575
Views
18
CrossRef citations to date
0
Altmetric
Review

Relevance of mouse lung tumors to human risk assessment

ORCID Icon, & ORCID Icon

References

  • ACGIH. 2019. TLVs® and BEIs®. ACGIH. www.acgih.org.
  • Aiso, S., M. Take, T. Kasai, H. Senoh, Y. Umeda, M. Matsumoto, and S. Fukushima. 2014. Inhalation carcinogenicity of dichloromethane in rats and mice. Inhal. Toxicol. 26 (8):435–51. doi:10.3109/08958378.2014.905660.
  • Andersen, M. E., G. Cruzan, Black, M. B. Black, S. N. Pendse, D. Dodd, J. S. Bus, S. S. Sarang, M. I. Banton, R. Waites, et al. 2017. Assessing molecular initiating events (MIEs), key events (KEs) and modulating factors (MFs) for styrene responses in mouse lungs using whole genome gene expression profiling following 1-day and multi-week exposures. Toxicology and Applied Pharmacology 335:28–40. doi:10.1016/j.taap.2017.09.015.
  • Andersen, M. E., G. Gruzan, M. B. Black, S. N. Pendse, D. Dodd, J. S. Bus, S. S. Sarang, M. I. Banton, R. Waites, and P. D. McMullen. 2018. Strain-related differences in mouse lung gene expression over a two-year period of inhalation exposure to styrene: Relevance to human risk assessment. Regul. Toxicol. Pharmacol. 96:153–66. doi:10.1016/j.yrtph.2018.05.011.
  • Andersen, M. E., M. E. Meek, G. A. Boorman, D. J. Brusick, S. M. Cohen, Y. P. Dragan, C. B. Frederick, J. I. Goodman, G. C. Hard, E. J. O’Flaherty, et al. 2000. Lessons learned in applying the U.S. EPA proposed cancer guidelines to specific compounds. Toxicol. Sci. 53 (2):159–72. doi:10.1093/toxsci/53.2.159.
  • Bailey, L. A., M. A. Nascarella, L. E. Kerper, and L. R. Rhomberg. 2016. Hypothesis-based weight-of-evidence evaluation and risk assessment for naphthalene carcinogenesis. Crit. Rev. Toxicol. 46 (1):1–42. doi:10.3109/10408444.2015.1061477.
  • Baldwin, R. M., W. T. Jewell, M. V. Fanucchi, C. G. Plopper, and A. R. Buckpitt. 2004. Comparison of pulmonary/nasal Cyp2F expression levels in rodents and rhesus macaque. J. Pharmacol. Exp. Therapeut. 309 (1):127–36. doi:10.1124/jpet.103.062901.
  • Banton, M. I., J. S. Bus, E. Collins, H. P. Delzell, H. P. Gelbke, J. E. Kester, M. M. Moore, R. Waites, and S. S. Sarang. 2019. Evaluation of potential health effects associated with occupational and environmental exposure to styrene - an update. J. Toxicol. Environ. Health B 22 (1–4):1–130. doi:10.1080/10937404.2019.1633718.
  • Bartels, M. J., M. J. Hackett, M. W. Himmelstein, J. W. Green, C. Walker, C. Terry, R. Rasoulpour, M. Challender, and Z. J. Yan. 2020. Metabolic basis for nonlinearity in 1,3-dichloropropene toxicokinetics and use in setting a kinetically-derived maximum inhalation exposure concentration in mice. Toxicol. Sci. 174 (1):16–24. doi:10.1093/toxsci/kfz241.
  • Barton, H. A., T. P. Pastoor, K. Baetcke, J. E. Chambers, J. Diliberto, N. G. Doerrer, J. H. Driver, C. E. Hastings, S. Iyengar, R. Krieger, et al. 2006. The acquisition and application of absorption, distribution, metabolism, and excretion (ADME) data in agricultural chemical safety assessments. Crit. Rev. Toxicol. 36 (1):9–35. doi:10.1080/10408440500534362.
  • Becker, R., V. Dellarco, J. Seed, J. M. Kronenberg, B. Meek, J. Foreman, C. Palermo, I. Linkov, R. Schoeny, M. Dourson, et al. 2017. Quantitative weight of evidence to assess confidence in potential modes of action. Regul. Toxicol. Pharmacol. 86:205–20. doi:10.1016/j.yrtph.2017.02.017.
  • Bittar, H. E. T., and S. A. Yousem. 2020. Lungs. In Histology for pathologists, ed. S. E. Mills, 469–505. Philadelphia, PA: Wolters Kluwer.
  • Boffetta, P., and V. Desai. 2018. Exposure to permethrin and cancer risk: A systematic review. Crit. Rev. Toxicol. 48 (6):433–42. doi:10.1080/10408444.2018.1439449.
  • Boobis, A. R., S. M. Cohen, N. G. Doerrer, S. M. Galloway, P. J. Haley, G. C. Hard, F. G. Hess, J. S. MacDonald, S. Thibault, D. C. Wolf, et al. 2009. A data-based assessment of alternative strategies of identification of potential human cancer hazards. Toxicol. Pathol. 37 (6):714–32. doi:10.1177/0192623309343779.
  • Boobis, A. R., S. M. Cohen, V. Dellarco, D. McGregor, M. E. Meek, C. Vickers, D. Wilcocks, and W. Farland. 2006. IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit. Rev. Toxicol. 36 (10):781–92. doi:10.1080/10408440600977677.
  • Boogaard, P. J., K. P. de Kloe, B. A. Wong, S. C. Sumner, W. P. Watson, and N. J. van Sittert. 2000. Quantification of DNA adducts formed in liver, lungs, and isolated lung cells of rats and mice exposed to (14)C-styrene by nose-only inhalation. Toxicol. Sci. 57 (2):203–16. doi:10.1093/toxsci/57.2.203.
  • Buckpitt, A., A. M. Chang, A. Weit, L. van Winkle, X. Duan, R. Philpot, and C. Plopper. 1995. Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Mol. Pharmacol. 47 (1):74–81.
  • Buckpitt, A., B. Boland, M. Isbell, D. Morin, M. Shultz, R. Baldwin, K. Chan, A. Karlsson, C. Lin, A. Taff, et al. 2002. Naphthalene-induced respiratory tract toxicity: Metabolic mechanisms of toxicity. Drug Metab. Rev. 34 (4):791–820. doi:10.1081/DMR-120015694.
  • Burek, J. D., K. D. Nischke, T. J. Bell, D. L. Wackerle, R. C. Childs, J. E. Beyer, D. A. Dittenber, L. W. Rampy, and M. J. McKenna. 1984. Methylene chloride: A two-year inhalation toxicity and oncogenicity study in rats and hamsters. Fundam. Appl. Toxicol. 4 (1):30–47. doi:10.1016/0272-0590(84)90217-3.
  • Bus, J. S. 2017. “The dose makes the poison”: Key implications for mode of action (mechanistic) research in a 21st century toxicology paradigm. Curr. Opin. Toxicol. 3 (Supplement c):87–91. doi:10.1016/j.cotox.2017.06.013.
  • Busnach, G., P. Piselli, E. Arbustini, U. Baccarani, P. Burra, M. P. Carrieri, F. Citterio, E. De Juli, S. Bellelli, C. Pradier, et al. 2006. Immunosuppression and Cancer Study Group. Immunosuppression and cancer: A comparison of risks in recipients of organ transplants and in HIV-positive individuals. Transplant. Proc. 38 (10):3533–35. doi:10.1016/j.transproceed.2006.10.144.
  • Carlson, G. 2004. Influence of selected inhibitors on the metabolism of the styrene metabolite 4-vinylphenol in wild-type and Cyp2E1 knockout mice. J. Toxicol. Environ. Health Part A 67 (12):905–09. doi:10.1080/15287390490443696.
  • Carlson, G. P. 2012. Modification of the metabolism and toxicity of styrene and styrene oxide in hepatic cytochrome P450 reductase deficient mice and Cyp2F2 deficient mice. Toxicology 294 (2–3):104–08. doi:10.1016/j.tox.2012.02.006.
  • Carmichael, N. G., H. A. Barton, A. R. Boobis, R. L. Cooper, V. L. Dellarco, N. G. Doerrer, P. A. Fenner-Crisp, J. E. Doe, J. C. Lamb, and T. P. Pastoor. 2006. Agricultural chemical safety assessment: A multisector approach to the modernization of human safety requirements. Crit. Rev. Toxicol. 36 (1):1–7. doi:10.1080/10408440500534354.
  • Chirieac, L. R., and R. L. Attanoos. 2018. Usual lung cancers. In Pulmonary pathology, eds. D. S. Zander, and C. F. Farver, 534–51. 2nd ed. Philadelphia: Elsevier.
  • Clemmesen, J., and S. Hjalgrim-Jensen. 1979. Is isonicotinic acid hydrazide (INH) carcinogenic to man? A 24-year follow-up of 3371 tuberculosis cases. Ecotoxicol. Environ. Saf. 3 (4):439–50. doi:10.1016/0147-6513(79)90033-2.
  • Cohen, J. T., G. Carlson, G. Charnley, D. Coggon, E. Delzell, J. D. Graham, H. Greim, D. Krewski, M. Edinsky, R. Monson, et al. 2002. A comprehensive evaluation of the potential health risks associated with occupational and environmental exposure to styrene. J. Toxicol. Environ. Health B 5 (1–2):1–265. doi:10.1080/10937400252972162.
  • Cohen, S. M. 2004. Human carcinogenic risk evaluation: An alternative approach to the two-year rodent bioassay. Toxicol. Sci. 80 (2):225–29. doi:10.1093/toxsci/kfh159.
  • Cohen, S. M., A. R. Boobis, V. L. Dellarco, J. E. Doe, P. A. Fenner-Crisp, A. Moretto, T. P. Pastoor, R. S. Schoeny, J. G. Seed, and D. C. Wolf. 2019. Chemical carcinogenicity revisited 3: Risk assessment of carcinogenic potential based on the current state of knowledge of carcinogenesis in humans. Regul. Toxicol. Pharmacol. 103:100–05. doi:10.1016/j.yrtph.2019.01.017.
  • Cohen, S. M., and L. B. Ellwein. 1990. Cell proliferation in carcinogenesis. Science 249 (4972):1007–11. doi:10.1126/science.2204108.
  • Cohen, S. M., and L. B. Ellwein. 1991. Genetic errors, cell proliferation, and carcinogenesis. Cancer Res. 51 (24):6493–505.
  • Collins, J. J., and E. Delzell. 2018. A systematic review of epidemiologic studies of styrene and cancer. Crit. Rev. Toxicol. 48 (6):443–70. doi:10.1080/10408444.2018.1445700.
  • Collins, J. J., K. M. Bodner, and J. S. Bus. 2013. Cancer mortality of workers exposed to styrene in the U.S. reinforced plastics and composite industry. Epidemiology 24 (2):195–203. doi:10.1097/EDE.0b013e318281a30f.
  • Cooper, R. L., J. C. Lamb, S. M. Barlow, K. Bentley, A. M. Brady, N. G. Doerrer, P. A. Fenner-Crisp, G. Eisenbrandt, R. N. Hines, L. F. Irvine, et al. 2006. A tiered approach to life stages testing for agricultural chemical safety assessment. Crit. Rev. Toxicol. 36 (1):69–98. doi:10.1080/10408440500541367.
  • Corton, J. C., M. L. Cunningham, B. T. Hummer, C. Lau, B. Meek, J. M. Peters, J. A. Popp, L. Rhomberg, J. Seed, and J. E. Klaunig. 2014. Mode of action framework analysis for receptor-mediated toxicity: The peroxisome proliferator-activated receptor alpha (PPAR α) as a case study. Crit. Rev. Toxicol. 44 (1):1–49. doi:10.3109/10408444.2013.835784.
  • Costello, H. D., and D. E. Snider. 1980. The incidence of cancer among participants in controlled, randomized isoniazid preventive therapy trial. Am. J. Epidemiol. 111 (1):67–74. doi:10.1093/oxfordjournals.aje.a112875.
  • Criswell, K. A., J. C. Cook, Z. Wojcinski, D. Pegg, J. Herman, D. Wesche, J. Giddings, J. T. Brady, and T. Anderson. 2012. Mode of action associated with development of hemangiosarcoma in mice given pregabalin and assessment of human relevance. Toxicol. Sci. 128 (1):57–71. doi:10.1093/toxsci/kfs149.
  • Cruzan, G., G. P. Carlson, K. A. Johnson, L. S. Andrews, M. I. Banton, C. Bevan, and J. R. Cushman. 2002. Styrene respiratory tract toxicity and mouse lung tumors are mediated by Cyp2F-generated metabolites. Regul. Toxicol. Pharmacol. 35 (3):308–19. doi:10.1006/rtph.2002.1545.
  • Cruzan, G., J. Bus, J. Hotchkiss, J. Harkema, M. Banton, and S. Sarang. 2012. Cyp2F2-generated metabolites, not styrene oxide, are a key event mediating the mode of action of styrene-induced mouse lung tumors. Regul. Toxicol. Pharmacol. 62 (1):214–20. doi:10.1016/j.yrtph.2011.10.007.
  • Cruzan, G., J. Bus, J. Hotchkiss, R. Sura, C. Moore, G. Yost, M. Banton, and S. Sarang. 2013. Studies of styrene, styrene oxide and 4-hydroxystyrene toxicity in Cyp2F2 knockout and Cyp2F1 humanized mice support lack of human relevance for mouse lung tumors. Regul. Toxicol. Pharmacol. 66 (1):24–29. doi:10.1016/j.yrtph.2013.02.008.
  • Cruzan, G., J. Bus, M. Banton, R. Gingell, and G. Carlson. 2009. Mouse lung tumors from Cyp2F2-mediated cytotoxic metabolism: An endpoint/toxic response where data from multiple chemicals converge to support a mode of action. Regul. Toxicol. Pharmacol. 55 (2):205–18. doi:10.1016/j.yrtph.2009.07.002.
  • Cruzan, G., J. R. Cushman, L. S. Andrews, G. C. Granville, K. A. Johnson, C. Bevan, C. J. Hardy, D. W. Coombs, P. A. Mullins, and W. R. Brown. 2001. Chronic toxicity/oncogenicity study of styrene in CD-1 mice by inhalation exposure for 104 weeks. J. Appl. Toxicol. 21 (3):185–98. doi:10.1002/jat.737.
  • Cruzan, G., J. R. Cushman, L. S. Andrews, G. C. Granville, K. A. Johnson, C. J. Hardy, D. W. Coombs, P. A. Mullins, and W. R. Brown. 1998. Chronic toxicity/oncogenicity stud of styrene in CD rats by inhalation exposure for 104 weeks. Toxicol. Sci. 46 (2):266–81. doi:10.1093/toxsci/46.2.266.
  • Cruzan, G., J. S. Bus, M. E. Andersen, G. P. Carlson, M. I. Banton, S. S. Sarang, and R. Waites. 2018. Based on an analysis of mode of action, styrene-induced mouse lung tumors are not a human cancer concern. Regul. Toxicol. Pharmacol. 95:17–28. doi:10.1016/j.yrtph.2018.02.010.
  • Cruzan, G., J. S. Bus, M. I. Banton, S. S. Sarang, R. Waites, D. B. Layko, J. Raymond, D. Dodd, and M. E. Andersen. 2017. Editor’s highlight: Complete attenuation of mouse lung cell proliferation and tumorigenicity in Cyp2F2 knockout and Cyp2F1 humanized mice exposed to inhaled styrene for up to 2 years supports a lack of human relevance. Toxicol. Sci. 15 (2):413–21. doi:10.1093/toxsci/kfx141.
  • Dell, L. D., K. A. Mundt, M. McDonald, J. P. Tritschler, and D. J. Mundt. 1999. Critical review of the epidemiology literature on the potential cancer risks of methylene chloride. Int. Arch. Occup. Environ. Health 72 (7):429–42. doi:10.1007/s004200050396.
  • Dixon, D., R. A. Herbert, G. E. Kissling, A. E. Brix, R. A. Miller, and R. R. Maronpot. 2008. Summary of chemically induced pulmonary lesions in the National Toxicology Program (NTP) toxicology and carcinogenesis studies. Toxicol. Pathol. 36 (3):428–39. doi:10.1177/0192623308315360.
  • Doe, J. E., A. R. Boobis, A. Blacker, V. Dellarco, N. G. Doerrer, C. Franklin, J. I. Goodman, J. M. Kronenberg, R. Lewis, E. E. McConnell, et al. 2006. A tiered approach to systemic toxicity testing for agricultural chemical safety assessment. Crit. Rev. Toxicol. 36 (1):37–68. doi:10.1080/10408440500534370.
  • ECETOC. 1987. The assessment of carcinogenic hazard for human beings exposed to methylene chloride. Technical Report No. 26, European Chemical Industry Ecology and Toxicology Centre, Brussels, Belgium.
  • ECETOC (European Chemical Industry Ecology and Toxicology Centre). 1987. The assessment of carcinogenic hazard for human beings exposed to methylene chloride. Technical Report No. 26, January 1987. Brussels, Belgium.
  • ECHA. 2017. Guidance on information requirements and chemical safety assessment. Chapter R.7c: Endpoint specific guidance. Version 3.0.
  • Elcombe, C. R., R. C. Peffer, D. C. Wolf, J. Bailey, R. Bars, D. Bell, R. C. Cattley, S. S. Ferguson, D. Geter, A. Goetz, et al. 2014. Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: A case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Crit. Rev. Toxicol. 44 (1):64–82. doi:10.3109/10408444.2013.835786.
  • EPA. 1997. Registration Eligibility Decision (Red). Paraquat Dichloride. EPA 738-F-96-018, August 1997.
  • EPA. 2005. In ed., EPA. Cancer Assessment Review Committee Evaluation of the Carcinogenic Potential of Flonicamid (PC Code 1280126).
  • EPA. 2019. 1,3-Dichloropropene: Report of the cancer assessment review committee. In ed., H.E.D. Office of Chemical Safety and Pollution Prevention. Washington, D.C.: Environmental Protection Agency.
  • FDA. 2001. Guidance for industry statistical aspects of the design, analysis, and interpretation of chronic rodent carcinogenicity studies of pharmaceuticals. Washington, D.C: Food and Drug Administration.
  • Flieder, D. B. 2018. Benign neoplasms of the lungs. In Pulmonary pathology, ed. D. S. Zander, and C. F. Farver, 617–41. 2nd ed. Philadelphia: Elsevier.
  • Foran, J. A. 1997. Principles for the selection of doses in chronic rodent bioassays, ILSI risk science working group on dose selection. Environ. Health Perspect. 105 (1):18–20. doi:10.1289/ehp.105-1469843.
  • Foster, J. R., T. Green, L. L. Smith, R. W. Lewis, P. M. Hext, and I. Wyatt. 1992. Methylene chloride-an inhalation study to investigate pathological and biochemical events occurring in the lungs of mice over an exposure period of 90 days. Fundam. Appl. Toxicol. 18 (3):376–88. doi:10.1016/0272-0590(92)90136-6.
  • Foster, J. R., T. Green, L. L. Smith, S. Tittensor, and I. Wyatt. 1994. Methylene chloride: An inhalation study to investigate toxicity in the mouse lung using morphological, biochemical and Clara cell culture techniques. Toxicology 91 (3):221–34. doi:10.1016/0300-483X(94)90011-6.
  • Fu, L., and N. M. Kettner. 2013. The circadian clock in cancer development and therapy. Prog. Mol. Biol. Transl. Sci. 119:221–82.
  • Gibbs, J. E., S. Beesley, J. Plumb, D. Singh, S. Farrow, D. W. Ray, and A. S. Loudon. 2009. Circadian timing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology 150 (1):268–76. doi:10.1210/en.2008-0638.
  • Glassroth, J. L., M. C. White, and D. E. Snider. 1977. An assessment of the possible association of isoniazid with human cancer deaths. Am. Rev. Respir. Dis. 116 (6):1065–74. doi:10.1164/arrd.1977.116.6.1065.
  • Gocke, E., and L. Muller. 2009. In vivo studies in the mouse to define a threshold for the genotoxicity of EMS and ENU. Mutat. Res. 678 (2):101–07. doi:10.1016/j.mrgentox.2009.04.005.
  • Golden, R., J. Bus, and E. Calabrese. 2019. An examination of the linear no-threshold hypothesis of cancer risk assessment: Introduction to a series of reviews documenting the lack of biological plausibility of LNT. Chem-Biol. Interact. 301:2–5. doi:10.1016/j.cbi.2019.01.038.
  • Gollapudi, B. B. 2017. An ongoing journey toward a risk-based testing in genetic toxicology. Curr. Opin. Toxicol. 3:71–74. doi:10.1016/j.cotox.2017.06.012.
  • Gooderham, N. J., S. M. Cohen, G. Eisenbrand, S. Fukushima, F. P. Guengerich, S. S. Hecht, I. M. C. M. Rietjens, T. J. Rosol, M. Bastaki, M. J. Linman, et al. 2020. The safety evaluation of food flavoring substances: The role of genotoxicity studies. Crit. Rev. Toxicol. 50 (1):1–17. doi:10.1080/10408444.2020.1712589.
  • Green, T. 1997. Methylene chloride induced mouse liver and lung tumours: An overview of the role of mechanistic studies in human safety assessment. Human Exp. Toxicol. 16 (1):3–13. doi:10.1177/0960327197016001021.
  • Green, T., W. M. Provan, D. C. Collinge, and A. E. Guest. 1988. Macromolecular interactions of inhaled methylene chloride in rats and mice. Toxicol. Appl. Pharmacol. 93 (1):1–10. doi:10.1016/0041-008X(88)90020-8.
  • Grulich, A. E., M. T. van Leeuwen, M. O. Falster, and C. M. Vajdic. 2007. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: A meta-analysis. Lancet 370 (9581):59–67. doi:10.1016/S0140-6736(07)61050-2.
  • Haseman, J. K. 1983. A reexamination of false-positive rates for carcinogenesis studies. Fundam. Appl. Toxicol. 3 (4):334–39. doi:10.1016/S0272-0590(83)80148-1.
  • Haseman, J. K. 2013. Evaluating consistency in the interpretation of NTP rodent cancer bioassays: An examination of moue lung tumor effects in the 4-MEI study. Regul. Toxicol. Pharmacol. 66 (1):109–15. doi:10.1016/j.yrtph.2013.03.009.
  • Heflich, R. H., G. E. Johnson, A. Zeller, F. Marchetti, G. R. Douglas, K. L. Witt, B. B. Gollapudi, and P. A. White. 2020. Mutation as a toxicological endpoint for regulatory decision-making. Environ. Mol. Mutagen. 61 (1):34–41. doi:10.1002/em.22338.
  • Hill, T., and R. B. Conolly. 2019. Development of a novel AOP for Cyp2F2-mediated lung cancer in mice. Toxicol. Sci. 172 (1):1–10. doi:10.1093/toxsci/kfz185.
  • Howe, G. R., J. Lindsay, E. Coppock, and A. B. Miller. 1979. Isoniazid exposure in relation to cancer incidence and mortality in a cohort of tuberculosis patients. Int. J. Epidemiol. 8 (4):305–12. doi:10.1093/ije/8.4.305.
  • IARC. 1974. Isonicotinic acid hydrazide. In IARC monographs on the evaluation of carcinogenic risks to humans. Some aromatic amines, hydrazine and related substances, N-Nitrosos compounds and miscellaneous alkylating agents, Vol. 4, pp. 159–712. Lyon, France: IARC.
  • IARC. 1987. Isoniconic acid hydrazide. In IARC monographs on the evaluation of carcinogenic risks to humans. Supplement 7. Overall evaluation of carcinogenicity: An updating of IARC monographs, Vols. 1-42. Lyon, France: IARC.
  • IARC. 2019. Isonicotinic acid hydrazide. In IARC monographs on the evaluation of carcinogenic risks to humans. Supplement 7. Overall evaluation of carcinogenicity: An updating of IARC monographs, Vols. 1-42. Lyon, France: IARC.
  • IPCS (International Programme on Chemical Safety). 1984. Environmental health criteria 39. Paraquat and diquat. Geneva, Switzerland: World Health Organization.
  • Jarabek, A. M., L. H. Pottenger, L. S. Andrews, D. Casciano, M. R. Embry, J. H. Kim, R. J. Preston, M. V. Reddy, R. Schoeny, D. Shuker, et al. 2009. Creating context for the use of DNA adduct data in cancer risk assessment. I. Data organization. Crit. Rev. Toxicol. 39 (8):659–78. doi:10.1080/10408440903164155.
  • Kawamoto, K., K. Ogata, H. Asano, K. Miyata, T. Sukata, T. Utsumi, S. M. Cohen, and T. Yamada. 2020. Cell proliferation analysis is a reliable predictor of lack of carcinogenicity: Case study using the pyrethroid imiprothrin on lung tumorigenesis in mice. Regul. Toxicol. Pharmacol. 113:104646. doi:10.1016/j.yrtph.2020.104646.
  • Kerr, K. M., and W. K. Funkhouse. 2018. Precursors of malignancy. In Pulmonary pathology, ed. D. S. Zander, and C. F. Farver, 598–616. 2nd ed. Philadelphia: Elsevier.
  • Kim, H. P., S. W. Ryter, and A. M. Choi. 2006. Molecular components of the mammalian circadian clock. Hum Mol Genet. 46:411–449.
  • Klapacz, J., and B. B. Gollapudi. 2020. Considerations for the use of mutation as a regulatory endpoint in risk assessment. Environ. Mol. Mutagen. 61 (1):84–93. doi:10.1002/em.22318.
  • Kondo, M., K. Miyata, H. Nagahori, K. Sumida, T. G. Osimitz, S. M. Cohen, B. G. Lake, and T. Yamada. 2019. Involvement of peroxisome proliferator-activated receptor-alpha in liver tumor production by permethrin in the female mouse. Toxicol. Sci. 168 (2):572–96. doi:10.1093/toxsci/kfz012.
  • Kovalchuk, N., Q. Y. Zhang, J. Kelty, L. van Winkle, and X. Ding. 2019. Toxicokinetic interaction between hepatic disposition and pulmonary bioactivation of inhaled naphthalene studied using Cyp2abfgs -null and CYP2A13/2F1-humanized mice with deficient hepatic cytochrome P450 activity. Drug Metab. Dispos. 47 (12):1469–78. doi:10.1124/dmd.119.088930.
  • Krynitz, B., G. Edgren, B. Lindelof, E. Baecklund, C. Brattstrom, H. Wilczek, and K. E. Smedby. 2013. Risk of skin cancer and other malignancies in kidney, liver, heart and lung transplant recipients 1970-2008-a Swedish population-based study. Int. J. Cancer 132 (6):1429–38. doi:10.1002/ijc.27765.
  • Lantuejoul, S., and E. Brambilla. 2018. Neuroendocrine neoplasms. In Pulmonary pathology, ed. D. S. Zander, and C. F. Farver, 552–66. 2nd ed. Philadelphia: Elsevier.
  • Lewis, D. F. V., Y. Ito, and B. G. Lake. 2009. Molecular modelling of Cyp2F substrates: Comparison of naphthalene metabolism by human, rat and mouse Cyp2F subfamily enzymes. Drug Metab. Drug Interact. 20:229–57.
  • Li, L., S. Carratt, M. Hartog, N. Kovalchuk, K. Jia, Y. Wang, Q. Y. Zhang, P. Edwards, L. V. Winkle, and X. Ding. 2017. Human Cyp2A13 and Cyp2F1 mediated naphthalene toxicity in the lung and nasal mucosa of Cyp2A13/2F1-humanized mice. Environ. Health Perspect. 125 (6):067004. doi:10.1289/EHP844.
  • Li, L., Y. Wei, L. van Winkle, Q. Y. Zhang, X. Zhou, J. Hu, F. Xie, K. Kluetzman, and X. Ding. 2011. Generation and characterization of a Cyp2f2 -null mouse and studies on the role of CYP2F2 in naphthalene-induced toxicity in the lung and nasal olfactory mucosa. J. Pharmacol. Exp. Ther. 339 (1):62–71. doi:10.1124/jpet.111.184671.
  • Manenti, G., F. Galbiati, S. Noci, and T. A. Dragani. 2003. Outbred CD-1 mice carry the susceptibility allele at the pulmonary adenoma susceptibility 1 (Pas1) locus. Carcinogenesis 24 (6):1143–48. doi:10.1093/carcin/bgg065.
  • Marty, M. S., B. H. Neal, C. L. Zablotney, B. L. Yano, A. K. Andrus, M. R. Woolhiser, D. R. Boverhof, S. A. Saghir, A. W. Perala, J. K. Passage, et al. 2013. An F1-extended one-generation reproductive toxicity study in Crl: CD(SD)rats with 2,4-dichlorophenoxyacetic acid. Toxicol. Sci. 136 (2):527–47. doi:10.1093/toxsci/kft213.
  • Meek, M. E., J. R. Bucher, S. M. Cohen, V. Dellarco, R. N. Hill, L. D. Lehman-McKeeman, D. G. Longfellow, T. Pastoor, J. Seed, and D. E. Patton. 2003. A frame work for human relevance analysis of information on carcinogenic modes of action. Crit. Rev. Toxicol. 33 (6):591–653. doi:10.1080/713608373.
  • Murer, B. U., Gruber-Mosenbacher, and H. H. Popper. 2018. Unusual primary malignant lung neoplasms. In Pulmonary pathology, ed. D. S. Zander, and C. F. Farver, 567–83. 2nd ed. Philadelphia: Elsevier.
  • NCI. 1979. Bioassay of styrene for possible carcinogenicity. NCI Technical Report 185, Bethesda, MD.
  • Nikitin, A. Y., A. Alcaraz, M. R. Anver, R. T. Bronson, R. D. Cardiff, D. Dixon, A. E. Fraire, E. W. Gabrielson, W. T. Gunning, D. C. Haines, et al. 2004. Classification of proliferative pulmonary lesions of the mouse: Recommendations of the mouse models of human cancers consortium. Cancer Res. 64 (7):2307–16. doi:10.1158/0008-5472.CAN-03-3376.
  • North, D. W., K. M. Abdo, J. M. Benson, A. R. Dahl, J. B. Morris, R. Renne, and H. Witschi. 2008. A review of whole animal bioassays of the carcinogenic potential of naphthalene. Regul. Toxicol. Pharmacol. 51 (2 Suppl):S6–S14. doi:10.1016/j.yrtph.2007.09.022.
  • NRC. 2014. Review of the styrene assessment in the National Toxicology Program 12th Report on Carcinogens.
  • NTP. 1986. NTP technical report on toxicology and carcinogenesis studies of CI disperse blue 1 in F344/N rats and B6C3F1 mice. NIH Publication #86-2555.
  • NTP. 2011. Report on carcinogens: Styrene. Twelfth edition. U.S. Department of Health and Human Services Public Health Service National Toxicology Program.
  • OECD. 2010. OECD Guidance Document 116 on the design and conduct of chronic toxicity and carcinogenicity studies, supporting TG 451, 452, and 453, Section 4: Statistical and dose response analysis, including benchmark dose and linear extrapolation, NOAELS and NOELS, LOAELS and LOELS.
  • OECD. 2011. OECD guideline for the testing of chemicals. Extended One-gener Reprod. Toxic. Study 443.
  • OECD. 2012. OECD guidance document 116 on the conduct and design of chronic toxicity and carcinogenicity studies, supporting test guidelines. 451, 452, 453.
  • Oesch, F., E. Fabian, and R. Landsiedel. 2019. Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch. Toxicol. 93:3419–89.
  • Pandiri, A. 2015. Comparative pathobiology of environmentally induced lung cancers in humans and rodents. Toxicol. Pathol. 43 (1):107–14. doi:10.1177/0192623314556516.
  • Pandiri, A. R., R. C. Sills, V. Ziglioli, T. V. Ton, H. H. Hong, S. A. Lahousse, K. E. Gerrish, S. S. Auerbach, K. R. Shockley, P. R. Bushel, et al. 2012. Differential transcriptomic analysis of spontaneous lung tumors in B6C3F1 mice: Comparison to human non-small cell lung cancer. Toxicol. Pathol. 40 (8):1141–59. doi:10.1177/0192623312447543.
  • Papagiannakopoulos, T., M. R. Bauer, S. M. Davidson, M. Heimann, L. Subbaraj, A. Bhutkar, J. Bartlebaugh, M. G. Vander Heiden, and T. Jacks. 2016. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 24 (2):324–31. doi:10.1016/j.cmet.2016.07.001.
  • Penn, I. 1988. Tumors of the immunocompromised patient. Ann. Rev. Med. 39:63–73. doi:10.1146/annurev.me.39.020188.000431.
  • Pottenger, L. H., and B. B. Gollapudi. 2009. A case for a new paradigm in genetic toxicology testing. Mutat. Res. 678 (2):148–1451. doi:10.1016/j.mrgentox.2009.07.003.
  • Pottenger, L. H., G. Boysen, K. Brown, J. Cadet, R. P. Fuchs, G. E. Johnson, and J. A. Swenberg. 2019. Understanding the importance of low-molecular weight (ethylene oxide-and propylene oxide-induced) DNA adducts and mutations in risk assessment: Insights from 15 years of research and collaborative discussions. Environ. Mol. Mutagen. 60 (2):100–21. doi:10.1002/em.22248.
  • Renne, R., A. Brix, J. Harkema, R. Herbert, B. Kittel, D. Lewis, T. March, K. Nagano, M. Pino, S. Rittinghausen, et al. 2009. Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicol. Pathol. 37 (7 Suppl):5s–73s. doi:10.1177/0192623309353423.
  • Rusiecki, J. A., R. Patel, S. Koutros, L. Beane-Freeman, O. Landgren, M. R. Bonner, J. Coble, J. Lubin, A. Blair, J. A. Hoppin, et al. 2009. Cancer incidence among pesticide applicators exposed to permethrin in the agricultural health study. Environ. Health Perspect. 117 (4):581–86. doi:10.1289/ehp.11318.
  • Saghir, S. A. 2013. Life-stage-, sex-, and dose-dependent dietary toxicokinetics and relationship to toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D) in rats: Implications for toxicity test dose selection, design, and interpretation. Toxicol. Sci. 136 (2):294–307. doi:10.1093/toxsci/kft212.
  • Saghir, S. A., M. J. Bartels, D. L. Rick, A. T. McCoy, R. J. Rasoulpour, R. G. Ellis-Hutchings, S. M. Marty, C. Terry, J. P. Bailey, R. Billington, et al. 2012. Assessment of diurnal systemic dose of agrochemicals in regulatory toxicity testing–an integrated approach without additional animal use. Regul. Toxicol. Pharmacol. 63 (2):321–32. doi:10.1016/j.yrtph.2012.03.004.
  • Shen, S., L. Li, X. Ding, and J. Cheng. 2014. Metabolism of styrene to styrene oxide and vinyl phenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes. Chem. Res. Toxicol. 27 (1):27–33. doi:10.1021/tx400305w.
  • Shimkin, M. B., and G. D. Stoner. 1975. Lung tumors in mice: Application to carcinogenesis bioassay. Adv. Cancer Res. 21:1–58.
  • Shultz, M. A., P. V. Choudary, and A. R. Buckpitt. 1999. Role of murine cytochrome p-450-2f2 in metabolic activation of naphthalene and metabolism of other xenobiotics. J Pharmacol Exp Ther. 290:281–288.
  • Slikker, W., M. E. Andersen, M. S. Bodganffy, J. S. Bus, S. D. Cohen, R. B. Conolly, R. M. David, N. G. Doerrer, D. C. Dorman, D. W. Gaylor, et al. 2004b. Case studies. Toxicol. Appl. Pharmacol. 201:203–25.
  • Slikker, W., M. E. Andersen, M. S. Bogdanffy, J. S. Bus, S. D. Cohen, R. B. Conolly, R. M. David, N. G. Doerrer, D. C. Dorman, D. W. Gaylor, et al. 2004a. Dose-dependent transitions in mechanisms of toxicity: Case studies. Toxicol. Appl. Pharmacol. 201:226–94.
  • Smith, C., T. Perfetti, and J. King. 2018. Bronchioloalveolar lung tumors induced in “mice only” by non-genotoxic chemicals are not useful for quantitative assessment of pulmonary adenocarcinoma risk in humans. Toxicol. Res. Appl. 2:1–24.
  • Sonich-Mullin, C., R. Fielder, J. Wiltse, K. Baetcke, J. Dempsey, P. Fenner-Crisp, D. Grant, M. Hartley, A. Knaap, D. Kroese, et al. 2001. IPCS conceptual framework for evaluating a mode of action for chemical carcinogenesis. Regul. Toxicol. Pharmacol. 34 (2):146–52. doi:10.1006/rtph.2001.1493.
  • Stott, W. T., B. B. Gollapudi, and K. S. Rao. 2001. Mammalian toxicity of 1,3-Dichloropropene. In Reviews of environmental contamination and toxicology: Continuation of residue reviews, ed. G. W. Ware, 1–42. New York: Springer New York.
  • Strupp, C., D. A. Banas, S. M. Cohen, E. B. Gordon, M. Jaeger, and K. Weber. 2012. Relationship of metabolism and cell proliferation to the mode of action of fluensulfone-induced mouse lung tumors: Analysis of their human relevance using the IPCS framework. Toxicol. Sci. 128 (1):284–94. doi:10.1093/toxsci/kfs127.
  • Strupp, C., W. Bomann, S. M. Cohen, and K. Weber. 2016. Relationship of metabolism and cell proliferation to the mode of action of fluensulfone-induced mouse lung tumors. II: Additional mechanistic studies. Toxicol. Sci. 154 (2):296–308. doi:10.1093/toxsci/kfw168.
  • Swenberg, J. A., K. Lu, B. C. Moeller, L. Gao, P. B. Upton, J. Nakamura, and T. B. Starr. 2011. Endogenous versus exogenous DNA adducts: Their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci. 120 (Suppl 1):S130–S145. doi:10.1093/toxsci/kfq371.
  • Tomenson, J. A. 2011. Update of a cohort mortality study of workers exposed to methylene chloride employed at a plant producing cellulose triacetate film base. Int. Arch. Occup. Environ. Health 84 (8):889–97. doi:10.1007/s00420-011-0621-z.
  • Toth, B., and P. Shubik. 1966. Carcinogenesis in Swiss mice by isonicotinic acid hydrazide. Cancer Res. 26 (7):1473–75.
  • Toth, B., and T. Toth. 1970. Investigation on the tumor producing effect of isonicotinic acid hydrazide in ASW-Sn mice and MRC rats. Tumori 56 (6):315–24. doi:10.1177/030089167005600601.
  • Trueman, R. W., and J. Ashby. 1987. Lack of UDS activity in the livers of mice and rats exposed to dichloromethane. Environ. Mol. Mutagen. 10 (2):189–95. doi:10.1002/em.2850100209.
  • Villeneuve, P. J., and Y. Mao. 1994. Lifetime probability of developing lung cancer, by smoking status, Canada. Can. J. Public Health 85 (6):385–88.
  • Wei, Y., H. Wu, L. Li, Z. Liu, X. Zhou, Q. Y. Zhang, Y. Weng, J. D’Agostino, G. Ling, X. Zhang, et al. 2012. Generation and characterization of a CYP2A13/2B6/2F1 -transgenic mouse model. Drug Metab. Dispos. 40 (6):1144–50. doi:10.1124/dmd.112.044826.
  • Yamada, T., H. Asano, K. Miyata, L. R. Rhomberg, J. K. Haseman, P. Greaves, H. Greim, C. Berry, and S. M. Cohen. 2019. Toxicological evaluation of carcinogenicity of the pyrethroid imiprothrin in rats and mice. Regul. Toxicol. Pharmacol. 105:1–14. doi:10.1016/j.yrtph.2019.03.012.
  • Yamada, T., M. Kondo, K. Miyata, K. Ogata, M. Kushida, K. Sumida, S. Kawamura, T. G. Osimitz, B. G. Lake, and S. M. Cohen. 2017. An evaluation of the human relevance of the lung tumors observed in female mice treated with permethrin based on mode of action. Toxicol Sci. 157 (2):465–486.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.