1,170
Views
0
CrossRef citations to date
0
Altmetric
Review

Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD)

, ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all

References

  • Agusti, A., P. M. Calverley, B. Celli, H. O. Coxson, L. D. Edwards, D. A. Lomas, W. MacNee, B. E. Miller, S. Rennard, E. K. Silverman, et al. 2010. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir. Res. 11 (1):122. doi:10.1186/1465-9921-11-122.
  • Alam, S., Z. Li, C. Atkinson, D. Jonigk, S. Janciauskiene, and R. Mahadeva. 2014. Z alpha1-antitrypsin confers a proinflammatory phenotype that contributes to chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 189:909–31.
  • Alfahad, A. J., M. M. Alzaydi, A. M. Aldossary, A. A. Alshehri, F. A. Almughem, N. M. Zaidan, and E. A. Tawfik. 2021. Current views in chronic obstructive pulmonary disease pathogenesis and management. Saudi Pharm. J. 29 (12):1361–73. doi:10.1016/j.jsps.2021.10.008.
  • Al Faraj, A., A. Sultana Shaik, M. A. Pureza, M. Alnafea, R. Halwani, and R. E. Morty. 2014. Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: Noninvasive tracking using MRI. PLoS. ONE 9 (3):e90829. doi:10.1371/journal.pone.0090829.
  • Andersen, Z. J., M. Hvidberg, S. S. Jensen, M. Ketzel, S. Loft, M. Sorensen, A. Tjonneland, K. Overvad, and O. Raaschou-Nielsen. 2011. Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: A cohort study. Am. J. Respir. Crit. Care Med. 183 (4):455–61. doi:10.1164/rccm.201006-0937OC.
  • Auerbach, O., E. C. Hammond, D. Kirman, and L. Garfinkel. 1967. Emphysema produced in dogs by cigarette smoking. J. Am. Med. Assoc. 199 (4):241–46. doi:10.1001/jama.1967.03120040051008.
  • Bailey, K. L. 2012. The importance of the assessment of pulmonary function in COPD. Med. Clin. North Am. 96 (4):745–52. doi:10.1016/j.mcna.2012.04.011.
  • Baker, J. R., L. E. Donnelly, and P. J. Barnes. 2020. Senotherapy: A new horizon for COPD therapy. Chest 158 (2):562–70. doi:10.1016/j.chest.2020.01.027.
  • Barberà, J. A., and I. Blanco. 2009. Pulmonary hypertension in patients with chronic obstructive pulmonary disease. Drugs 69 (9):1153–71. doi:10.2165/00003495-200969090-00002.
  • Barnes, P. J. 2016a. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 138 (1):16–27. doi:10.1016/j.jaci.2016.05.011.
  • Barnes, P. J. 2016b. Sex differences in chronic obstructive pulmonary disease mechanisms. Am. J. Respir. Crit. Care Med. 193 (8):813–14. doi:10.1164/rccm.201512-2379ED.
  • Barnes, P. J., P. G. Burney, E. K. Silverman, B. R. Celli, J. Vestbo, J. A. Wedzicha, and E. F. Wouters. 2015. Chronic obstructive pulmonary disease. Nat. Rev. Dis. Primers 1 (1):15076. doi:10.1038/nrdp.2015.76.
  • Barnes, P. J., and M. G. Cosio. 2004. Characterization of T lymphocytes in chronic obstructive pulmonary disease. PLoS Med. 1 (1):e20. doi:10.1371/journal.pmed.0010020.
  • Bartalesi, B., E. Cavarra, S. Fineschi, M. Lucattelli, B. Lunghi, P. A. Martorana, and G. Lungarella. 2005. Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur. Respir. J. 25 (1):15–22. doi:10.1183/09031936.04.00067204.
  • Benedikter, B. J., E. F. M. Wouters, P. H. M. Savelkoul, G. G. U. Rohde, and F. R. M. Stassen. 2018. Extracellular vesicles released in response to respiratory exposures: Implications for chronic disease. J. Toxicol. Environ. Health B 21 (3):142–60. doi:10.1080/10937404.2018.1466380.
  • Bhalla, D. K., F. Hirata, A. K. Rishi, and C. G. Gairola. 2009. Cigarette smoke, inflammation, and lung injury: A mechanistic perspective. J. Toxicol. Environ. Health B 12 (1):45–64. doi:10.1080/10937400802545094.
  • Bolton, S. J., K. Pinnion, V. Oreffo, M. Foster, and K. E. Pinkerton. 2009. Characterisation of the proximal airway squamous metaplasia induced by chronic tobacco smoke exposure in spontaneously hypertensive rats. Respir. Res. 10 (1):118. doi:10.1186/1465-9921-10-118.
  • Boutou, A. K., Z. Zoumot, A. Nair, C. Davey, D. M. Hansell, A. Jamurtas, M. I. Polkey, and N. S. Hopkinson. 2015. The impact of homogeneous versus heterogeneous emphysema on dynamic hyperinflation in patients with severe COPD assessed for lung volume reduction. COPD 12 (6):598–605. doi:10.3109/15412555.2015.1020149.
  • Bracke, K. R., A. I. D’hulst, T. Maes, K. B. Moerloose, I. K. Demedts, S. Lebecque, G. F. Joos, and G. G. Brusselle. 2006. Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J. Immunol. 177 (7):4350–59. doi:10.4049/jimmunol.177.7.4350.
  • Bracke, K. R., and P. Mestdagh. 2017. MicroRNAs as future therapeutic targets in COPD? Eur. Respir. J. 49 (5):1700431. doi:10.1183/13993003.00431-2017.
  • Buttner, D., H. Hackbarth, F. Wollnik, and H. Borggreve. 1984. Blood pressure in rats: A comparison of a multifactorial experimental design to measurements in an outbred stock. Lab. Animal 18 (2):110–14. doi:10.1258/002367784780891334.
  • Campo, G., R. Pavasini, S. Biscaglia, M. Contoli, and C. Ceconi. 2015. Overview of the pharmacological challenges facing physicians in the management of patients with concomitant cardiovascular disease and chronic obstructive pulmonary disease. Eur. Heart J. Cardiovasc Pharmacother 1 (3):205–11. doi:10.1093/ehjcvp/pvv019.
  • Cantin, A. M. 2016. Cystic fibrosis transmembrane conductance regulator. Implications in cystic fibrosis and chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 13 (Suppl_2):S150–55. doi:10.1513/AnnalsATS.201509-588KV.
  • Caramori, G., P. Casolari, A. Barczyk, A. L. Durham, A. Di Stefano, and I. Adcock. 2016. COPD immunopathology. Semin Immunopathol. 38 (4):497–515. doi:10.1007/s00281-016-0561-5.
  • Castaldi, P. J., M. H. Cho, R. San Jose Estepar, M. L. McDonald, N. Laird, T. H. Beaty, G. Washko, J. D. Crapo, E. K. Silverman, and C. O. Investigators. 2014. Genome-wide association identifies regulatory Loci associated with distinct local histogram emphysema patterns. Am. J. Respir. Crit. Care Med. 190 (4):399–409. doi:10.1164/rccm.201403-0569OC.
  • Cavailles, A., G. Brinchault-Rabin, A. Dixmier, F. Goupil, C. Gut-Gobert, S. Marchand-Adam, J. C. Meurice, H. Morel, C. Person-Tacnet, C. Leroyer, et al. 2013. Comorbidities of COPD. Eur Respir. Rev. 22 (130):454–75. doi:10.1183/09059180.00008612.
  • Cavarra, E., B. Bartalesi, M. Lucattelli, S. Fineschi, B. Lunghi, F. Gambelli, L. A. Ortiz, P. A. Martorana, and G. Lungarella. 2001. Effects of cigarette smoke in mice with different levels of α1-proteinase inhibitor and sensitivity to oxidants. Am. J. Respir. Crit. Care Med. 164 (5):886–90. doi:10.1164/ajrccm.164.5.2010032.
  • CDC. 2020a. Disease or condition of the week. COPD. Centers for Disease Control and Prevention, Nov 5, 2019 Accessed November 10, 2020. https://www.cdc.gov/dotw/copd/index.html.
  • CDC. 2020b. Chronic obstructive pulmonary disease (COPD). COPD costs. National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health. Feb 21, 2018 Accessed November 10, 2020. https://www.cdc.gov/copd/infographics/copd-costs.html.
  • Chae, C., M. J. Walters, and M. R. Holman. 2017. International Organization of Standardization (ISO) and Cambridge Filter Test (CFT) smoking regimen data comparisons in tobacco product marketing applications. Tob Regul. Sci. 3 (3):258–65. doi:10.18001/TRS.3.3.2.
  • Chang, L. H., and M. P. Rivera. 2013. Respiratory diseases: Meeting the challenges of screening, prevention, and treatment. N C Med J. 74 (5):385–92. doi:10.18043/ncm.74.5.385.
  • Chaouat, A., R. Naeije, and E. Weitzenblum. 2008. Pulmonary hypertension in COPD. Eur. Respir. J. 32 (5):1371–85. doi:10.1183/09031936.00015608.
  • Chapman, R. W. 2008. Canine models of asthma and COPD. Pulm Pharmacol. Ther. 21 (5):731–42. doi:10.1016/j.pupt.2008.01.003.
  • Chen, J., L. Dai, T. Wang, J. He, Y. Wang, and F. Wen. 2019. The elevated CXCL5 levels in circulation are associated with lung function decline in COPD patients and cigarette smoking-induced mouse model of COPD. Ann. Med. 51 (5–6):314–29. doi:10.1080/07853890.2019.1639809.
  • Chen, Y., C. Yu, M. Pan, T. Li, W. Li, S. Cai, and Y. Meng. 2015. [Comparison of matrix metalloproteinase-9 between Wistar rat and spontaneously hypertensive rat in pulmonary injury model]. Zhonghua Yi Xue Za Zhi 95 (18):1415–20.
  • Churg, A., M. Cosio, and J. L. Wright. 2008. Mechanisms of cigarette smoke-induced COPD: Insights from animal models. Am. J. Physiol. Lung Cell Mol. Physiol. 294 (4):L612–31. doi:10.1152/ajplung.00390.2007.
  • Churg, A., R. D. Wang, H. Tai, X. Wang, C. Xie, and J. L. Wright. 2004. Tumor necrosis factor-α drives 70% of cigarette smoke–induced emphysema in the mouse. Am. J. Respir. Crit. Care Med. 170 (5):492–98. doi:10.1164/rccm.200404-511OC.
  • Churg, A., S. Zhou, X. Wang, R. Wang, and J. L. Wright. 2009. The role of interleukin-1β in murine cigarette smoke–Induced emphysema and small airway remodeling. Am. J. Respir. Cell Mol. Biol. 40 (4):482–90. doi:10.1165/rcmb.2008-0038OC.
  • Churg, A., S. Zhou, and J. L. Wright. 2012. Series “matrix metalloproteinases in lung health and disease”: Matrix metalloproteinases in COPD. Eur. Respir. J. 39 (1):197–209. doi:10.1183/09031936.00121611.
  • Cochard, M., F. Ledoux, and Y. Landkocz. 2020. Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: State of the art and critical review of the in vitro studies. J. Toxicol. Environ. Health B 23 (7):293–318. doi:10.1080/10937404.2020.1816238.
  • Coultas, D. B., D. Mapel, R. Gagnon, and E. Lydick. 2001. The health impact of undiagnosed airflow obstruction in a national sample of United States adults. Am. J. Respir. Crit. Care Med. 164 (3):372–77. doi:10.1164/ajrccm.164.3.2004029.
  • Cowan, K. H., G. Batist, A. Tulpule, B. K. Sinha, and C. E. Myers. 1986. Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats. Proc. Natl. Acad. Sci. U.S.A. 83 (24):9328–32. doi:10.1073/pnas.83.24.9328.
  • Davis, B. B., Y. H. Shen, D. J. Tancredi, V. Flores, R. P. Davis, K. E. Pinkerton, and M. Königshoff. 2012. Leukocytes are recruited through the bronchial circulation to the lung in a spontaneously hypertensive rat model of COPD. PLoS. ONE 7 (3):e33304. doi:10.1371/journal.pone.0033304.
  • Davis, B. B., A. A. Zeki, J. M. Bratt, L. Wang, S. Filosto, W. F. Walby, N. J. Kenyon, T. Goldkorn, E. S. Schelegle, and K. E. Pinkerton. 2013. Simvastatin inhibits smoke-induced airway epithelial injury: Implications for COPD therapy. Eur. Respir. J. 42 (2):350–61. doi:10.1183/09031936.00042512.
  • Desanctis, G. T., S. M. Kelly, M. P. Saetta, R. J. Shiner, J. L. Stril, T. S. Hakim, M. G. Cosio, M. King, and G. T. Desanctis. 1987. Hyporesponsiveness to aerosolized but not to infused methacholine in cigarette-smoking dogs. Am. Rev. Respir. Dis. 135 (2):338–44. doi:10.1164/arrd.1987.135.2.338.
  • De Torres, J. P., A. Campo, C. Casanova, A. Aguirre-Jaime, and J. Zulueta. 2006. Gender and chronic obstructive pulmonary disease in high-risk smokers. Respiration 73 (3):306–10. doi:10.1159/000090051.
  • D’Hulst, A. I., T. Maes, K. R. Bracke, I. K. Demedts, K. G. Tournoy, G. F. Joos, and G. G. Brusselle. 2005. Cigarette smoke-induced pulmonary emphysema in scid-mice. Is the acquired immune system required? Respir. Res. 6 (1):147. doi:10.1186/1465-9921-6-147.
  • Doggrell, S. A., and L. Brown. 1998. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc. Res. 39 (1):89–105. doi:10.1016/S0008-6363(98)00076-5.
  • Dominguez-Fandos, D., C. Valdes, E. Ferrer, R. Puig-Pey, I. Blanco, O. Tura-Ceide, T. Paul, V. I. Peinado, and J. A. Barbera. 2015. Sildenafil in a cigarette smoke-induced model of COPD in the guinea-pig. Eur. Respir. J. 46 (2):346–54. doi:10.1183/09031936.00139914.
  • Duffy, S. P., and G. J. Criner. 2019. Chronic obstructive pulmonary disease: Evaluation and management. Med. Clin. North Am. 103 (3):453–61. doi:10.1016/j.mcna.2018.12.005.
  • Easter, M., S. Bollenbecker, J. W. Barnes, and S. Krick. 2020. Targeting aging pathways in chronic obstructive pulmonary disease. Int. J. Mol. Sci. 21 (18):6924. doi:10.3390/ijms21186924.
  • Effah, F., B. Taiwo, D. Baines, A. Bailey, and T. Marczylo. 2022. Pulmonary effects of e-liquid flavors: A systematic review. J. Toxicol. Environ. Health B 25 (7):343–71. doi:10.1080/10937404.2022.2124563.
  • Eisner, M. D. 2007. Indoor air, passive smoking, and COPD. Am. J. Respir. Crit. Care Med. 176 (5):426–27. doi:10.1164/rccm.200705-684ED.
  • Eisner, M. D., N. Anthonisen, D. Coultas, N. Kuenzli, R. Perez-Padilla, D. Postma, I. Romieu, E. K. Silverman, and J. R. Balmes. 2010. An official American thoracic society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 182 (5):693–718. doi:10.1164/rccm.200811-1757ST.
  • Eppert, B. L., B. W. Wortham, J. L. Flury, and M. T. Borchers. 2013. Functional characterization of T cell populations in a mouse model of chronic obstructive pulmonary disease. J. Immunol. 190 (3):1331–40. doi:10.4049/jimmunol.1202442.
  • Fairclough, L., R. A. Urbanowicz, J. Corne, and J. R. Lamb. 2008. Killer cells in chronic obstructive pulmonary disease. Clin. Sci. 114 (8):533–41. doi:10.1042/CS20070356.
  • Fedosenko, S. V., L. M. Ogorodova, E. N. Il’ina, M. E. Senina, E. S. Lisitsina, M. A. Karnaushkina, E. S. Kostryukova, V. M. Govorun, I. A. Deev, E. S. Kulikov, et al. 2015. Genetic determinants of antibiotic resistance in oropharyngeal streptococci in patients with chronic obstructive pulmonary disease and in those with asthma. Ter. Arkh. 87 (8):51–57. doi:10.17116/terarkh201587851-57.
  • Ferrer, E., V. I. Peinado, M. Diez, J. L. Carrasco, M. M. Musri, A. Martinez, R. Rodriguez-Roisin, and J. A. Barbera. 2009. Effects of cigarette smoke on endothelial function of pulmonary arteries in the guinea pig. Respir. Res. 10 (1):76. doi:10.1186/1465-9921-10-76.
  • Finkelstein, J., E. Cha, and S. M. Scharf. 2009. Chronic obstructive pulmonary disease as an independent risk factor for cardiovascular morbidity. Int. J. Chron Obstruct Pulmon Dis. 4:337–49. doi:10.2147/COPD.S6400.
  • Fischer, B. M., J. A. Voynow, and A. J. Ghio. 2015. COPD: Balancing oxidants and antioxidants. Int. J. Chron Obstruct Pulmon Dis. 10:261–76. doi:10.2147/COPD.S42414.
  • Fisher, J. T., X. Liu, Z. Yan, M. Luo, Y. Zhang, W. Zhou, B. J. Lee, Y. Song, C. Guo, Y. Wang, et al. 2012. Comparative processing and function of human and ferret cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 287 (26):21673–85. doi:10.1074/jbc.M111.336537.
  • Foronjy, R. F., B. A. Mercer, M. W. Maxfield, C. A. Powell, J. D’Armiento, and Y. Okada. 2005. Structural emphysema does not correlate with lung compliance: Lessons from the mouse smoking model. Exp. Lung Res. 31 (6):547–62. doi:10.1080/019021490951522.
  • Franssen, F. M., P. Alter, N. Bar, B. J. Benedikter, S. Iurato, D. Maier, M. Maxheim, F. K. Roessler, M. A. Spruit, C. F. Vogelmeier, et al. 2019. Personalized medicine for patients with COPD: Where are we? Int. J. Chron. Obstruct Pulmon Dis. 14:1465–84. doi:10.2147/COPD.S175706.
  • Frasca, J. M., O. Auerbach, H. W. Carter, and V. R. Parks. 1983. Morphologic alterations induced by short-term cigarette smoking. Am. J. Pathol. 111 (1):11–20.
  • Freeman, C. M., F. J. Martinez, M. K. Han, G. R. Washko, A. L. McCubbrey, S. W. Chensue, D. A. Arenberg, C. A. Meldrum, L. McCloskey, and J. L. Curtis. 2013. Lung CD8+ T cells in COPD have increased expression of bacterial TLRs. Respir. Res. 14 (1):13. doi:10.1186/1465-9921-14-13.
  • Fricker, M., A. Deane, and P. M. Hansbro. 2014. Animal models of chronic obstructive pulmonary disease. Expert Opin. Drug Discov. 9 (6):629–45. doi:10.1517/17460441.2014.909805.
  • Gamble, E., D. C. Grootendorst, K. Hattotuwa, T. O’Shaughnessy, F. S. Ram, Y. Qiu, J. Zhu, A. M. Vignola, C. Kroegel, F. Morell, et al. 2007. Airway mucosal inflammation in COPD is similar in smokers and ex-smokers: A pooled analysis. Eur. Respir. J. 30 (3):467–71. doi:10.1183/09031936.00013006.
  • Gharib, S. A., A. M. Manicone, and W. C. Parks. 2018. Matrix metalloproteinases in emphysema. Matrix Biol. 73:34–51. doi:10.1016/j.matbio.2018.01.018.
  • Ghorani, V., M. H. Boskabady, M. R. Khazdair, and M. Kianmeher. 2017. Experimental animal models for COPD: A methodological review. Tob. Induc. Dis. 15 (1):25. doi:10.1186/s12971-017-0130-2.
  • Ghosh, A., R. D. Coakley, A. J. Ghio, M. S. Muhlebach, C. R. Esther, N. E. Alexis, and R. Tarran. 2019. Chronic E-cigarette use increases neutrophil elastase and matrix metalloprotease levels in the lung. Am. J. Respir. Crit. Care Med. 200:1392–401.
  • Goco, R. V., M. B. Kress, and O. C. Brantigan. 1963. Comparison of mucus glands in the tracheobronchial tree of man and animals. Ann. N. Y. Acad. Sci. 106:555–71.
  • GOLD. 2020. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2020 report). Global Initiative for Chronic Obstructive Lung Disease.
  • Goldklang, M. P., S. M. Marks, and J. M. D’Armiento. 2013. Second hand smoke and COPD: Lessons from animal studies. Front Physiol. 4:30.
  • Golovatch, P., B. A. Mercer, V. Lemaitre, A. Wallace, R. F. Foronjy, and J. D’Armiento. 2009. Role for cathepsin K in emphysema in smoke-exposed guinea pigs. Exp. Lung Res. 35:631–45.
  • Green, D. R., and T. A. Ferguson. 2001. The role of Fas ligand in immune privilege. Nat. Rev. Mol. Cell Biol. 2:917–24.
  • Green, C. E., and A. M. Turner. 2017. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD). Respir. Res. 18:20.
  • Groneberg, D. A., and K. F. Chung. 2004. Models of chronic obstructive pulmonary disease. Respir. Res. 5:18. doi:10.1186/1465-9921-5-18.
  • Gross, T. J., L. S. Powers, R. L. Boudreau, B. Brink, A. Reisetter, K. Goel, A. K. Gerke, I. H. Hassan, and M. M. Monick. 2014. A microRNA processing defect in smokers’ macrophages is linked to SUMOylation of the endonuclease DICER. J. Biol. Chem. 289 (18):12823–34. doi:10.1074/jbc.M114.565473.
  • Gu, Y., Z. W. Chen, A. Siegel, R. Koshy, C. Ramirez, T. D. Raabe, G. H. Devries, and A. A. Ilyas. 2012. Analysis of humoral immune responses to LM1 ganglioside in guinea pigs. J. Neuroimmunol. 246 (1–2):58–64. doi:10.1016/j.jneuroim.2012.03.001.
  • Guerassimov, A., Y. Hoshino, Y. Takubo, A. Turcotte, M. Yamamoto, H. Ghezzo, A. Triantafillopoulos, K. Whittaker, J. R. Hoidal, and M. G. Cosio. 2004. The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am. J. Respir. Crit. Care Med. 170 (9):974–80. doi:10.1164/rccm.200309-1270OC.
  • Gurumurthy, C. B., and K. C. K. Lloyd. 2019. Generating mouse models for biomedical research: Technological advances. Dis. Model Mech. 12 (1):dmm029462. doi:10.1242/dmm.029462.
  • Halappanavar, S., J. Nikota, D. Wu, A. Williams, C. L. Yauk, and M. Stampfli. 2013. IL-1 receptor regulates microRNA-135b expression in a negative feedback mechanism during cigarette smoke–induced inflammation. J. Immunol. 190 (7):3679–86. doi:10.4049/jimmunol.1202456.
  • Han, M. K., D. Postma, D. M. Mannino, N. D. Giardino, S. Buist, J. L. Curtis, and F. J. Martinez. 2007. Gender and chronic obstructive pulmonary disease: Why it matters. Am. J. Respir. Crit. Care Med. 176 (12):1179–84. doi:10.1164/rccm.200704-553CC.
  • Harada, T., and P. K. Basrur. 1998. Pulmonary macrophage mobilization in hamsters after cessation of smoking. Exp. Animal 47 (1):43–47. doi:10.1538/expanim.47.43.
  • Harting, J. R., A. Gleason, D. J. Romberger, S. G. Von Essen, F. Qiu, N. Alexis, and J. A. Poole. 2012. Chronic obstructive pulmonary disease patients have greater systemic responsiveness to ex vivo stimulation with swine dust extract and its components versus healthy volunteers. J. Toxicol. Environ. Health Part A 75 (24):1456–70. doi:10.1080/15287394.2012.722186.
  • Hawkins, N. M., S. Virani, and C. Ceconi. 2013. Heart failure and chronic obstructive pulmonary disease: The challenges facing physicians and health services. Eur. Heart J. 34 (36):2795–803. doi:10.1093/eurheartj/eht192.
  • Herfs, M., P. Hubert, A. L. Poirrier, P. Vandevenne, V. Renoux, Y. Habraken, D. Cataldo, J. Boniver, and P. Delvenne. 2012. Proinflammatory cytokines induce bronchial hyperplasia and squamous metaplasia in smokers: Implications for chronic obstructive pulmonary disease therapy. Am. J. Respir. Cell Mol. Biol. 47 (1):67–79. doi:10.1165/rcmb.2011-0353OC.
  • Hernandez, J. A., A. E. Anderson, W. L. Holmes, and A. G. Foraker. 1966. Pulmonary parenchymal defects in dogs following prolonged cigarette smoke exposure. Am. Rev. Respir. Dis. 93 (1):78–83. doi:10.1164/arrd.1966.93.1.78.
  • Hersh, C. P. 2010. Pharmacogenetics of chronic obstructive pulmonary disease: Challenges and opportunities. Pharmacogenomics 11 (2):237–47. doi:10.2217/pgs.09.176.
  • Hikichi, M., K. Mizumura, S. Maruoka, and Y. Gon. 2019. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J. Thorac. Dis. 11 (Suppl 17):S2129–40. doi:10.21037/jtd.2019.10.43.
  • Hizawa, N. 2016. Clinical approaches towards asthma and chronic obstructive pulmonary disease based on the heterogeneity of disease pathogenesis. Clin. Exp. Allergy 46 (5):678–87. doi:10.1111/cea.12731.
  • Hoang, L. L., Y. P. Nguyen, R. Aspee, S. J. Bolton, Y. H. Shen, L. Wang, N. J. Kenyon, S. Smiley-Jewell, and K. E. Pinkerton. 2016. Temporal and spatial expression of transforming growth factor-β after airway remodeling to tobacco smoke in rats. Am. J. Respir. Cell Mol. Biol. 54 (6):872–81. doi:10.1165/rcmb.2015-0119OC.
  • Hodge-Bell, K. C., K. M. Lee, R. A. Renne, K. M. Gideon, S. J. Harbo, and W. J. McKinney. 2007. Pulmonary inflammation in mice exposed to mainstream cigarette smoke. Inhal. Toxicol. 19 (4):361–76. doi:10.1080/08958370601144076.
  • Hodge, S., G. Matthews, V. Mukaro, J. Ahern, A. Shivam, G. Hodge, M. Holmes, H. Jersmann, and P. N. Reynolds. 2011. Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am. J. Respir. Cell Mol. Biol. 44 (5):673–81. doi:10.1165/rcmb.2009-0459OC.
  • Hotchkiss, R. S., A. Strasser, J. E. McDunn, and P. E. Swanson. 2009. Cell death. N. Engl. J. Med. 361 (16):1570–83. doi:10.1056/NEJMra0901217.
  • Hou, W., S. Hu, C. Li, H. Ma, Q. Wang, G. Meng, T. Guo, and J. Zhang. 2019. Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: A possible link between COPD and lung cancer. Biomed. Res. Int. 2019:2025636. doi:10.1155/2019/2025636.
  • Hyde, D. M., N. E. Robinson, J. R. Gillespie, and W. S. Tyler. 1977. Morphometry of the distal air spaces in lungs of aging dogs. J. Appl. Physiol. 43 (1):86–91. doi:10.1152/jappl.1977.43.1.86.
  • Hylkema, M. N., P. J. Sterk, W. I. de Boer, and D. S. Postma. 2007. Tobacco use in relation to COPD and asthma. Eur. Respir. J. 29 (3):438–45. doi:10.1183/09031936.00124506.
  • Ito, K., and P. J. Barnes. 2009. COPD as a disease of accelerated lung aging. Chest 135:173–80. doi:10.1378/chest.08-1419.
  • Ito, H., Y. Yamashita, T. Tanaka, M. Takaki, M. N. Le, L. M. Yoshida, and K. Morimoto. 2020. Cigarette smoke induces endoplasmic reticulum stress and suppresses efferocytosis through the activation of RhoA. Sci. Rep. 10 (1):12620. doi:10.1038/s41598-020-69610-x.
  • Jang, J. H., H. S. Chand, S. Bruse, M. Doyle-Eisele, C. Royer, J. McDonald, C. Qualls, A. J. Klingelhutz, Y. Lin, R. Mallampalli, et al. 2017. Connective tissue growth factor promotes pulmonary epithelial cell senescence and is associated with COPD severity. COPD 14 (2):228–37. doi:10.1080/15412555.2016.1262340.
  • Jiang, J., Y. Xia, Y. Liang, M. Yang, W. Zeng, and X. Zeng. 2018. MiR-190a-5p participates in the regulation of hypoxia-induced pulmonary hypertension by targeting KLF15 and can serve as a biomarker of diagnosis and prognosis in chronic obstructive pulmonary disease complicated with pulmonary hypertension. Int. J. Chron. Obstruct Pulmon Dis. 13:3777–90. doi:10.2147/COPD.S182504.
  • Jimenez-Ruiz, C. A., S. Andreas, K. E. Lewis, P. Tonnesen, C. P. van Schayck, P. Hajek, S. Tonstad, B. Dautzenberg, M. Fletcher, S. Masefield, et al. 2015. Statement on smoking cessation in COPD and other pulmonary diseases and in smokers with comorbidities who find it difficult to quit. Eur. Respir. J. 46 (1):61–79. doi:10.1183/09031936.00092614.
  • Jin, S. W., J. S. Im, J. H. Park, H. G. Kim, G. H. Lee, S. J. Kim, S. J. Kwack, K. B. Kim, K. H. Chung, B. M. Lee, et al. 2021. Effects of tobacco compound 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on the expression of epigenetically regulated genes in lung carcinogenesis. J. Toxicol. Environ. Health Part A 84 (24):1004–19. doi:10.1080/15287394.2021.1965059.
  • Jo, Y. S., C. K. Rhee, H. K. Yoon, C. K. Park, J. U. Lim, T. J. An, and J. Hur. 2022. Evaluation of asthma–chronic obstructive pulmonary disease overlap using a mouse model of pulmonary disease. J. Inflamm (Lond) 19 (1):25. doi:10.1186/s12950-022-00322-x.
  • Kabir, E. R., and N. Morshed. 2015. Different approaches in the treatment of obstructive pulmonary diseases. Eur. J. Pharmacol. 764:306–17. doi:10.1016/j.ejphar.2015.07.030.
  • Kaku, Y., H. Imaoka, Y. Morimatsu, Y. Komohara, K. Ohnishi, H. Oda, S. Takenaka, M. Matsuoka, T. Kawayama, M. Takeya, et al. 2014. Overexpression of CD163, CD204 and CD206 on alveolar macrophages in the lungs of patients with severe chronic obstructive pulmonary disease. PLoS. ONE 9:e87400. doi:10.1371/journal.pone.0087400.
  • Kamal, R., A. K. Srivastava, C. N. Kesavachandran, V. Bihari, and A. Singh. 2022. Chronic obstructive pulmonary disease (COPD) in women due to indoor biomass burning: A meta analysis. Int. J. Environ. Health Res. 32 (6):1403–17. doi:10.1080/09603123.2021.1887460.
  • Kameyama, N., S. Chubachi, A. E. Hegab, H. Yasuda, S. Kagawa, A. Tsutsumi, K. Fukunaga, M. Shimoda, Y. Kanai, K. Soejima, et al. 2018. Intermittent exposure to cigarette smoke increases lung tumors and the severity of emphysema more than continuous exposure. Am. J. Respir. Cell Mol. Biol. 59 (2):179–88. doi:10.1165/rcmb.2017-0375OC.
  • Kang, M. -J., R. J. Homer, A. Gallo, C. G. Lee, K. A. Crothers, S. J. Cho, C. Rochester, H. Cain, G. Chupp, H. J. Yoon, et al. 2007. IL-18 is induced and IL-18 receptor α plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. J. Immunol. 178 (3):1948–59. doi:10.4049/jimmunol.178.3.1948.
  • Kasahara, Y., R. M. Tuder, L. Taraseviciene-Stewart, T. D. Le Cras, S. Abman, P. K. Hirth, J. Waltenberger, and N. F. Voelkel. 2000. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Invest. 106 (11):1311–19. doi:10.1172/JCI10259.
  • Kaur-Knudsen, D., S. E. Bojesen, A. Tybjaerg-Hansen, and B. G. Nordestgaard. 2011. Nicotinic acetylcholine receptor polymorphism, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases: A cohort study. J. Clin. Oncol. 29 (21):2875–82. doi:10.1200/JCO.2010.32.9870.
  • Kim, Y. S., G. Hong, D. H. Kim, Y. M. Kim, Y. K. Kim, Y. M. Oh, and Y. K. Jee. 2018. The role of FGF-2 in smoke-induced emphysema and the therapeutic potential of recombinant FGF-2 in patients with COPD. Exp. Mol. Med. 50 (11):1–10. doi:10.1038/s12276-018-0178-y.
  • Kim, H. -Y., H. -S. Lee, I. -H. Kim, Y. K. Kim, M. Ji, S. Oh, D. -Y. Kim, W. Lee, S. -H. Kim, and M. -J. Paik. 2022. Comprehensive targeted metabolomic study in the lung, plasma, and urine of PPE/LPS-induced COPD mice model. Int J Mol Sci 23 (5):2748. doi:10.3390/ijms23052748.
  • King, M., A. Wight, G. T. DeSanctis, J. el-Azab, D. M. Phillips, G. E. Angus, M. G. Cosio, and G. T. De Sanctis. 1989. Mucus hypersecretion and viscoelasticity changes in cigarette-smoking dogs. Exp. Lung Res. 15 (3):375–89. doi:10.3109/01902148909087866.
  • Kodavanti, U. P., D. L. Costa, and P. A. Bromberg. 1998. Rodent models of cardiopulmonary disease: Their potential applicability in studies of air pollutant susceptibility. Environ. Health Perspect. 106 Suppl 1 (suppl 1):111–30. doi:10.1289/ehp.98106s1111.
  • Kodavanti, U. P., M. C. Schladweiler, A. D. Ledbetter, R. V. Ortuno, M. Suffia, P. Evansky, J. H. Richards, R. H. Jaskot, R. Thomas, E. Karoly, et al. 2006. The spontaneously hypertensive rat: An experimental model of sulfur dioxide-induced airways disease. Toxicol. Sci. 94 (1):193–205. doi:10.1093/toxsci/kfl087.
  • Kodavanti, U. P., M. C. Schladweiler, A. D. Ledbetter, W. P. Watkinson, M. J. Campen, D. W. Winsett, J. R. Richards, K. M. Crissman, G. E. Hatch, and D. L. Costa. 2000. The spontaneously hypertensive rat as a model of human cardiovascular disease: Evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. Toxicol. Appl. Pharmacol. 164 (3):250–63. doi:10.1006/taap.2000.8899.
  • Kotoulas, C., I. Panagiotou, P. Tsipas, M. Melachrinou, D. Alexopoulos, and D. Dougenis. 2014. Experimental studies in the bronchial circulation. Which is the ideal animal model? J Thorac Dis 6 (10):1506–12. doi:10.3978/j.issn.2072-1439.2014.09.32.
  • Kratzer, A., J. Salys, C. Nold-Petry, C. Cool, M. Zamora, R. Bowler, A. R. Koczulla, S. Janciauskiene, M. G. Edwards, C. A. Dinarello, et al. 2013. Role of IL-18 in second-hand smoke–Induced Emphysema. Am. J. Respir. Cell Mol. Biol. 48 (6):725–32. doi:10.1165/rcmb.2012-0173OC.
  • Langhammer, A., R. Johnsen, A. Gulsvik, T. L. Holmen, and L. Bjermer. 2003. Sex differences in lung vulnerability to tobacco smoking. Eur. Respir. J. 21 (6):1017–23. doi:10.1183/09031936.03.00053202.
  • Laniado-Laborin, R. 2009. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21 century. Int. J. Environ. Res. Public Health 6 (1):209–24. doi:10.3390/ijerph6010209.
  • Lee, J. H., D. S. Lee, E. K. Kim, K. H. Choe, Y. M. Oh, T. S. Shim, S. E. Kim, Y. S. Lee, and S. D. Lee. 2005. Simvastatin inhibits cigarette smoking–induced Emphysema and pulmonary hypertension in rat lungs. Am. J. Respir. Crit. Care Med. 172 (8):987–93. doi:10.1164/rccm.200501-041OC.
  • Leuenberger, C., C. Schuoler, H. Bye, C. Mignan, T. Rechsteiner, S. Hillinger, I. Opitz, B. Marsland, A. Faiz, P. S. Hiemstra, et al. 2016. MicroRNA-223 controls the expression of histone deacetylase 2: A novel axis in COPD. J. Mol. Med. 94 (6):725–34. doi:10.1007/s00109-016-1388-1.
  • Liao, W., J. Dong, H. Y. Peh, L. H. Tan, K. S. Lim, L. Li, and W. -S.F. Wong. 2017. Oligonucleotide therapy for obstructive and restrictive respiratory diseases. Molecules 22:139. doi:10.3390/molecules22010139.
  • Lindberg, A., A. C. Jonsson, E. Ronmark, R. Lundgren, L. G. Larsson, and B. Lundback. 2005a. Prevalence of chronic obstructive pulmonary disease according to BTS, ERS, GOLD and ATS criteria in relation to doctor’s diagnosis, symptoms, age, gender, and smoking habits. Respiration 72 (5):471–79. doi:10.1159/000087670.
  • Lindberg, A., A. C. Jonsson, E. Ronmark, R. Lundgren, L. G. Larsson, and B. Lundback. 2005b. Ten-year cumulative incidence of COPD and risk factors for incident disease in a symptomatic cohort. Chest 127 (5):1544–52. doi:10.1378/chest.127.5.1544.
  • Liu, Y., W. B. Liang, L. B. Gao, X. M. Pan, T. Y. Chen, Y. Y. Wang, H. Xue, L. S. Zhang, and L. Zhang. 2010. CTLA4 and CD86 gene polymorphisms and susceptibility to chronic obstructive pulmonary disease. Human Immunol. 71 (11):1141–46. doi:10.1016/j.humimm.2010.08.007.
  • Liu, Y., H. Liu, C. Li, C. Ma, and W. Ge. 2020. Proteome profiling of lung tissues in chronic obstructive pulmonary disease (COPD): Platelet and macrophage dysfunction contribute to the pathogenesis of COPD. Int J Chron Obstruct Pulmon Dis. 15:973–80. doi:10.2147/COPD.S246845.
  • Lofdahl, J. M., K. Cederlund, L. Nathell, A. Eklund, and C. M. Skold. 2005. Bronchoalveolar lavage in COPD: Fluid recovery correlates with the degree of emphysema. Eur. Respir. J. 25 (2):275–81. doi:10.1183/09031936.05.00033504.
  • Lugade, A. A., P. N. Bogner, T. H. Thatcher, P. J. Sime, R. P. Phipps, and Y. Thanavala. 2014. Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection. J. Immunol. 192 (11):5226–35. doi:10.4049/jimmunol.1302584.
  • Mabley, J., S. Gordon, and P. Pacher. 2011. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation 34 (4):231–37. doi:10.1007/s10753-010-9228-x.
  • Machida, H., S. Inoue, A. Igarashi, S. Saitoh, K. Yamauchi, M. Nishiwaki, T. Nemoto, Y. Otaki, M. Sato, K. Sato, et al. 2022. Role of CC chemokine ligand 17 in mouse models of chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 66 (4):428–38. doi:10.1165/rcmb.2021-0069OC.
  • Maeno, T., A. M. Houghton, P. A. Quintero, S. Grumelli, C. A. Owen, and S. D. Shapiro. 2007. CD8+ T cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J. Immunol. 178 (12):8090. doi:10.4049/jimmunol.178.12.8090.
  • Maiellaro, K., and W. R. Taylor. 2007. The role of the adventitia in vascular inflammation. Cardiovasc. Res. 75 (4):640–48. doi:10.1016/j.cardiores.2007.06.023.
  • Mall, M. A. 2016. Unplugging mucus in cystic fibrosis and chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 13 (Suppl 2):S177–85. doi:10.1513/AnnalsATS.201509-641KV.
  • Mano, Y., M. Tsukamoto, K. Y. Wang, T. Nabeshima, K. Kosugi, T. Tajima, Y. Yamanaka, H. Suzuki, M. Kawasaki, E. Nakamura, et al. 2022. Oxidative stress causes muscle structural alterations via p38 MAPK signaling in COPD mouse model. J. Bone Miner. Metab. 40 (6):927–39. doi:10.1007/s00774-022-01371-1.
  • Maslarova, A., M. Alam, C. Reiffurth, E. Lapilover, A. Gorji, and J. P. Dreier. 2011. Chronically epileptic human and rat neocortex display a similar resistance against spreading depolarization in vitro. Stroke 42 (10):2917–22. doi:10.1161/STROKEAHA.111.621581.
  • Mauderly, J. L. 2000. Animal models for the effect of age on susceptibility to inhaled particulate matter. Inhal Toxicol. 12 (9):863–900. doi:10.1080/08958370050123216.
  • Meshi, B., T. Z. Vitalis, D. Ionescu, W. M. Elliott, C. Y. Liu, X. -D. Wang, S. Hayashi, and J. C. Hogg. 2002. Emphysematous lung destruction by cigarette smoke. Am. J. Respir. Cell Mol. Biol. 26 (1):52–57. doi:10.1165/ajrcmb.26.1.4253.
  • Miller, M., A. Pham, J. Y. Cho, P. Rosenthal, and D. H. Broide. 2010. Adiponectin-deficient mice are protected against tobacco-induced inflammation and increased emphysema. Am. J. Physiol. Lung Cell Mol. Physiol. 299 (6):L834–42. doi:10.1152/ajplung.00326.2009.
  • Miller, L. A., C. M. Royer, K. E. Pinkerton, and E. S. Schelegle. 2017. Nonhuman primate models of respiratory disease: Past, present, and future. Ilsr J. 58 (2):269–80. doi:10.1093/ilar/ilx030.
  • Mitzner, W., W. Lee, D. Georgakopoulos, and E. Wagner. 2000. Angiogenesis in the mouse lung. Am. J. Pathol. 157 (1):93–101. doi:10.1016/S0002-9440(10)64521-X.
  • Mossman, B. T., K. M. Lounsbury, and S. P. Reddy. 2006. Oxidants and signaling by mitogen-activated protein kinases in lung epithelium. Am. J. Respir. Cell Mol. Biol. 34 (6):666–69. doi:10.1165/rcmb.2006-0047SF.
  • Mullen, J. B., J. L. Wright, B. R. Wiggs, P. D. Pare, and J. C. Hogg. 1987. Structure of central airways in current smokers and ex-smokers with and without mucus hypersecretion: Relationship to lung function. Thorax 42 (11):843–48. doi:10.1136/thx.42.11.843.
  • Nadadur, S. S., K. E. Pinkerton, and U. P. Kodavanti. 2002. Pulmonary gene expression profiles of spontaneously hypertensive rats exposed to environmental tobacco smoke. Chest 121 (3 Suppl):83s–4s. doi:10.1378/chest.121.3_suppl.83S.
  • Nadziejko, C., K. Fang, A. Bravo, and T. Gordon. 2007. Susceptibility to pulmonary hypertension in inbred strains of mice exposed to cigarette smoke. J. Appl. Physiol. 102 (5):1780–85. doi:10.1152/japplphysiol.01076.2005.
  • Nakanishi, Y., D. Kobayashi, Y. Asano, T. Sakurai, M. Kashimura, S. Okuyama, Y. Yoneda, S. D. Shapiro, and K. Takayama. 2009. Clarithromycin prevents smoke-induced emphysema in mice. Am. J. Respir. Crit. Care Med. 179 (4):271–78. doi:10.1164/rccm.200806-905OC.
  • Ng-Blichfeldt, J. P., R. Gosens, C. Dean, M. Griffiths, and M. Hind. 2019. Regenerative pharmacology for COPD: Breathing new life into old lungs. Thorax 74 (9):890–97. doi:10.1136/thoraxjnl-2018-212630.
  • O’Farrell, H. E., R. Brown, Z. Brown, B. Milijevic, Z. D. Ristovski, R. V. Bowman, K. M. Fong, A. Vaughan, and I. A. Yang. 2021. E-cigarettes induce toxicity comparable to tobacco cigarettes in airway epithelium from patients with COPD. Toxicol in Vitro 75:105204. doi:10.1016/j.tiv.2021.105204.
  • Oldham, M. J., C. R. Coggins, and W. J. McKinney Jr. 2013. A comprehensive evaluation of selected components and processes used in the manufacture of cigarettes: Approach and overview. Inhal Toxicol. 25 Suppl 2 (sup2):1–5. doi:10.3109/08958378.2013.854429.
  • Onor, I. O., D. L. Stirling, S. R. Williams, D. Bediako, A. Borghol, M. B. Harris, T. B. Darensburg, S. D. Clay, S. C. Okpechi, and D. F. Sarpong. 2017. Clinical effects of cigarette smoking: Epidemiologic impact and review of pharmacotherapy options. Int. J. Environ. Res. Public Health 14 (10):1147. doi:10.3390/ijerph14101147.
  • Overbeek, S. A., S. Braber, P. J. Koelink, P. A. Henricks, E. Mortaz, A. T. LoTam Loi, P. L. Jackson, J. Garssen, G. T. Wagenaar, W. Timens, et al. 2013. Cigarette smoke-induced collagen destruction; Key to chronic neutrophilic airway inflammation? PLoS. ONE 8 (1):e55612. doi:10.1371/journal.pone.0055612.
  • Padilla-Carlin, D. J., D. N. McMurray, and A. J. Hickey. 2008. The guinea pig as a model of infectious diseases. Comp. Med. 58 (4):324–40.
  • Park, S. S., Y. Kikkawa, I. P. Goldring, M. M. Daly, M. Zelefsky, C. Shim, M. Spierer, and T. Morita. 1977. An animal model of cigarette smoking in beagle dogs: Correlative evaluation of effects on pulmonary function, defense, and morphology. Am. Rev. Respir. Dis. 115 (6):971–79. doi:10.1164/arrd.1977.115.6.971.
  • Pelgrim, C. E., L. Wang, L. N. Peralta Marzal, S. Korver, I. van Ark, T. Leusink-Muis, S. Braber, G. Folkerts, J. Garssen, A. van Helvoort, et al. 2022. Increased exploration and hyperlocomotion in a cigarette smoke and LPS-induced murine model of COPD: Linking pulmonary and systemic inflammation with the brain. Am. J. Physiol. Lung Cell Mol. Physiol. 323 (3):L251–65. doi:10.1152/ajplung.00485.2021.
  • Perez-Rial, S., A. Giron-Martinez, and G. Peces-Barba. 2015. Modelos animales de enfermedad pulmonar obstructiva crónica. Archivos de Bronconeumología 51 (3):121–27. doi:10.1016/j.arbres.2014.06.016.
  • Pham, A. K., C. W. Wu, X. Qiu, J. Xu, S. Smiley-Jewell, D. Uyeminami, P. Upadhyay, D. Zhao, and K. E. Pinkerton. 2020. Differential lung inflammation and injury with tobacco smoke exposure in Wistar Kyoto and spontaneously hypertensive rats. Inhal Toxicol. 32 (8):328–41. doi:10.1080/08958378.2020.1805052.
  • Pinkerton, K. E., M. Harbaugh, M. K. Han, C. Jourdan Le Saux, L. S. Van Winkle, W. J. Martin 2nd, R. J. Kosgei, E. J. Carter, N. Sitkin, S. M. Smiley-Jewell, et al. 2015. Women and lung disease. Sex differences and global health disparities. Am. J. Respir. Crit. Care Med. 192 (1):11–16. doi:10.1164/rccm.201409-1740PP.
  • Pinkerton, K. E., and M. E. Poindexter. 2018. Harmful interruptions: Impact of smoking patterns on tumorigenesis and emphysema. Am. J. Respir. Cell Mol. Biol. 59 (2):133–34. doi:10.1165/rcmb.2018-0151ED.
  • Plopper, C. G., and D. M. Hyde. 2008. The non-human primate as a model for studying COPD and asthma. Pulm Pharmacol Ther 21 (5):755–66. doi:10.1016/j.pupt.2008.01.008.
  • Polverino, F., B. R. Celli, and C. A. Owen. 2018. COPD as an endothelial disorder: Endothelial injury linking lesions in the lungs and other organs? (2017 Grover Conference Series). Pulm Circ, Lost Valley Conference Center, Sedalia, CO, USA. Vol. 8, 2045894018758528.
  • Polverino, F., M. Doyle-Eisele, J. McDonald, J. A. Wilder, C. Royer, M. Laucho-Contreras, E. M. Kelly, M. Divo, V. Pinto-Plata, J. Mauderly, et al. 2015. A novel nonhuman primate model of cigarette smoke–induced airway disease. Am. J. Pathol. 185 (3):741–55. doi:10.1016/j.ajpath.2014.11.006.
  • Postma, D. S., K. F. Rabe, and J. M. Drazen. 2015. The Asthma–COPD overlap syndrome. N. Engl. J. Med. 373 (13):1241–49. doi:10.1056/NEJMra1411863.
  • Qiu, S. L., Q. X. Sun, J. P. Zhou, H. J. Tang, Y. Q. Chen, F. S. Chen, T. Feng, Z. Q. He, H. J. Qin, and M. C. Duan. 2022. IL-27 mediates anti-inflammatory effect in cigarette smoke induced emphysema by negatively regulating IFN-γ producing cytotoxic CD8 + T cells in mice. Eur. J. Immunol. 52 (2):222–36. doi:10.1002/eji.202049076.
  • Rab, A., S. M. Rowe, S. V. Raju, Z. Bebok, S. Matalon, and J. F. Collawn. 2013. Cigarette smoke and CFTR: Implications in the pathogenesis of COPD. Am. J. Physiol. Lung Cell Mol. Physiol. 305 (8):L530–41. doi:10.1152/ajplung.00039.2013.
  • Raju, S. V., H. Kim, S. A. Byzek, L. P. Tang, J. E. Trombley, P. Jackson, L. Rasmussen, J. M. Wells, E. F. Libby, E. Dohm, et al. 2016. A ferret model of COPD-related chronic bronchitis. JCI Insight 1 (15):e87536. doi:10.1172/jci.insight.87536.
  • Raju, S. V., V. Y. Lin, L. Liu, C. M. McNicholas, S. Karki, P. A. Sloane, L. Tang, P. L. Jackson, W. Wang, L. Wilson, et al. 2016. The cystic fibrosis transmembrane conductance regulator potentiator ivacaftor augments mucociliary clearance abrogating cystic fibrosis transmembrane conductance regulator inhibition by cigarette smoke. Am. J. Respir. Cell Mol. Biol. 56 (1):99–108. doi:10.1165/rcmb.2016-0226OC.
  • Raju, S. V., J. H. Tate, S. K. Peacock, P. Fang, R. A. Oster, M. T. Dransfield, and S. M. Rowe. 2014. Impact of heterozygote CFTR mutations in COPD patients with chronic bronchitis. Respir. Res. 15 (1):18. doi:10.1186/1465-9921-15-18.
  • Ramirez-Venegas, A., C. A. Torres-Duque, N. E. Guzman-Bouilloud, M. Gonzalez-Garcia, and R. H. Sansores. 2019. Small airway disease in COPD associated to biomass exposure. Rev. Invest. Clin. 71 (1):70–78. doi:10.24875/RIC.18002652.
  • Rangasamy, T., C. Y. Cho, R. K. Thimmulappa, L. Zhen, S. S. Srisuma, T. W. Kensler, M. Yamamoto, I. Petrache, R. M. Tuder, and S. Biswal. 2004. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke–induced emphysema in mice. J. Clin. Invest. 114 (9):1248–59. doi:10.1172/JCI200421146.
  • Reece, W. O., and R. A. Ball. 1972. Inhaled cigarette smoke and treadmill-exercised dogs. Arch. Environ. Health 24 (4):262–70. doi:10.1080/00039896.1972.10666081.
  • Roehrs, J. D., W. R. Rogers, and W. G. Johanson. 1981. Bronchial reactivity to inhaled methacholine in cigarette-smoking baboons. J, Appl Physiol. Respir. Environ. Exerc. Physiol. 50 (4):754–60. doi:10.1152/jappl.1981.50.4.754.
  • Saha, S., and C. E. Brightling. 2006. Eosinophilic airway inflammation in COPD. Int J Chron Obstruct Pulmon Dis 1 (1):39–47. doi:10.2147/copd.2006.1.1.39.
  • Salvi, S., and P. J. Barnes. 2010. Is exposure to biomass smoke the biggest risk factor for COPD globally? Chest 138:3–6. doi:10.1378/chest.10-0645.
  • Sana, A., S. M. A. Somda, N. Meda, and C. Bouland. 2018. Chronic obstructive pulmonary disease associated with biomass fuel use in women: A systematic review and meta-analysis. BMJ Open Respir. Res. 5 (1):e000246. doi:10.1136/bmjresp-2017-000246.
  • Schikowski, T., I. C. Mills, H. R. Anderson, A. Cohen, A. Hansell, F. Kauffmann, U. Krämer, A. Marcon, L. Perez, J. Sunyer, et al. 2014. Ambient air pollution: A cause of COPD? Eur. Respir. J. 43 (1):250–63. doi:10.1183/09031936.00100112.
  • Schuliga, M. 2015. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 5 (3):1266–83. doi:10.3390/biom5031266.
  • Selman, M., M. Montano, C. Ramos, B. Vanda, C. Becerril, J. Delgado, R. Sansores, R. Barrios, and A. Pardo. 1996. Tobacco smoke-induced lung emphysema in guinea pigs is associated with increased interstitial collagenase. Am. J. Physiol. 271 (5):L734–43. doi:10.1152/ajplung.1996.271.5.L734.
  • Shan, M., X. Yuan, L. -Z. Song, L. Roberts, N. Zarinkamar, A. Seryshev, Y. Zhang, S. Hilsenbeck, S. H. Chang, C. Dong, et al. 2012. Cigarette smoke induction of osteopontin (SPP1) mediates T H 17 Inflammation in human and experimental emphysema. Sci Transl Med 4 (117):117ra9. doi:10.1126/scitranslmed.3003041.
  • Shapiro, S. D., N. M. Goldstein, A. M. Houghton, D. K. Kobayashi, D. Kelley, and A. Belaaouaj. 2003. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am. J. Pathol. 163 (6):2329–35. doi:10.1016/S0002-9440(10)63589-4.
  • Shaykhiev, R. 2019. Emerging biology of persistent mucous cell hyperplasia in COPD. Thorax 74 (1):4–6. doi:10.1136/thoraxjnl-2018-212271.
  • Shen, Y. H., A. K. Pham, B. Davis, S. Smiley-Jewell, L. Wang, U. P. Kodavanti, M. Takeuchi, D. J. Tancredi, and K. E. Pinkerton. 2016. Sex and strain-based inflammatory response to repeated tobacco smoke exposure in spontaneously hypertensive and Wistar Kyoto rats. Inhal Toxicol 28 (14):677–85. doi:10.1080/08958378.2016.1249812.
  • Shore, S., L. Kobzik, N. C. Long, W. Skornik, C. J. Van Staden, L. Boulet, I. W. Rodger, and D. J. Pon. 1995. Increased airway responsiveness to inhaled methacholine in a rat model of chronic bronchitis. Am. J. Respir. Crit. Care Med. 151 (6):1931–38. doi:10.1164/ajrccm.151.6.7767542.
  • Shu, J., D. Li, H. Ouyang, J. Huang, Z. Long, Z. Liang, Y. Chen, Y. Chen, Q. Zheng, M. Kuang, et al. 2017. Comparison and evaluation of two different methods to establish the cigarette smoke exposure mouse model of COPD. Sci. Rep. 7 (1):15454. doi:10.1038/s41598-017-15685-y.
  • Silverman, E. K. 2020. Genetics of COPD. Annu. Rev. Physiol. 82 (1):413–31. doi:10.1146/annurev-physiol-021317-121224.
  • Sin, D. D., and S. F. Man. 2005. Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. Proc. Am. Thorac Soc. 2 (1):8–11. doi:10.1513/pats.200404-032MS.
  • Smith, K. R., K. E. Pinkerton, T. Watanabe, T. L. Pedersen, S. J. Ma, and B. D. Hammock. 2005. Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. Proc. Natl. Acad. Sci. U.S.A. 102 (6):2186–91. doi:10.1073/pnas.0409591102.
  • Snoderly, H. T., H. Alkhadrawi, D. M. Panchal, K. L. Weaver, J. N. Vito, K. A. Freshwater, S. P. Santiago, I. M. Olfert, T. R. Nurkiewicz, and M. F. Bennewitz. 2023. Short-term exposure of female BALB/cJ mice to e-cigarette aerosol promotes neutrophil recruitment and enhances neutrophil-platelet aggregation in pulmonary microvasculature. J. Toxicol. Environ. Health Part A 86 (8):246–62. doi:10.1080/15287394.2023.2184738.
  • Solomon, G. M., S. V. Raju, M. T. Dransfield, and S. M. Rowe. 2016. Therapeutic approaches to acquired cystic fibrosis transmembrane conductance regulator dysfunction in chronic bronchitis. Ann. Am. Thorac. Soc. 13 (Suppl 2):S169–76. doi:10.1513/AnnalsATS.201509-601KV.
  • Song, Q., P. Chen, and X. M. Liu. 2021. The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD. Respir. Res. 22 (1):39. doi:10.1186/s12931-021-01630-1.
  • Sorroche, P. B., M. Fernandez Acquier, O. Lopez Jove, E. Giugno, S. Pace, B. Livellara, S. Legal, J. Oyhamburu, and M. S. Saez. 2015. Déficit de alfa 1 antitripsina en pacientes con EPOC: estudio de corte transversal. Archivos de Bronconeumología 51 (11):539–43. doi:10.1016/j.arbres.2015.01.008.
  • Stabile, L. P., and J. M. Siegfried. 2003. Sex and gender differences in lung cancer. J. Gend. Specif Med. 6:37–48.
  • Suki, B., S. Sato, H. Parameswaran, M. V. Szabari, A. Takahashi, and E. Bartolak-Suki. 2013. Emphysema and mechanical stress-induced lung remodeling. Physiol. (Bethesda) 28:404–13. doi:10.1152/physiol.00041.2013.
  • Suzuki, M., T. Betsuyaku, Y. Ito, K. Nagai, N. Odajima, C. Moriyama, Y. Nasuhara, and M. Nishimura. 2009. Curcumin attenuates elastase- and cigarette smoke-induced pulmonary emphysema in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 296:L614–23. doi:10.1152/ajplung.90443.2008.
  • Takahashi, K., S. Yokota, N. Tatsumi, T. Fukami, T. Yokoi, and M. Nakajima. 2013. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol. Appl. Pharmacol. 272 (1):154–60. doi:10.1016/j.taap.2013.05.018.
  • Tamimi, A., D. Serdarevic, and N. A. Hanania. 2012. The effects of cigarette smoke on airway inflammation in asthma and COPD: Therapeutic implications. Respir. Med. 106 (3):319–28. doi:10.1016/j.rmed.2011.11.003.
  • Tanner, L., and A. B. Single. 2020. Animal models reflecting chronic obstructive pulmonary disease and related respiratory disorders: Translating pre-clinical data into clinical relevance. J. Innate. Immun. 12 (3):203–25. doi:10.1159/000502489.
  • Tashkin, D. P. 2015. Smoking cessation in chronic obstructive pulmonary disease. Semin Respir. Crit Care Med. 36 (04):491–507. doi:10.1055/s-0035-1555610.
  • Thomas, R. D., and T. J. Vigerstad. 1989. Use of laboratory animal models in investigating emphysema and cigarette smoking in humans. Regul. Toxicol. Pharmacol. 10 (3):264–71. doi:10.1016/0273-2300(89)90053-6.
  • Turino, G. M., S. Ma, Y. Y. Lin, and J. O. Cantor. 2018. The therapeutic potential of hyaluronan in COPD. Chest 153 (4):792–98. doi:10.1016/j.chest.2017.12.016.
  • Vandamme, T. F. 2014. Use of rodents as models of human diseases. J. Pharm. Bioallied Sci. 6 (1):2–9. doi:10.4103/0975-7406.124301.
  • Vesely, D. L., and G. S. Levey. 1978. Nicotine decreases guanylate cyclase activity. Bull Environ. Contam Toxicol. 20 (1):31–34. doi:10.1007/BF01683482.
  • Viegi, G., A. Scognamiglio, S. Baldacci, F. Pistelli, and L. Carrozzi. 2001. Epidemiology of chronic obstructive pulmonary disease (COPD). Respiration 68 (1):4–19. doi:10.1159/000050456.
  • Vlaykova, T., and D. Dimov. 2014. Polymorphisms of matrix metalloproteinases (MMP) in COPD. Biotechnol. Biotechnol. Equip. 26 (Supp1):111–19. doi:10.5504/50YRTIMB.2011.0021.
  • Vucic, E. A., R. Chari, K. L. Thu, I. M. Wilson, A. M. Cotton, J. Y. Kennett, M. Zhang, K. M. Lonergan, K. Steiling, C. J. Brown, et al. 2014. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. Am. J. Respir. Cell Mol. Biol. 50 (5):912–22. doi:10.1165/rcmb.2013-0304OC.
  • Wallis, T. W., W. R. Rogers, and W. G. Johanson. 1982. Effects of acute and chronic exposure to nicotine aerosol on bronchial reactivity to inhaled methacholine. J. Appl Physiol. Respir. Environ. Exerc. Physiol. 52 (4):1071–76. doi:10.1152/jappl.1982.52.4.1071.
  • Wang, Z., S. J. Liu, J. Ma, G. B. Qu, X. Y. Wang, S. J. Yu, J. Y. He, J. F. Liu, T. Xia, and G. B. Jiang. 2013. Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells. ACS Nano 7 (5):4171–86. doi:10.1021/nn400594s.
  • Wanner, A., J. A. Hirsch, D. E. Greeneltch, E. W. Swenson, and T. Fore. 1973. Tracheal mucous velocity in beagles after chronic exposure to cigarette smoke. Arch. Environ. Health 27 (6):370–71. doi:10.1080/00039896.1973.10666405.
  • Whittemore, A. S., S. A. Perlin, and Y. DiCiccio. 1995. Chronic obstructive pulmonary disease in lifelong nonsmokers: Results from NHANES. Am. J. Public Health 85 (5):702–06. doi:10.2105/AJPH.85.5.702.
  • WHO. 2014. Global status report on noncommunicable diseases. World Health Organization.
  • Wright, J. L., and A. Churg. 1990. Cigarette smoke causes physiologic and morphologic changes of emphysema in the guinea pig. Am. Rev. Respir. Dis. 142 (6_pt_1):1422–28. doi:10.1164/ajrccm/142.6_Pt_1.1422.
  • Wright, J. L., and A. Churg. 2002. Animal models of cigarette smoke-induced COPD. Chest 122 (6 Suppl):301s–6s. doi:10.1378/chest.122.6_suppl.301S.
  • Wright, J. L., and A. Churg. 2008a. Animal models of COPD: Barriers, successes, and challenges. Pulm Pharmacol Ther 21 (5):696–98. doi:10.1016/j.pupt.2008.01.007.
  • Wright, J. L., and A. Churg. 2008b. Short-term exposure to cigarette smoke induces endothelial dysfunction in small intrapulmonary arteries: Analysis using guinea pig precision cut lung slices. J. Appl. Physiol. 104 (5):1462–69. doi:10.1152/japplphysiol.00520.2007.
  • Wright, J. L., M. Cosio, and A. Churg. 2008. Animal models of chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell Mol. Physiol. 295 (1):L1–15. doi:10.1152/ajplung.90200.2008.
  • Wright, J. L., S. G. Farmer, and A. Churg. 2002. Synthetic serine elastase inhibitor reduces cigarette smoke–induced emphysema in guinea pigs. Am. J. Respir. Crit. Care Med. 166 (7):954–60. doi:10.1164/rccm.200202-098OC.
  • Wright, J. L., T. Ngai, and A. Churg. 1992. Effect of long-term exposure to cigarette smoke on the small airways of the guinea pig. Exp. Lung Res. 18 (1):105–14. doi:10.3109/01902149209020654.
  • Wright, J. L., and J. P. Sun. 1994. Effect of smoking cessation on pulmonary and cardiovascular function and structure: Analysis of guinea pig model. J. Appl. Physiol. 76 (5):2163–68. doi:10.1152/jappl.1994.76.5.2163.
  • Wright, J. L., S. Zhou, O. Preobrazhenska, C. Marshall, D. D. Sin, I. Laher, S. Golbidi, and A. M. Churg. 2011. Statin reverses smoke-induced pulmonary hypertension and prevents emphysema but not airway remodeling. Am. J. Respir. Crit. Care Med. 183 (1):50–58. doi:10.1164/rccm.201003-0399OC.
  • Wu, J., and D. D. Sin. 2011. Improved patient outcome with smoking cessation: When is it too late? Int J Chron Obstruct Pulmon Dis 6:259–67. doi:10.2147/COPD.S10771.
  • Wu, D. D., J. Song, S. Bartel, S. Krauss-Etschmann, M. G. Rots, and M. N. Hylkema. 2018. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol. Ther. 182:1–14. doi:10.1016/j.pharmthera.2017.08.007.
  • Wu, C. -W., T. Yau, C. C. Fulgar, S. M. Mack, A. M. Revilla, N. J. Kenyon, and K. E. Pinkerton. 2020. Long-term sequelae of smoking and cessation in spontaneously hypertensive rats. Toxicol Pathol 48 (3):422–36. doi:10.1177/0192623319893312.
  • Xi, S., H. Xu, J. Shan, Y. Tao, J. A. Hong, S. Inchauste, M. Zhang, T. F. Kunst, L. Mercedes, and D. S. Schrump. 2013. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J. Clin. Invest. 123:1241–61. doi:10.1172/JCI61271.
  • Yang, H. J., W. H. Tsou, M. C. Shen, C. Y. Liu, H. M. Saunders, K. Y. Wang, and F. L. Douglas. 2022. The effects of hydrogen treatment in a cigarette smoke solution-induced chronic obstructive pulmonary disease-like changes in an animal model. J Thorac Dis 14 (11):4246–55. doi:10.21037/jtd-22-324.
  • Yu, B., U. P. Kodavanti, M. Takeuchi, H. Witschi, and K. E. Pinkerton. 2008. Acute tobacco smoke-induced airways inflammation in spontaneously hypertensive rats. Inhal Toxicol 20 (7):623–33. doi:10.1080/08958370701861538.
  • Yu, X. F., J. Wang, O. UYang, S. G. N, H. Sun, J. Tong, T. Chen, and J. Li. 2019. The role of miR-130a-3p and SPOCK1 in tobacco exposed bronchial epithelial BEAS-2B transformed cells: Comparison to A549 and H1299 lung cancer cell lines. J. Toxicol. Environ. Health Part A 82 (15):862–69. doi:10.1080/15287394.2019.1664479.
  • Zeki, A. A., M. Schivo, A. Chan, T. E. Albertson, and S. Louie. 2011. The asthma-COPD overlap syndrome: A common clinical problem in the elderly. J Allergy (Cairo) 2011:861926. doi:10.1155/2011/861926.
  • Zeng, H., T. Li, X. He, S. Cai, H. Luo, P. Chen, and Y. Chen. 2020. Oxidative stress mediates the apoptosis and epigenetic modification of the Bcl-2 promoter via DNMT1 in a cigarette smoke-induced emphysema model. Respir. Res. 21 (1):229. doi:10.1186/s12931-020-01495-w.
  • Zhang, L., H. Valizadeh, I. Alipourfard, R. Bidares, L. Aghebati-Maleki, and M. Ahmadi. 2020. Epigenetic modifications and therapy in chronic obstructive pulmonary disease (COPD): An update review. COPD 17 (3):333–42. doi:10.1080/15412555.2020.1780576.
  • Zhong, C. Y., Y. M. Zhou, G. C. Douglas, H. Witschi, and K. E. Pinkerton. 2005. MAPK/AP-1 signal pathway in tobacco smoke-induced cell proliferation and squamous metaplasia in the lungs of rats. Carcinogenesis 26 (12):2187–95. doi:10.1093/carcin/bgi189.
  • Zhong, C. Y., Y. M. Zhou, and K. E. Pinkerton. 2008. NF-κB inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats. Toxicol. Appl. Pharmacol. 230 (2):150–58. doi:10.1016/j.taap.2008.02.005.
  • Zhou, X., and E. D. Frohlich. 2007. Analogy of cardiac and renal complications in essential hypertension and aged SHR or L-NAME/SHR. Med Chem 3 (1):61–65. doi:10.2174/157340607779317634.
  • Zhou, J. S., Z. Y. Li, X. C. Xu, Y. Zhao, Y. Wang, H. P. Chen, M. Zhang, Y. F. Wu, T. W. Lai, C. H. Di, et al. 2020. Cigarette smoke-initiated autoimmunity facilitates sensitisation to elastin-induced COPD-like pathologies in mice. Eur. Respir. J. 56 (3):2000404. doi:10.1183/13993003.00404-2020.
  • Zwicker, G. M., R. E. Filipy, J. F. Park, S. M. Loscutoff, H. A. Ragan, and D. L. Stevens. 1978. Clinical and pathological effects of cigarette smoke exposure in beagle dogs. Arch. Pathol. Lab. Med. 102 (12):623–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.