313
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Upper Ordovician carbon isotope chemostratigraphy and a high-resolution assessment of the Hirnantian Stage in the Baltic Sea subsurface

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon &
Received 10 Aug 2023, Accepted 04 Feb 2024, Published online: 07 May 2024

References

  • Achab, A., Asselin, E., Desrochers, A., Riva, J.F. & Farley, C., 2011: Chitinozoan biostratigraphy of a new Upper Ordovician stratigraphic framework for Anticosti Island, Canada. GSA Bulletin 123, 186–205. doi: 10.1130/B30131.1
  • Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J. & Tinn, O., 2010: Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology 294, 189–201. doi: 10.1016/j.palaeo.2010.01.003
  • Amberg, C., Collart, T., Salenbien, W., Egger, L., Munnecke, A., Nielsen, A., Monnet, C., Hammer, O. & Vandenbroucke, T., 2016: The nature of Ordovician limestone-marl alternations in the Oslo-Asker District (Norway): witnesses of primary glacio-eustasy or diagenetic rhythms? Scientific Reports 6, 18787. doi: 10.1038/srep18787
  • Bauert, H., Ainsaar, L., Põldsaar, K. & Sepp, S., 2014: Δ13c chemostratigraphy of the Middle and Upper Ordovician succession in the Tartu-453 drillcore, southern Estonia, and the significance of the HICE. Estonian Journal of Earth Sciences 63, 195–200. doi: 10.3176/earth.2014.18
  • Bergström, S.M. & Bergström, J., 1996: The Ordovician-Silurian boundary successions in Östergötland and Västergötland, S. Sweden. GFF 118, 25–42. doi: 10.1080/11035899609546227
  • Bergström, S.M., Calner, M., Lehnert, O. & Noor, A., 2011: A new upper Middle Ordovician–Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 1. Stratigraphical review with regional comparisons. GFF 133, 149–171. doi: 10.1080/11035897.2011.622049
  • Bergström, S.M., Chen, X., Gutiérrez-Marco, J.C. & Dronov, A., 2009: The new chronostratigraphic classification of the Ordovician system and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia 42, 97–107. doi: 10.1111/j.1502-3931.2008.00136.x
  • Bergström, S.M., Eriksson, M.E., Schmitz, B., Young, S.A. & Ahlberg, P., 2016: Upper Ordovician δ13Corg chemostratigraphy, K-bentonite stratigraphy, and biostratigraphy in southern Scandinavia: a reappraisal. Palaeogeography, Palaeoclimatology, Palaeoecology 454, 175–188. doi: 10.1016/j.palaeo.2016.04.037
  • Bergström, S.M., Eriksson, M.E., Young, S.A., Ahlberg, P. & Schmitz, B., 2014: Hirnantian (latest Ordovician) δ13C chemostratigraphy in southern Sweden and globally: a refined integration with the graptolite and conodont zone successions. GFF 136, 355–386. doi: 10.1080/11035897.2013.851734
  • Bergström, S.M., Eriksson, M.E., Young, S.A. & Widmark, E.-M., 2012a: Conodont biostratigraphy, and δ13C and δ34S isotope chemostratigraphy, of the uppermost Ordovician and Lower Silurian at Osmundsberget, Dalarna. Sweden. GFF 134, 251–272. doi: 10.1080/11035897.2012.758169
  • Bergström, S.M., Kleffner, M. & Eriksson, M.E., 2020a: Upper Katian (Upper Ordovician) trans-Atlantic δ13C chemostratigraphy: the geochronological equivalence of the ELKHORN and PAROVEJA excursions and its implications. Lethaia 53, 199–216. doi: 10.1111/let.12351
  • Bergström, S.M., Lehnert, O., Calner, M. & Joachimski, M.M., 2012b: A new upper Middle Ordovician–Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 2. Significance of δ13C chemostratigraphy. GFF 134, 39–63. doi: 10.1080/11035897.2012.657231
  • Bergström, S.M., Saltzman, M.M. & Schmitz, B., 2006: First record of the Hirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications. Geological Magazine 143, 657–678. doi: 10.1017/S0016756806002469
  • Bergström, S.M., Schmitz, B., Terfelt, F., Eriksson, M.E. & Ahlberg, P., 2020b: The δ13C chemostratigraphy of Ordovician global stage stratotypes: geochemical data from the Floian and Sandbian GSSPs in Sweden. GFF 142, 23–32. doi: 10.1080/11035897.2019.1631883
  • Brand, U. & Veizer, J., 1981: Chemical diagenesis of a multicomponent carbonate system – 2: stable isotopes. Journal of Sedimentary Petrology 51, 987–997.
  • Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T., Meidla, T. & Nõlvak, J., 2003: High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin 115, 89–104. doi: 10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2
  • Brenchley, P.J. & Cocks, L., 1982: Ecological associations in a regressive sequence: the latest Ordovician of the Oslo-Asker district, Norway. Palaeontology 25, 783–815.
  • Calner, M., Bockelie, J.F., Rasmussen, CMØ, Calner, H., Lehnert, O. & Joachimski, M.M., 2021: Carbon isotope chemostratigraphy and sea-level history of the Hirnantian Stage (uppermost Ordovician) in the Oslo-Asker district, Norway. Geological Magazine 158, 1977–2008. doi: 10.1017/S0016756821000546
  • Calner, M., Lehnert, O. & Nõlvak, J., 2010: Palaeokarst evidence for widespread regression and subaerial exposure in the middle Katian (Upper Ordovician) of Baltoscandia: significance for global climate. Palaeogeography, Palaeoclimatology, Palaeoecology 296, 235–247. doi: 10.1016/j.palaeo.2009.11.028
  • Catuneanu, O., 2006: Principles of Sequence Stratigraphy. Elsevier, Amsterdam. 386 pp.
  • Chen, X., Rong, J., Fan, J., Zhan, R., Mitchell, C., Harper, D., Melchin, M., Ping’an, P., Finney, S. & Wang, X., 2006: The Global Boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes 29, 183–195. doi: 10.18814/epiiugs/2006/v29i3/004
  • Ebbestad, J.O.R., Högström, A.E.S., Frisk, ÅM, Martma, T., Kaljo, D., Kröger, B. & Pärnaste, H., 2014: Terminal Ordovician stratigraphy of the Siljan district, Sweden. GFF 137, 36–56. doi: 10.1080/11035897.2014.945620
  • Fan, J., Peng, P. & Melchin, M.J., 2009: Carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary, Yichang, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 276, 160–169. doi: 10.1016/j.palaeo.2009.03.007
  • Finney, S.C., Berry, W.B.N., Cooper, J.D., Ripperdan, R.L., Sweet, W.C., Jacobson, S.R., Soufiane, A., Achab, A. & Noble, P.J., 1999:Late Ordovician mass extinction: a new perspective from stratigraphic sections in central Nevada. Geology 27, 215–218. doi: 10.1130/0091-7613(1999)027<0215:LOMEAN>2.3.CO;2
  • Ghienne, J.-F., Desrochers, A., Vandenbroucke, T.R.A., Achab, A., Asselin, E., Dabard, M.-P., Farley, C., Loi, A., Paris, F., Wickson, S. & Veizer, J., 2014: A Cenozoic-style scenario for the end-Ordovician glaciation. Nature Communications 5, 1–9. doi: 10.1038/ncomms5485
  • Goldman, D., Sadler, P.M. & Leslie, S.A., 2020: The ordovician period. In F.M. Gradstein, J.G. Ogg, M.D Schmitz & G.M. Ogg (eds.): Geologic Time Scale 2020, 631–694. Elsevier, Amsterdam.
  • Harper, D.A.T., Hammarlund, E.U. & Rasmussen, CMØ, 2014: End Ordovician extinctions: a coincidence of causes. Gondwana Research 25, 1294–1307. doi: 10.1016/j.gr.2012.12.021
  • Harper, D.A.T. & Hints, L., 2016: Hirnantian (Late Ordovician) brachiopod faunas across Baltoscandia: a global and regional context. Palaeogeography, Palaeoclimatology, Palaeoecology 444, 71–83. doi: 10.1016/j.palaeo.2015.11.044
  • Harris, M.T., Sheehan, P.M., Ainsaar, L., Hints, L., Männik, P., Nõlvak, J. & Rubel, M., 2004: Upper Ordovician sequences of western Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 135–148. doi: 10.1016/j.palaeo.2004.02.045
  • Hints, L., Oraspõld, A. & Nõlvak, J., 2005: The Pirgu Regional Stage (Upper Ordovician) in the East Baltic; lithostratigraphy, biozonation, and correlation. Proceedings of the Estonian Academy of Sciences, Geology = Eesti Teaduste Akadeemia Toimetised, Geoloogia 54, 225–259.
  • Hints, O., Martma, T., Männik, P., Nõlvak, J., Põldvere, A., Shen, Y. & Viira, V., 2014: New data on Ordovician stable isotope record and conodont biostratigraphy from the Viki reference drill core, Saaremaa Island, western Estonia. GFF 136, 100–104. doi: 10.1080/11035897.2013.873989
  • Jaanusson, V., 1973: Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia 6, 11–34. doi: 10.1111/j.1502-3931.1973.tb00871.x
  • Jaanusson, V., 1982: The Siljan district. In D.L. Bruton & S.H. Williams (eds.): IV. International Symposium on the Ordovician System. Field Excursion Guide, 15–42. Palaeontological Contributions from the University of Oslo, Oslo.
  • Jaanusson, V., 1995: Confacies differentiation and Upper Midde Ordovician correlation in the Baltoscandian. Proceedings of the Estonian Academy of Sciences. Geology 44, 73–86. doi: 10.3176/geol.1995.2.01
  • Jones, D.S., Fike, D.A., Finnegan, S., Fischer, W.W., Schrag, D.P. & McCay, D., 2011: Terminal Ordovician carbon isotope stratigraphy and glacioeustatic sea-level change across Anticosti Island (Québec, Canada). GSA Bulletin 123, 1645–1664. doi: 10.1130/B30323.1
  • Kaljo, D., Martma, T. & Saadre, T., 2007: Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 138–155. doi: 10.1016/j.palaeo.2006.02.020
  • Kiipli, E. & Kiipli, T., 2020: Hirnantian sea-level changes in the Baltoscandian Basin, a review. Palaeogeography, Palaeoclimatology, Palaeoecology 540, 109524. doi: 10.1016/j.palaeo.2019.109524
  • Kröger, B., Ebbestad, J.O.R., Lehnert, O., Ullmann, C.V., Korte, C., Frei, R. & Rasmussen, CMØ, 2015: Subaerial speleothems and deep karst in central Sweden linked to Hirnantian glaciations. Journal of the Geological Society 172, 349–356. doi: 10.1144/jgs2014-071
  • Kröger, B., Penny, A., Shen, Y. & Munnecke, A., 2019: Algae, calcitarchs and the Late Ordovician Baltic limestone facies of the Baltic Basin. Facies 66, 1. doi: 10.1007/s10347-019-0585-0
  • Kump, L.R., Arthur, M.A., Patzkowsky, M.E., Gibbs, M.T., Pinkus, D.S. & Sheehan, P.M., 1999: A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 173–187. doi: 10.1016/S0031-0182(99)00046-2
  • Ling, M.-X., Zhan, R.-B., Wang, G.-X., Wang, Y., Amelin, Y., Tang, P., Liu, J.-B., Jin, J., Huang, B., Wu, R.-C., Xue, S., Fu, B., Bennett, V.C., Wei, X., Luan, X.-C., Finnegan, S., Harper, D.A.T. & Rong, J.-Y., 2019: An extremely brief end Ordovician mass extinction linked to abrupt onset of glaciation. Solid Earth Sciences 4, 190–198. doi: 10.1016/j.sesci.2019.11.001
  • Männil, R., 1966: Evolution of the Baltic Basin during the Ordovician. Valgus, Tallinn. 200 pp. [in Russian with English summary].
  • Melchin, M.J. & Holmden, C., 2006: Carbon isotope chemostratigraphy of the Llandovery in Arctic Canada: implications for global correlation and sea-level change. GFF 128, 173–180. doi: 10.1080/11035890601282173
  • Nielsen, A.T., Ahlberg, P., Ebbestad, J.O.R., Hammer, Ø., Harper, D.A.T., Lindskog, A., Rasmussen, C.M.Ø. & Stouge, S., 2023: The Ordovician of Scandinavia: a revised regional stage classification. Geological Society, London, Special Publications 532, 267–315. doi: 10.1144/SP532-2022-157
  • Põldvere, A., 2010: Estonian geological sections. Viki drill core. Geological Survey of Estonia Bulletin 10, 1–56.
  • Rasmussen, CMØ, Ebbestad, J.O.R. & Harper, D.A.T., 2010: Unravelling a Late Ordovician pentameride (Brachiopoda) hotspot from the Boda Limestone, Siljan district, central Sweden. GFF 132, 133–152. doi: 10.1080/11035897.2010.506008
  • Rasmussen, CMØ & Harper, D.A.T., 2011: Interrogation of distributional data for the end-Ordovician crisis interval: where did disaster strike? Geological Journal 46, 478–500. doi: 10.1002/gj.1310
  • Rasmussen, CMØ, Vandenbroucke, T.R.A., Nogues-Bravo, D. & Finnegan, S., 2023: Was the Late Ordovician mass extinction truly exceptional? Trends in Ecology and Evolution 38, 812–821. doi: 10.1016/j.tree.2023.04.009
  • Ripperdan, R.L., Cooper, J.D. & Firmey, S.R., 1998: High-resolution 813C and lithostratigraphic profiles from Copenhagen Canyon, Nevada: Clues to the behaviour of ocean carbon during the Late Ordovician global crisis. Mineralogical Magazine 62A, 1279–1280. doi: 10.1180/minmag.1998.62A.3.03
  • Rong, J., Harper, D.A.T., Huang, B., Li, R., Zhang, X. & Chen, D., 2020:: The latest Ordovician Hirnantian brachiopod faunas: New global insights. Earth-Science Reviews 208, 103280. doi: 10.1016/j.earscirev.2020.103280
  • Schmitz, B. & Bergström, S.M., 2007: Chemostratigraphy in the Swedish Upper Ordovician: regional significance of the Hirnantian δ13C excursion (HICE) in the Boda Limestone of the Siljan region. GFF 129, 133–140. doi: 10.1080/11035890701292133
  • Schobben, M., Ullmann, C.V., Leda, L., Korn, D., Struck, U., Reimold, W.U., Ghaderi, A., Algeo, T.J. & Korte, C., 2016: Discerning primary versus diagenetic signals in carbonate carbon and oxygen isotope records: an example from the Permian–Triassic boundary of Iran. Chemical Geology 422, 94–107. doi:10.1016/j.chemgeo.2015.12.013.
  • Stridsberg, S., 1975: Sedimentology of upper Ordovician regressive strata in Västergötland. Publications from the Institutes of Mineralogy, Paleontology, and Quaternary Geology, University of Lund 230, 214–221.
  • Stridsberg, S., 1980: Sedimentology of upper ordovician regressive strata in Västergötland. GFF 102, 213–221.
  • Sutcliffe, O.E., Dowdeswell, J.A., Whittington, R.J., Theron, J.N. & Craig, J., 2000: Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth’s orbit. Geology 28, 967–970. doi: 10.1130/0091-7613(2000)28<967:CTLOGA>2.0.CO;2
  • Suzuki, Y., Shiino, Y. & Bergström, J., 2009: Stratigraphy, carbonate facies and trilobite associations in the Hirnantian part of the Boda Limestone, Sweden. GFF 131, 299–310. doi: 10.1080/11035890903452670
  • Wang, G., Zhan, R. & Percival, I.G., 2019: The end-Ordovician mass extinction: a single-pulse event? Earth-Science Reviews 192, 15–33. doi: 10.1016/j.earscirev.2019.01.023