241
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Effects of green tea polyphenols against metal-induced genotoxic damage: underlying mechanistic pathways

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Afzal, O., M. H. Dalhat, A. S. A. Altamimi, R. Rasool, S. I. Alzarea, W. H. Almalki, B. N. Murtaza, S. Iftikhar, S. Nadeem, M. S. Nadeem, et al. 2022. Green tea catechins attenuate neurodegenerative diseases and cognitive deficits. Molecules 27 (21):7604. doi:10.3390/molecules27217604.
  • Al-Basher, G. I. 2019. Green tea activity and iron overload induced molecular fibrogenesis of rat liver. Saudi J. Biol. Sci. 26 (3):531–40. doi:10.1016/j.sjbs.2017.08.007.
  • Alshatwi, A. A., T. N. Hasan, A. M. Alqahtani, N. A. Syed, G. Shafi, A. H. Al-Assaf, and A. S. Al-Khalifa. 2014. Delineating the anti-cytotoxic and anti-genotoxic potentials of catechin hydrate against cadmium toxicity in human peripheral blood lymphocytes. Environ. Toxicol. Pharmacol. 38:653–62. doi:10.1016/j.etap.2014.07.013.
  • Athreya, K., and M. F. Xavier. 2017. Antioxidants in the treatment of cancer. Nutr. Cancer 69 (8):1099–104. doi:10.1080/01635581.2017.1362445.
  • Aziz, A. M., A. S. Diab, and A. A. Mohammed. 2019. Antioxidant categories and mode of action. In Antioxidants, ed. E. Shalaby, 1–20. London: IntechOpen. doi:10.5772/intechopen.83544.
  • Beltz, L. A., D. K. Bayer, A. L. Moss, and I. M. Simet. 2006. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med. Chem. 6 (5):389–406. doi:10.2174/187152006778226468.
  • Bernatoniene, J., and D. M. Kopustinskiene. 2018. The role of catechins in cellular responses to oxidative stress. Molecules 23 (4):965. doi:10.3390/molecules23040965.
  • Blaner, W. S., I. O. Shmarakov, and M. G. Traber. 2021. Vitamin a and vitamin E: Will the real antioxidant please stand up? Annu. Rev. Nutr. 41 (1):105–31. doi:10.1146/annurev-nutr-082018-124228.
  • Carocho, M., and I. C. F. R. Ferreira. 2013. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 51:15–25. doi:10.1016/j.fct.2012.09.021.
  • Demirci-Çekiç, S., G. Özkan, A. N. Avan, S. Uzunboy, E. Çapanoğlu, and R. Apak. 2022. Biomarkers of oxidative stress and antioxidant defense. J. Pharm. Biomed. Anal 209:114477. doi:10.1016/j.jpba.2021.114477.
  • de Oliveira, V. A., A. N. R. Monteiro Fernandes, L. M. Dos Santos Leal, P. A. Ferreira Lima, A. R. Silva Pereira, I. C. Pereira, H. A. Negreiros, J. A. Pereira-Freire, F. C. C. da Silva, A. A. de Carvalho Melo Cavalcante, et al. 2023. α-tocopherol as a selective modulator of toxicogenic damage induced by antineoplastic agents cyclophosphamide and doxorubicin. J. Toxicol. Environ. Health A 86 (4):87–102. doi:10.1080/15287394.2023.2168224.
  • De Sousa, J. A., L. D. S. Prado, B. L. Alderete, F. B. M. Boaretto FBM, M. C. Allgayer, F. M. Miguel, J. T. De Sousa, N. P. Marroni, M. L. B. Lemes, D. S. Corrêa, et al. 2019. Toxicological aspects of Campomanesia xanthocarpa Berg. associated with its phytochemical profile. J. Toxicol. Environ. Health Part A 82 (1):62–74. doi:10.1080/15287394.2018.1562392.
  • Di Marzo, N., E. Chisci, and R. Giovannoni. 2018. The role of hydrogen peroxide in redox-dependent signaling: Homeostatic and pathological responses in mammalian cells. Cells 7 (10):156. doi:10.3390/cells7100156.
  • Dizdaroglu, M., and P. Jaruga. 2012. Mechanisms of free radical-induced damage to DNA. Free Radic. Res. 46:382–419. doi:10.3109/10715762.2011.653969.
  • Dutta, S., B. Gorain, H. Choudhury, S. Roychoudhury, and P. Sengupta. 2022. Environmental and occupational exposure of metals and female reproductive health. Environ. Sci. Pollut. Res. Int. 29 (41):62067–92. doi:10.1007/s11356-021-16581-9.
  • Eghbaliferiz, S., and M. Iranshahi. 2016. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 30 (9):1379–91. doi:10.1002/ptr.5643.
  • Farhan, M., M. Oves, S. Chibber, S. M. Hadi, and A. Ahmad. 2017. Mobilization of nuclear copper by green tea polyphenol epicatechin-3-gallate and subsequent prooxidant breakage of cellular DNA: Implications for cancer chemotherapy. Int. J. Mol. Sci. 18 (1):34. doi:10.3390/ijms18010034.
  • Flora, S. J. 2009. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid. Med. Cell. Longev. 2 (4):191–206. doi:10.4161/oxim.2.4.9112.
  • Forester, S. C., and J. D. Lambert. 2011. The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol. Nutr. Food Res. 55 (6):844–54. doi:10.1002/mnfr.201000641.
  • Francielli De Oliveira, P., L. F. Leandro, R. A. Furtado, N. H. Ferreira, P. M. Pauletti, A. R. Barbosa Araújo, S. A. Uyemura, and D. C. Tavares. 2021. Styrax camporum, a typical species of the Brazilian cerrado, attenuates DNA damage, preneoplastic lesions and oxidative stress in experimental rat colon carcinogenesis. J. Toxicol. Environ. Health Part A 84 (14):582–92. doi:10.1080/15287394.2021.1910090.
  • García-Rodríguez, M. C., M. Altamirano-Lozano, and A. Gordillo-García. 2018. The role of green tea polyphenols in the protection from hexavalent chromium-induced genotoxic damage. In Polyphenols, ed. J. Wong, 51–67. London: IntechOpen. doi:10.5772/intechopen.76651.
  • García-Rodríguez, M. C., M. M. Carvente-Juárez, and M. A. Altamirano-Lozano. 2013. Antigenotoxic and apoptotic activity of green tea polyphenol extracts on hexavalent chromium-induced DNA damage in peripheral blood of CD-1 mice: Analysis with differential acridine orange/ethidium bromide staining. Oxid. Med. Cell. Longev. 2013:1–9. doi:10.1155/2013/486419.
  • García-Rodríguez, M. C., A. R. Montaño-Rodríguez, and M. A. Altamirano-Lozano. 2016. Modulation of hexavalent chromium-induced genotoxic damage in peripheral blood of mice by epigallocatechin-3-gallate (EGCG) and its relationship to the apoptotic activity. J. Toxicol. Environ. Health Part A 79 (1):28–38. doi:10.1080/15287394.2015.1104525.
  • García-Rodríguez, M. C., T. Nicolás-Méndez, A. R. Montaño-Rodríguez, and M. A. Altamirano-Lozano. 2014. Antigenotoxic Effects of (–)-Epigallocatechin-3-Gallate (EGCG), Quercetin, and Rutin on Chromium Trioxide-Induced Micronuclei in the Polychromatic Erythrocytes of Mouse Peripheral Blood. J. Toxicol. Environ. Health Part A 77 (6):324–36. doi:10.1080/15287394.2013.865006.
  • García-Rodríguez, M. C., G. Serrano-Reyes, L. M. Hernández-Cortés, and M. Altamirano-Lozano. 2021. Antigenotoxic effects of (-)-epigallocatechin-3-gallate (EGCG) and its relationship with the endogenous antioxidant system, 8-hydroxydeoxyguanosine adduct repair (8-OHdG), and apoptosis in mice exposed to chromium(VI). J. Toxicol. Environ. Health Part A 84 (8):331–44. doi:10.1080/15287394.2020.1867275.
  • Ghezzi, P. 2020. Environmental risk factors and their footprints in vivo – a proposal for the classification of oxidative stress biomarkers. Redox. Biol. 34:101442. doi:10.1016/j.redox.2020.101442.
  • Giustarini, D., I. Dalle-Donne, D. Tsikas, and R. Rossi. 2009. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 46:241–81. doi:10.3109/10408360903142326.
  • Gonzalez-Hunt, C. P., M. Wadhwa, and L. H. Sanders. 2018. DNA damage by oxidative stress: Measurement strategies for two genomes. Curr. Opin. Toxicol 7:87–94. doi:10.1016/j.cotox.2017.11.001.
  • Gulcin, İ. 2020. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 94 (3):651–715. doi:10.1007/s00204-020-02689-3.
  • Guo, C.-H., S. Hsia, and P.-C. Chen. 2013. Distribution of selenium and oxidative stress in breast tumor-bearing mice. Nutrients 5 (2):594–607. doi:10.3390/nu5020594.
  • Guvvala, P. R., J. P. Ravindra, C. V. Rajani, M. Sivaram, and S. Selvaraju. 2017. Protective role of epigallocatechin-3-gallate on arsenic induced testicular toxicity in Swiss albino mice. Biomed. Pharmacother. 96:685–94. doi:10.1016/j.biopha.2017.09.151.
  • Halliwell, B. 2011. Free radicals and antioxidants – Quo vadis? Trends Pharmacol. Sci. 32:125–30. doi:10.1016/j.tips.2010.12.002.
  • Halliwell, B. 2013. The antioxidant paradox: Less paradoxical now? Br. J. Clin. Pharmacol. 75 (3):637–44. doi:10.1111/j.1365-2125.2012.04272.x.
  • Jiang, Y., J. Pei, Y. Zheng, Y. J. Miao, B. Z. Duan, and L. F. Huang. 2022. Gallic acid: A potential anti-cancer agent. Chin. J. Integr. Med. 28 (7):661–71. doi:10.1007/s11655-021-3345-2.
  • Jomova, K., and M. Valko. 2011. Advances in metal-induced oxidative stress and human disease. Toxicology 283 (2–3):65–87. doi:10.1016/j.tox.2011.03.001.
  • Jones, D. P. 2006. Redefining oxidative stress. Antioxid. Redox Signal. 8:1865–79. doi:10.1089/ars.2006.8.1865.
  • Jung, J.-Y., H.-C. Mo, K.-H. Yang, Y.-J. Jeong, H.-G. Yoo, N.-K. Choi, W.-M. Oh, H.-K. Oh, S.-H. Kim, J.-H. Lee, et al. 2007. Inhibition by epigallocatechin gallate of CoCl2-induced apoptosis in rat PC12 cells. Life Sci. 80 (15):1355–63. doi:10.1016/j.lfs.2006.11.033.
  • Kanner, J. 2020. Polyphenols by generating H2O2, affect cell redox signaling, inhibit PTPs and activate Nrf2 axis for adaptation and cell surviving: In vitro, in vivo and human health. Antioxid. 9 (9):797. doi:10.3390/antiox9090797.
  • Kaushal, S., A. U. Ahsan, V. L. Sharma, and M. Chopra. 2019. Epigallocatechin gallate attenuates arsenic induced genotoxicity via regulation of oxidative stress in Balb/C mice. Mol. Biol. Rep. 46 (5):5355–69. doi:10.1007/s11033-019-04991-5.
  • Khalaf, A. A., W. A. Moselhy, and M. I. Abdel-Hamed. 2012. The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicology 33 (3):280–89. doi:10.1016/j.neuro.2012.02.003.
  • Khan, U. M., M. Sevindik, A. Zarrabi, M. Nami, B. Ozdemir, D. N. Kaplan, Z. Selamoglu, M. Hasan, M. Kumar, M. M. Alshehri, et al. 2021. Lycopene: Food sources, biological activities, and human health benefits. Oxid. Med. Cell Longev. 2021:1–10. doi:10.1155/2021/2713511.
  • Kochman, J., K. Jakubczyk, J. Antoniewicz, H. Mruk, and K. Janda. 2020. Health benefits and chemical composition of matcha green tea: A review. Molecules 26 (1):85. doi:10.3390/molecules26010085.
  • Kopustinskiene, D. M., V. Jakstas, A. Savickas, and J. Bernatoniene. 2020. Flavonoids as anticancer agents. Nutrients 12 (2):457. doi:10.3390/nu12020457.
  • Krewski, D., M. Bird, M. Al-Zoughool, N. Birkett, M. Billard, B. Milton, J. M. Rice, Y. Grosse, V. J. Cogliano, M. A. Hill, et al. 2019. Key characteristics of 86 agents known to cause cancer in humans. J. Toxicol. Environ. Health B 22 (7–8):244–63. doi:10.1080/10937404.2019.1643536.
  • Lushchak, V. I. 2014. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224:164–75. doi:10.1016/j.cbi.2014.10.016.
  • Lushchak, V. I., and O. Lushchak. 2021. Interplay between reactive oxygen and nitrogen species in living organisms. Chem. Biol. Interact. 349:109680. doi:10.1016/j.cbi.2021.109680.
  • Ma, Q. 2013. Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53 (1):401–26. doi:10.1146/annurev-pharmtox-011112-140320.
  • Maddu, N. 2019. Diseases related to types of free radicals. In Antioxidants, ed. E. Shalaby, 1–18. London: IntechOpen. doi:10.5772/intechopen.82879.
  • Majolo, F., S. Bitencourt, B. Wissmann Monteiro, G. Viegas Haute, C. Alves, J. Silva, S. Pinteus, R. C. V. Santos, H. F. V. Torquato, E. J. Paredes-Gamero, et al. 2020. Antimicrobial and antileukemic effects: In vitro activity of Calyptranthes grandifolia aqueous leaf extract. J. Toxicol. Environ. Health Part A 83 (8):289–301. doi:10.1080/15287394.2020.1753606.
  • Maleki, D. P., F. Sadoughi, Z. Asemi, and B. Yousefi. 2022. The role of polyphenols in overcoming cancer drug resistance: A comprehensive review. Cell. Mol. Biol. Lett. 27 (1):1–26. doi:10.1186/s11658-021-00301-9.
  • Malik, A., S. Azam, N. Hadi, and S. M. Hadi. 2003. DNA degradation by water extract of green tea in the presence of copper ions: Implications for anticancer properties. Phytother. Res. 17 (4):358–63. doi:10.1002/ptr.1149.
  • Marreiro, D. D., K. J. Cruz, J. B. Morais, J. B. Beserra, J. S. Severo, and A. R. S. de Oliveira. 2017. Zinc and oxidative stress: Current mechanisms. Antioxid. 6 (2):24. doi:10.3390/antiox6020024.
  • Mizoi, M., F. Takabayashi, M. Nakano, Y. An, Y. Sagesaka, K. Kato, S. Okada, and K. Yamanaka. 2005. The role of trivalent dimethylated arsenic in dimethylarsinic acid-promoted skin and lung tumorigenesis in mice: Tumor-promoting action through the induction of oxidative stress. Toxicol. Lett. 158 (2):87–94. doi:10.1016/j.toxlet.2005.03.009.
  • Musial, C., A. Kuban-Jankowska, and M. Gorska-Ponikowska. 2020. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 21:1744. doi:10.3390/ijms21051744.
  • Nicolás-Méndez, T., A. R. Ortiz-Muñiz, V. M. Mendoza-Núñez, and M. C. García-Rodríguez. 2020. [The role of resveratrol on heavy metal-induced oxidative stress]. Nutr. Hosp. 37 (2):374–83. doi:10.20960/nh.02846.
  • Njus, D., P. M. Kelley, Y.-J. Tu, and H. B. Schlegel. 2020. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic. Biol. Med. 159:37–43. doi:10.1016/j.freeradbiomed.2020.07.013.
  • Olson, K. R., A. Briggs, M. Devireddy, N. A. Iovino, N. C. Skora, J. Whelan, B. P. Villa, X. Yuan, V. Mannam, S. Howard, et al. 2020. Green tea polyphenolic antioxidants oxidize hydrogen sulfide to thiosulfate and polysulfides: A possible new mechanism underpinning their biological action. Redox. Biol. 37:101731. doi:10.1016/j.redox.2020.101731.
  • Ouyang, J., K. Zhu, Z. Liu, and J. Huang. 2020. Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxid. Med. Cell. Longev. 2020:9723686. doi:10.1155/2020/9723686.
  • Ozarowski, M., and T. M. Karpinski. 2021. Extracts and flavonoids of Passiflora species as promising anti-inflammatory and antioxidant substances. Curr. Pharm. Des. 27 (22):2582–604. doi:10.2174/1381612826666200526150113.
  • Pandey, K. B., and S. I. Rizvi. 2010. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid. Med. Cell. Longev. 3:2–12. doi:10.4161/oxim.3.1.10476.
  • Peluso, I., and M. Serafini. 2017. Antioxidants from black and green tea: From dietary modulation of oxidative stress to pharmacological mechanisms. Br. J. Pharmacol. 174:1195–208. doi:10.1111/bph.13649.
  • Phaniendra, A., D. B. Jestadi, and L. Periyasamy. 2015. Free Radicals: Properties, sources, targets, and their implication in various diseases. Ind. J. Clin. Biochem. 30 (1):11–26. doi:10.1007/s12291-014-0446-0.
  • Pisoschi, A. M., and A. Pop. 2015. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 97:55–74. doi:10.1016/j.ejmech.2015.04.040.
  • Przybylska, S. 2020. Lycopene – a bioactive carotenoid offering multiple health benefits: A review. Int. J. Food Sci. Technol 55 (1):11–32. doi:10.1111/ijfs.14260.
  • Rahal, A., A. Kumar, V. Singh, B. Yadav, R. Tiwari, S. Chakraborty, and K. Dhama. 2014. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed. Res. Int. 2014:1–19. doi:10.1155/2014/761264.
  • Rehman, K., F. Fatima, I. Waheed, and M. S. H. Akash. 2018. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 119 (1):157–84. doi:10.1002/jcb.26234.
  • Rice-Evans, C. A., N. J. Miller, P. G. Bolwell, P. M. Bramley, and J. B. Pridham. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22:375–83. doi:10.3109/10715769509145649.
  • Rolt, A., and L. S. Cox. 2020. Structural basis of the anti-ageing effects of polyphenolics: Mitigation of oxidative stress. BMC Chem. 14 (1):50. doi:10.1186/s13065-020-00696-0.
  • Salehi, B., Y. Berkay Yılmaz, G. Antika, T. Boyunegmez Tumer, M. Fawzi Mahomoodally, D. Lobine, M. Akram, M. Riaz, E. Capanoglu, F. Sharopov, et al. 2019. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules 9 (8):356. doi:10.3390/biom9080356.
  • Sarkar, N., and D. Sinha. 2018. Epigallocatechin-3-gallate partially restored redox homeostasis in arsenite-stressed keratinocytes. J. Appl. Toxicol. 38 (8):1071–80. doi:10.1002/jat.3616.
  • Shen, N., T. Wang, Q. Gan, S. Liu, L. Wang, and B. Jin. 2022. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 383:132531. doi:10.1016/j.foodchem.2022.132531.
  • Shi, X., J. Ye, S. S. Leonard, M. Ding, V. Vallyathan, V. Castranova, Y. Rojanasakul, and Z. Dong. 2000. Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of Cr(VI)-induced DNA damage and Cr(IV)- or TPA-stimulated NF-kappaB activation. Mol. Cell. Biochem. 206 (1/2):125–32. doi:10.1023/a:1007012403691.
  • Sies, H., C. Berndt, and D. P. Jones. 2017. Oxidative stress. Annu. Rev. Biochem. 86 (1):715–48. doi:10.1146/annurev-biochem-061516-045037.
  • Singh, P. P., A. Chandra, F. Mahdi, A. Roy, and P. Sharma. 2010. Reconvene and reconnect the antioxidant hypothesis in human health and disease. Indian J. Clin. Biochem. 25 (3):225–43. doi:10.1007/s12291-010-0078-y.
  • Singh, G., R. Thaker, A. Sharma, and D. Parmar. 2021. Therapeutic effects of biochanin A, phloretin, and epigallocatechin-3-gallate in reducing oxidative stress in arsenic-intoxicated mice. Environ. Sci. Pollut. Res. Int. 28:20517–36. doi:10.1007/s11356-020-11740-w.
  • Sinha, D., and M. Roy. 2011. Antagonistic role of tea against sodium arsenite-induced oxidative DNA damage and inhibition of DNA repair in Swiss albino mice. J. Environ. Pathol. Toxicol. Oncol. 30 (4):311–22. doi:10.1615/jenvironpatholtoxicoloncol.v30.i4.40.
  • Spoelstra-de Man, A. M. E., P. W. G. Elbers, and H. M. Oudemans-Van Straaten. 2018. Vitamin C: Should we supplement? Curr. Opin. Crit. Care 24 (4):248–55. doi:10.1097/MCC.0000000000000510.
  • Taraphdar, A. K., M. Roy, and R. K. Bhattacharya. 2001. Natural products and inducers of apoptosis: Implication for cancer therapy and prevention. Curr. Sci. 80:1387–96.
  • Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, and D. J. Sutton. 2012. Heavy metal toxicity and the environment. Exp. Suppl 101:133–64. doi:10.1007/978-3-7643-8340-4_6.
  • Truong, V.-L., and W.-S. Jeong. 2021. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. Int. J. Mol. Sci. 22 (17):9109. doi:10.3390/ijms22179109.
  • Valko, M., K. Jomova, C. J. Rhodes, K. Kuča, and K. Musílek. 2016. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol. 90 (1):1–37. doi:10.1007/s00204-015-1579-5.
  • Valko, M., C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160:1–40. doi:10.1016/j.cbi.2005.12.009.
  • Vertuani, S., A. Angusti, and S. Manfredini. 2004. The antioxidants and pro-antioxidants network: An overview. Curr. Pharm. Des. 10 (14):1677–94. doi:10.2174/1381612043384655.
  • Wang, J., X. Wang, Y. He, L. Jia, C. S. Yang, R. J. Reiter, and J. Zhang. 2019. Antioxidant and pro-oxidant activities of melatonin in the presence of copper and polyphenols in vitro and in vivo. Cells 8 (8):903. doi:10.3390/cells8080903.
  • Weber, D., and T. Grune. 2012. The contribution of β-carotene to vitamin a supply of humans. Mol. Nutr. Food Res. 56 (2):251–58. doi:10.1002/mnfr.201100230.
  • Wu, F., H. Sun, T. Kluz, H. A. Clancy, K. Kiok, and M. Costa. 2012. Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol. App.l Pharmacol. 258 (2):166–75. doi:10.1016/j.taap.2011.10.018.
  • Xu, J., J. T. F. Wise, L. Wang, K. Schumann, Z. Zhang, and X. Shi. 2017. Dual roles of oxidative stress in metal carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 36 (4):345–76. doi:10.1615/JEnvironPatholToxicolOncol.2017025229.
  • Yan, Z., Y. Zhong, Y. Duan, Q. Chen, and F. Li. 2020. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutr. 6 (2):115–23. doi:10.1016/j.aninu.2020.01.001.
  • Ye, Z.-W., J. Zhang, D. M. Townsend, and K. D. Tew. 2015. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim. Biophys. Acta 1850 (8):1607–21. doi:10.1016/j.bbagen.2014.11.010.
  • Zakeri, N., M. R. Kelishadi, O. Asbaghi, F. Naeini, M. Afsharfar, E. Mirzadeh, and S. K. Naserizadeh. 2021. Selenium supplementation and oxidative stress: A review. Pharma. Nutr. 17:100263. doi:10.1016/j.phanu.2021.100263.
  • Zhao, T., C. Li, S. Wang, and X. Song. 2022. Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology. Molecules 27 (12):3909. doi:10.3390/molecules27123909.
  • Zhu, Y., and M. Costa. 2020. Metals and molecular carcinogenesis. Carcinogenesis 41 (9):1161–72. doi:10.1093/carcin/bgaa076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.