv.2005.06.034.
  • Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0.
  • Isani, G., M. L. Falcioni, G. Barucca, D. Sekar, G. Andreani, E. Carpenè, and G. Falcioni. 2013. Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicology and Environmental Safety 97:40–46. doi:10.1016/j.ecoenv.2013.07.001.
  • Izu, N., W. Shin, I. Matsubara, and N. Murayama. 2004. Development of resistive oxygen sensors based on cerium oxide thick film. Journal of Electroceramics 13:703–06. doi:10.1007/s10832-004-5179-7.
  • Ji, X., F. Peng, Y. Zhong, Y. Su, and Y. He. 2014. Fluorescent quantum dots: Synthesis, biomedical optical imaging, and biosafety assessment. Colloids and Surfaces B: Biointerfaces 124:132–39. doi:10.1016/j.colsurfb.2014.08.036.
  • Jia, G., H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, and X. Guo. 2005. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology 39:1378–83. doi:10.1021/es048729l.
  • Jing, X., J. H. Park, T. M. Peters, and P. S. Thorne. 2015. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment. Toxicology in Vitro 29:502–11. doi:10.1016/j.tiv.2014.12.023.
  • Jovanović, B., V. J. Cvetković, and T. L. Mitrović. 2015. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes. Chemosphere 144:43–49. doi:10.1016/j.chemosphere.2015.08.054.
  • Kannan, S. D., and G. M. Vijayaraghavan. 2014. Size-dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes. Journal of Toxicology and Environmental Health, Part A 77:177–91. doi:10.1080/15287394.2013.853224.
  • Karlsson, H. L., P. Cronholm, J. Gustafsson, and L. Moller. 2008. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology 21:1726–32. doi:10.1021/tx800064j.
  • Karunakaran, G., R. Suriyaprabha, P. Manivasakan, R. Yuvakkumar, V. Rajendran, and N. Kannan. 2013. Screening of in vitro cytotoxicity, antioxidant potential and bioactivity of nano- and micro-ZrO2 and -TiO2 particles. Ecotoxicology and Environmental Safety 93:191–97. doi:10.1016/j.ecoenv.2013.04.004.
  • Kermanizadeh, A., I. Gosens, L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobsen, A.-G. Lenz, T. Fernandes, R. P. F. Schins, F. R. Cassee, H. Wallin, W. Kreyling, T. Stoeger, S. Loft, P. Moller, L. Tran, and V. Stone. 2016. A multi-laboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health—ENPRA project—The highlights, limitations and current and future challenges. Journal Toxicogical Environment Health B 19: 1–28 doi:10.1080/10937404.2015.1126210.
  • Key, S. C. S., D. Reaves, F. Turner, and J. J. Bang. 2011. Impacts of silver nanoparticle ingestion on pigmentation and developmental progression in Drosophila. Atlas Journal of Biology 1:52–61. doi:10.5147/ajb.2011.0048.
  • Kim, J. S., E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101.
  • Kim, J. S., and I. J. Yu. 2014. Single-wall carbon nanotubes (SWCNT) induce cytotoxicity and genotoxicity produced by reactive oxygen species (ROS) generation in phytohemagglutinin (PHA)-stimulated male human peripheral blood lymphocytes. Journal of Toxicology and Environmental Health, Part A 77:1141–53. doi:10.1080/15287394.2014.917062.
  • Kim, S.-H., and W.-J. Lee. 2014. Role of DUOX in gut inflammation: Lessons from Drosophila model of gut-microbiota interactions. Front Cell Infect Microbiol 3:116. doi:10.3389/fcimb.2013.00116.
  • Kuraishi, T., A. Hori, and S. Kurata. 2013. Host-microbe interactions in the gut of Drosophila melanogaster. Frontiers in Physiology 4:375. doi:10.3389/fphys.2013.00375.
  • Kwon, J. Y., P. Koedrith, and Y. R. Seo. 2014. Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: Carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations. International Journal Nanomed 9 (Suppl. 2):271–86.
  • Lee, W. J., and P. T. Brey. 2013. How microbiomes influence metazoan development: Insights from history and Drosophila modeling of gut-microbe interactions. Annual Review of Cell and Developmental Biology 29:571–92. doi:10.1146/annurev-cellbio-101512-122333.
  • Lee, Y.-G., J. Jeong, J. Raftis, and W.-S. Cho. 2015. Determination of adsorption affinity of nanoparticles for interleukin-8 secreted from A549 cells by in vitro cell-free and cell-based assays. Journal of Toxicology and Environmental Health, Part A 78:185–95. doi:10.1080/15287394.2014.955158.
  • Leeuw, T. K., R. M. Reith, R. A. Simonette, M. E. Harden, P. Cherukuri, D. Tsyboulski, K. M. Beckingham, and R. B. Weisman. 2007. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. Nano Letters 7:2650–54. doi:10.1021/nl0710452.
  • Lei, R., C. Wu, B. Yang, H. Ma, C. Shi, Q. Wang, Q. Wang, Y. Yuan, and M. Liao. 2008. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicology and Applied Pharmacology 232:292–301. doi:10.1016/j.taap.2008.06.026.
  • Lewinski, N., V. Colvin, and R. Drezek. 2008. Cytotoxicity of nanoparticles. Small 4:26–49. doi:10.1002/(ISSN)1613-6829.
  • Li, W.-R., X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, Y.-S. Ou-Yang, and Y.-B. Chen. 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology 85:1115–22. doi:10.1007/s00253-009-2159-5.
  • Liao, M., and H. Liu. 2012. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environmental Toxicology and Pharmacology 34:67–80. doi:10.1016/j.etap.2011.05.014.
  • Lin, W., Y.-W. Huang, X.-D. Zhou, and Y. Ma. 2006. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology 217:252–59. doi:10.1016/j.taap.2006.10.004.
  • Liu, B., E. M. Campo, and T. Bossing. 2014b. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT) in living organisms. PloS One 9:e88681. doi:10.1371/journal.pone.0088681.
  • Liu, S., L. Xu, T. Zhang, G. Ren, and Z. Yang. 2010. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267:172–77. doi:10.1016/j.tox.2009.11.012.
  • Liu, X., C. Bu, Z. Nan, L. Zheng, Y. Qiu, and X. Lu. 2013a. Enzymes immobilized on amine-terminated ionic liquid-functionalized carbon nanotube for hydrogen peroxide determination. Talanta 105:63–68. doi:10.1016/j.talanta.2012.11.059.
  • Liu, X., H. Li, Q. Jin, and J. Ji. 2014a. Surface tailoring of nanoparticles via mixed-charge monolayers and their biomedical applications. Small 10:4230–42.
  • Liu, X., D. Vinson, D. Abt, R. H. Hurt, and D. M. Rand. 2009a. Differential toxicity of carbon nanomaterials in Drosophila: Larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environmental Science & Technology 43:6357–63. doi:10.1021/es901079z.
  • Liu, Y., L. He, A. Mustapha, H. Li, Z. Q. Hu, and M. Lin. 2009b. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of Applied Microbiology 107:1193–201. doi:10.1111/j.1365-2672.2009.04303.x.
  • Liu, Y., Y. Zhao, B. Sun, and C. Chen. 2013b. Understanding the toxicity of carbon nanotubes. Accounts of Chemical Research 46:702–13. doi:10.1021/ar300028m.
  • Lloyd, T. E., and J. P. Taylor. 2010. Flightless flies: Drosophila models of neuromuscular disease. Annals of the New York Academy of Sciences 1184:E1–20. doi:10.1111/j.1749-6632.2010.05432.x.
  • Lux Research. 2014. Nanotechnology update: Corporations up their spending as revenues for nano-enabled products increase. https://portal.luxresearchinc.com/research/report_excerpt/16215
  • Ma, N., C. Ma, C. Li, T. Wang, Y. Tang, H. Wang, X. Moul, Z. Chen, and N. Hel. 2013. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. Journal of Nanoscience and Nanotechnology 13:6485–98. doi:10.1166/jnn.2013.7525.
  • Machado, N. M., J. C. Lopes, R. S. Saturnino, E. B. Fagan, and J. C. Nepomuceno. 2013. Lack of mutagenic effect by multi-walled functionalized carbon nanotubes in the somatic cells of Drosophila melanogaster. Food and Chemical Toxicology 62:355–60. doi:10.1016/j.fct.2013.08.051.
  • Magaye, R., J. Zhao, L. Bowman, and M. Ding. 2012. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Experiments Theoretical Medica 4:551–661.
  • Magdolenova, Z., A. Collins, A. Kumar, A. Dhawan, V. Stone, and M. Dusinska. 2014. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–78. doi:10.3109/17435390.2013.773464.
  • Manna, S. K., S. Sarkar, J. Barr, K. Wise, E. V. Barrera, O. Jejelowo, A. C. Rice-Ficht, and G. T. Ramesh. 2005. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Letters 5:1676–84. doi:10.1021/nl0507966.
  • Manshian, B. B., S. J. Soenen, A. Brown, N. Hondow, J. Wills, G. J. Jenkins, and S. H. Doak. 2016. Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries. Mutagenesis 31:97–106.
  • Marcos, R., and E. R. Carmona. 2013. The wing-spot and the comet tests as useful assays detecting genotoxicity in Drosophila. Meth Molecular Biologic 1044:417–27.
  • Massarsky, A., V. L. Trudeau, and T. W. Moon. 2014. Predicting the environmental impact of nanosilver. Environmental Toxicology and Pharmacology 38:861–73. doi:10.1016/j.etap.2014.10.006.
  • Maximino, C., R. X. Silva, S. N. Da Silva, L. S. Rodrigues, H. Barbosa, T. S. De Carvalho, L. K. Leão, M. G. Lima, K. R. Oliveira, and A. M. Herculano. 2015. Non-mammalian models in behavioral neuroscience: Consequences for biological psychiatry. Frontiers in Behavioral Neuroscience 9:233.
  • Maynard, A. D. 2006. Nanotechnology: A research strategy for addressing risk. PEN 3. Washington, DC: Woodrow Wilson International Center for Scholars.
  • McCarthy, J., I. Inkielewicz-Stępniak, J. J. Corbalan, and M. W. Radomski. 2012. Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: Protective effects of fisetin. Chemical Research in Toxicology 25:2227–35. doi:10.1021/tx3002884.
  • Meyer, D., and P. L. Williams. 2014. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. Journal of Toxicology and Environmental Health, Part B 17:284–306. doi:10.1080/10937404.2014.933722.
  • Montazer, M., and M. Maali Amiri. 2014. ZnO nano reactor on textiles and polymers: Ex situ and in situ synthesis, application, and characterization. Journal of Physical Chemistry. B 118:1453–70. doi:10.1021/jp408532r.
  • Mu, Q., C. A. David, J. Galceran, C. Rey-Castro, L. Krzemiński, R. Wallace, F. Bamiduro, S. J. Milne, N. S. Hondow, R. Brydson, G. Vizcay-Barrena, M. N. Routledge, L. J. Jeuken, and A. P. Brown. 2014. Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles. Chemical Research in Toxicology 27:558–67. doi:10.1021/tx4004243.
  • Murray, C. B., C. R. Kagan, and M. G. Bawendi. 2000. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Reviews Materials Sciences 30:545–610. doi:10.1146/annurev.matsci.30.1.545.
  • Murthy, S. K. 2007. Nanoparticles in modern medicine: State of the art and future challenges. International Journal of Nanomedicine 2:129–41.
  • Nanotech Project., 2014. Project on emerging nanotechnologies. Consumer Products Inventory. http://www.nanotechproject.org/cpi.
  • Nations, S., M. Long, M. Wages, J. D. Maul, C. W. Theodorakis, and G. P. Cobb. 2015. Subchronic and chronic developmental effects of copper oxide (CuO) nanoparticles on Xenopus laevis. Chemosphere 135:166–74. doi:10.1016/j.chemosphere.2015.03.078.
  • Oberdörster, G., V. Castranova, B. Asgharian, and P. Sayre. 2015. Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): Methodology and dosimetry. Journal of Toxicology and Environmental Health, Part B 18:121–212. doi:10.1080/10937404.2015.1051611.
  • Oesch, F., and R. Landsiedel. 2012. Genotoxicity investigations on nanomaterials. Archives of Toxicology 86:985–94. doi:10.1007/s00204-012-0838-y.
  • Ong, C., L. Y. L. Yung, Y. Cai, B. H. Bay, and G. H. Baeg. 2015. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9:396–403. doi:10.3109/17435390.2014.940405.
  • Panacek, A., R. Prucek, D. Safarova, M. Dittrich, J. Richtrova, K. Benickova, R. Zboril, and L. Kvitek. 2011. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environmental Science & Technology 45:4974–79. doi:10.1021/es104216b.
  • Pandey, A., S. Chandra, L. K. S. Chauhan, G. Narayan, and D. K. Chowdhuri. 2013. Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochimica et Biophysica Acta (BBA) - General Subjects 1830:2256–66. doi:10.1016/j.bbagen.2012.10.001.
  • Park, J., S. Kim, J. Yoo, J.-S. Lee, J.-W. Park, and J. Jung. 2014. Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: The difference between metal ions and nanoparticles. Marine Pollution Bulletin 85:526–31. doi:10.1016/j.marpolbul.2014.04.038.
  • Park, K. 2013. Toxicokinetic differences and toxicities of silver nanoparticles and silver ions in rats after single oral administration. Journal of Toxicology and Environmental Health, Part A 76:1246–60. doi:10.1080/15287394.2013.849635.
  • Park, M. V., A. M. Neigh, J. P. Vermeulen, L. J. De La Fonteyne, H. W. Verharen, J. J. Briedé, H. Van Loveren, and W. H. De Jong. 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–17. doi:10.1016/j.biomaterials.2011.08.085.
  • Philbrook, N. A., V. K. Walker, A. N. Afrooz, N. B. Saleh, and L. M. Winn. 2011b. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reproductive Toxicology 32:442–48. doi:10.1016/j.reprotox.2011.09.002.
  • Philbrook, N. A., L. M. Winn, A. N. Afrooz, N. B. Saleh, and V. K. Walker. 2011a. The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicology and Applied Pharmacology 257:429–36. doi:10.1016/j.taap.2011.09.027.
  • Plantié, E., M. Migocka-Patrzałek, M. Daczewska, and K. Jagla. 2015. Model organisms in the fight against muscular dystrophy: Lessons from Drosophila and zebrafish. Molecules 20:6237–53. doi:10.3390/molecules20046237.
  • Poland, C. A., R. Duffin, I. Kinloch, A. Maynard, W. A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, and K. Donaldson. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology 3:423–28. doi:10.1038/nnano.2008.111.
  • Pompa, P. P., G. Vecchio, A. Galeone, V. Brunetti, S. Sabella, G. Maiorano, A. Falqui, G. Bertoni, and R. Cingolani. 2011. In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Research 4:405–13. doi:10.1007/s12274-011-0095-z.
  • Posgai, R., M. Ahamed, S. M. Hussain, J. J. Rowe, and M. G. Nielsen. 2009. Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing. Science of the Total Environment 408:439–43. doi:10.1016/j.scitotenv.2009.10.008.
  • Posgai, R., C. B. Cipolla-McCulloch, K. R. Murphy, S. M. Hussain, J. J. Rowe, and M. G. Nielsen. 2011. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: Size, coatings and antioxidants matter. Chemosphere 85:34–42. doi:10.1016/j.chemosphere.2011.06.040.
  • Pulskamp, K., S. Diabaté, and H. F. Krug. 2007. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology Letters 168:58–74. doi:10.1016/j.toxlet.2006.11.001.
  • Rajh, T., N. M. Dimitrijevic, M. Bissonnette, T. Koritarov, and V. Konda. 2014. Titanium dioxide in the service of the biomedical revolution. Chemical Reviews 114:10177–216. doi:10.1021/cr500029g.
  • Rajiv, S., J. Jerobin, V. Saranya, M. Nainawat, A. Sharma, P. Makwana, C. Gayathri, L. Bharath, M. Singh, M. Kumar, A. Mukherjee, and N. Chandrasekaran. 2016. Comparative cytotoxicity and genotoxicity of cobalt(II, III) oxide, iron(III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human & Experimental Toxicology 35:170–83. doi:10.1177/0960327115579208.
  • Ramel, C., and J. Magnusson. 1992. Modulation of genotoxicity in Drosophila. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 267:221–27. doi:10.1016/0027-5107(92)90066-B.
  • Rand, M. D., S. L. Montgomery, L. Prince, and D. Vorojeikina. 2014. Developmental toxicity assays using the Drosophila model. Current Protocols Toxicology 59:1.12.1-1.12.20.
  • Ranjan, S., M. K. Jayakumar, and Y. Zhang. 2015. Luminescent lanthanide nanomaterials: An emerging tool for theranostic applications. Nanomedicine (London) 10:1477–91. doi:10.2217/nnm.14.229.
  • Reis Éde, M., A. A. Rezende, D. V. Santos, P. F. Oliveria, H. D. Nicolella, D. C. Tavares, A. C. Silva, N. O. Dantas, and M. A. Spanó. 2015. Assessment of the genotoxic potential of two zinc oxide sources (amorphous and nanoparticles) using the in vitro micronucleus test and the in vivo wing somatic mutation and recombination test. Food and Chemical Toxicology 84:55–63. doi:10.1016/j.fct.2015.07.008.
  • Ribeiro, D. A., V. Carlin, A. C. C. Fracalossi, and L. M. Oyama. 2009. Radiopacifiers do not induce genetic damage in murine fibroblasts: An in vitro study. International Endodontic Journal 42:987–91. doi:10.1111/iej.2009.42.issue-11.
  • Rubilar, O., M. Rai, G. Tortella, M. C. Diez, A. B. Seabra, and N. Durán. 2013. Biogenic nanoparticles: Copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnology Letters 35:1365–75. doi:10.1007/s10529-013-1239-x.
  • Rubio, L., B. Annangi, L. Vila, A. Hernández, and R. Marcos. 2016. Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Archives of Toxicology 90:269–78. doi:10.1007/s00204-015-1468-y.
  • Salata, O. V. 2004. Applications of nanoparticles in biology and medicine. Journal Nanobiotechnol 2:3. doi:10.1186/1477-3155-2-3.
  • Santo, N., U. Fascio, F. Torres, N. Guazzoni, P. Tremolada, R. Bettinetti, P. Mantecca, and R. Bacchetta. 2014. Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles: Does size matter? Water Research 53:339–50. doi:10.1016/j.watres.2014.01.036.
  • Saptarshi, S. R., A. Duschl, and A. L. Lopata. 2015. Biological reactivity of zinc oxide nanoparticles with mammalian test systems: An overview. Nanomedicine (London) 10:2075–92. doi:10.2217/nnm.15.44.
  • Sato, T., T. Katakura, S. Yin, T. Fujimoto, and S. Yabe. 2004. Synthesis and UV shielding properties of calcia-doped ceria nanoparticles coated with amorphous silica. Solid State Ionics 172:377–82. doi:10.1016/j.ssi.2004.02.057.
  • Sato, Y., A. Yokoyama, K. I. Shibata, Y. Akimoto, S. I. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, and K. Tohji. 2005. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Molecular Biosystems 1:176–82. doi:10.1039/b502429c.
  • Sharma, V., D. Anderson, and A. Dhawan. 2012. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–70. doi:10.1007/s10495-012-0705-6.
  • Shin, S. C., S. H. Kim, H. You, B. Kim, A. C. Kim, K. A. Lee, J. H. Yoon, J. H. Ryu, and W. J. Lee. 2011. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–74. doi:10.1126/science.1212782.
  • Shvedova, A. A., V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron. 2003. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of Toxicology and Environmental Health, Part A 66:1909–26. doi:10.1080/713853956.
  • Siddique, Y. H., A. Fatima, S. Jyoti, F. Naz, W. Khan, B. R. Singh, and A. H. Naqvi. 2013. Evaluation of the toxic potential of graphene copper nanocomposite (GCNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. PloS ONE 8:e80944. doi:10.1371/journal.pone.0080944.
  • Siddique, Y. H., M. Haidari, W. Khan, A. Fatima, S. Jyoti, S. Khanam, F. Naz, A. Rahul, F. Singh, B. R. Beg, T. Mohibullah, and A. H. Naqvi. 2015. Toxic potential of copper-doped ZnO nanoparticles in Drosophila melanogaster (Oregon R). Toxicology Mechanisms and Methods 25:425–32. doi:10.3109/15376516.2015.1045653.
  • Siddique, Y. H., W. Khan, S. Khanam, S. Jyoti, F. Naz, B. R. Singh, and A. H. Naqvi. 2014. Toxic potential of synthesized graphene zinc oxide nanocomposite in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. BioMed Research International 2014:1–10. doi:10.1155/2014/382124.
  • Siegrist, M., A. Wiek, A. Helland, and H. Kastenholz. 2007. Risks and nanotechnology: The public is more concerned than experts and industry. Nature Nanotechnology 2:67. doi:10.1038/nnano.2007.10.
  • Silva, R. M., C. Teesy, L. Franzi, A. Weir, P. Westerhoff, J. E. Evans, and K. E. Pinkerton. 2013. Biological response to nano-scale titanium dioxide (TiO2): Role of particle dose, shape, and retention. Journal of Toxicology and Environmental Health, Part A 76:953–72. doi:10.1080/15287394.2013.826567.
  • Snyder-Talkington, B. N., Y. Qian, V. Castranova, and N. L. Guo. 2012. New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: Application of coculture and bioinformatics. Journal of Toxicology and Environmental Health, Part B 15:468–92. doi:10.1080/10937404.2012.736856.
  • Spence, K. D. 1991. Structure and physiology of the peritrophic membrane. In Physiology of the insect epidermis, editors K. Binnington, and A. Retnakaran, 77–93. Victoria, Australia: CSIRO Publications.
  • Stocker, H., and P. Gallant. 2008. Getting started: An overview on raising and handling Drosophila. Methods in Molecular Biology 420:27–44.
  • Strawn, E. T., C. A. Cohen, and B. A. Rzigalinski. 2006. Cerium oxide nanoparticles increase lifespan and protect against free radical-mediated toxicity. FASEB Journal 20:A1356.
  • Su, Y., Y. He, H. Lu, L. Sai, Q. Li, W. Li, L. Wang, P. Shen, Q. Huang, and C. Fan. 2009. The cytotoxicity of cadmium based, aqueous phase–synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25. doi:10.1016/j.biomaterials.2008.09.029.
  • Su, Y., M. Hu, C. Fan, Y. He, Q. Li, W. Li, L.-H. Wang, P. Shen, and Q. Huang. 2010. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials 31:4829–34. doi:10.1016/j.biomaterials.2010.02.074.
  • Tellam, R. L. 1996. The peritrophic matrix. In Biology of the insect midgut, edited by M. Lehane and P. Billingsley, 86–114. Dordrecht, The Netherlands: Springer.
  • Thill, A., O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, and A. M. Flank. 2006. Cytotoxicity of CeO2 nanoparticles for Escherichia coli, physicochemical insight of the cytotoxicity mechanism. Environmental Science & Technology 40:6151–56. doi:10.1021/es060999b.
  • Tian, H., H.-J. Eom, S. Moon, J. Lee, J. Choi, and Y. D. Chung. 2013. Development of biomarker for detecting silver nanoparticles exposure using a GAL4 enhancer trap screening in Drosophila. Environmental Toxicology and Pharmacology 36:548–56. doi:10.1016/j.etap.2013.05.013.
  • Tsyusko, O. V., S. S. Hardas, W. A. Shoults-Wilson, C. P. Starnes, G. Joice, D. A. Butterfield, and J. M. Unrine. 2012. Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida. Environmental Pollution 171:249–55. doi:10.1016/j.envpol.2012.08.003.
  • Uboldi, C., G. Giudetti, F. Broggi, D. Gilliland, J. Ponti, and F. Rossi. 2012. Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 745:11–20. doi:10.1016/j.mrgentox.2011.10.010.
  • Vales, G., E. Demir, B. Kaya, A. Creus, and R. Marcos. 2013. Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 7:462–68. doi:10.3109/17435390.2012.689882.
  • Vales, G., L. Rubio, and R. Marcos. 2016. Genotoxic and cell-transformation effects of multi-walled carbon nanotubes (MWCNT) following in vitro sub-chronic exposures. Journal of Hazardous Materials 306:193–202. doi:10.1016/j.jhazmat.2015.12.021.
  • Valizadeh, A., H. Mikaeili, M. Samiei, S. M. Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh, and S. Davaran. 2012. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Research Letters 7:480. doi:10.1186/1556-276X-7-480.
  • Vecchio, G. 2015. A fruit fly in the nanoworld: Once again Drosophila contributes to environment and human health. Nanotoxicology 9:135–37. doi:10.3109/17435390.2014.911985.
  • Vecchio, G., A. Galeone, V. Brunetti, G. Maiorano, L. Rizzello, S. Sabella, R. Cingolani, and P. P. Pompa. 2012a. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine 8:1–7.
  • Vecchio, G., A. Galeone, V. Brunetti, G. Maiorano, S. Sabella, R. Cingolani, and P. P. Pompa. 2012b. Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PLoS ONE 7:e29980. doi:10.1371/journal.pone.0029980.
  • Vega-Alvarez, S., A. Herrera, C. Rinaldi, and F. A. Carrero-Martínez. 2014. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment. International Journal of Nanomedicine 9:2031–41.
  • Venken, K. J., A. Sarrion-Perdigones, P. J. Vandeventer, N. S. Abel, A. E. Christiansen, and K. L. Hoffman. 2016. Genome engineering: Drosophila melanogaster and beyond. Wiley Interdisciplinary Reviews: Developmental Biology 5:233–67. doi:10.1002/wdev.2016.5.issue-2.
  • Völker, C., C. Boedicker, J. Daubenthaler, M. Oetken, and J. Oehlmann. 2013. Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments. Plos One 8:e75026. doi:10.1371/journal.pone.0075026.
  • Walkey, C., S. Das, S. Seal, J. Erlichman, K. Heckman, L. Ghibelli, E. Traversa, J. F. McGinnis, and W. T. Self. 2015. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environment Sciences Nano 2:33–53. doi:10.1039/C4EN00138A.
  • Walters, C. R., P. Cheng, E. Pool, and V. Somerset. 2016. Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape River crab (Potamanautes perlatus) following exposure to silver nanoparticles (AgNP). Journal of Toxicology and Environmental Health, Part A 79:61–70. doi:10.1080/15287394.2015.1106357.
  • Wang, B., N. Chen, Y. Wei, J. Li, L. Sun, J. Wu, Q. Huang, C. Liu, C. Fan, and H. Song. 2012a. Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila. Scientific Reports 2:563. doi:10.1038/srep00563.
  • Wang, T., X. Long, Y. Cheng, Z. Liu, and S. Yan. 2015. A comparison effect of copper nanoparticles versus copper sulphate on juvenile Epinephelus coioides: Growth parameters, digestive enzymes, body composition, and histology as biomarkers. International Journal of Genomics 2015:783021.
  • Wang, Z., N. Li, J. Zhao, J. C. White, P. Qu, and B. Xing. 2012b. CuO nanoparticle interaction with human epithelial cells: Cellular uptake, location, export, and genotoxicity. Chemical Research in Toxicology 25:1512–21. doi:10.1021/tx3002093.
  • Wason, M. S., and J. Zhao. 2013. Cerium oxide nanoparticles: Potential applications for cancer and other diseases. American Journal Translat Researcher 5:126–31.
  • Willhite, C. C., N. A. Karyakina, R. A. Yokel, N. Yenugadhati, T. M. Wisniewski, I. M. Arnold, F. Momoli, and D. Krewski. 2014. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Critical Reviews in Toxicology 44 (Suppl sup4):1–8. doi:10.3109/10408444.2014.934439.
  • Wolf, M. J., H. Amrein, J. A. Izatt, M. A. Choma, M. C. Reedy, and H. A. Rockman. 2006. From The Cover: Drosophila as a model for the identification of genes causing adult human heart disease. Proceedings of the National Academy of Sciences 103:1394–99. doi:10.1073/pnas.0507359103.
  • Yadav, J. S., M. P. Lavanya, P. P. Das, I. Bag, A. Krishnan, R. Leary, A. Bagchi, B. Jagannadh, D. K. Mohapatra, M. P. Bhadra, and U. Bhadra. 2010. 4-N-Pyridin-2-yl-benzamide nanotubes compatible with mouse stem cell and oral delivery in Drosophila. Nanotechnology 21:155102. doi:10.1088/0957-4484/21/15/155102.
  • Yohan, D., and B. D. Chithrani. 2014. Applications of nanoparticles in nanomedicine. Journal of Biomedical Nanotechnology 10:2371–92. doi:10.1166/jbn.2014.2015.
  • Zhang, T., L. Wang, Q. Chen, and C. Chen. 2014a. Cytotoxic potential of silver nanoparticles. Yonsei Medical Journal 55:283–91. doi:10.3349/ymj.2014.55.2.283.
  • Zhang, W.-D., L.-C. Jiang, Y.-X. Yu, and X.-L. Wei. 2014b. Electrodeposition of polyaniline onto TiO2 nanoparticles/multiwalled carbon nanotubes for visible light photoelectrocatalysis. Journal of Nanoscience and Nanotechnology 14:7032–37. doi:10.1166/jnn.2014.8980.
  • Zhao, J., and V. Castranova. 2011. Toxicology of nanomaterials used in nanomedicine. Journal of Toxicology and Environmental Health, Part B 14:593–632. doi:10.1080/10937404.2011.615113.
  • Zhao, M.-X., and E.-Z. Zeng. 2015. Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Research Letters 10:171. doi:10.1186/s11671-015-0873-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.