276
Views
17
CrossRef citations to date
0
Altmetric
Review

An outline of main factors of drug resistance influencing cancer therapy

, , , , , , & show all

References

  • Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Canc Inst. 2007;99:1441–54.10.1093/jnci/djm135
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.10.1038/35025220
  • Mitrus I, Szala S. Chemioterapia – główne przyczyny niepowodzeń [Chemotherapy - the main cause of failure]. J Oncol. 2009;59:368–76.
  • Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Update. 2011;14:191–201.10.1016/j.drup.2011.03.001
  • Bristow RG, Hill RP. Hypoxia and metabolism: hypoxia, DNA repair and genetic instability. Nat Rev Canc. 2008;8:180–92.10.1038/nrc2344
  • Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33:207–14.10.1016/j.tips.2012.01.005
  • Webb BA, Chimenti M, Jacobson M. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Canc. 2011;11:671–7.10.1038/nrc3110
  • Halestrap AP, Wilson MC. The monocarboxylate transporter family. Role and regulation. IUBMB Life. 2012;64:109–19.10.1002/iub.572
  • Mahoney BP, Raghunand N, Baggett B. Tumor acidity, ion trapping and chemotherapeutics I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol. 2003;66:1207–18.10.1016/S0006-2952(03)00467-2
  • Raghunand N, Mahoney BP, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol. 2003;66:1219–29.10.1016/S0006-2952(03)00468-4
  • Wojtkowiak JW, Verduzco D, Schramm kJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm. 2011;8:2032–8.10.1021/mp200292c
  • Palazón A, Aragonés J, Morales-Kastresana A, de Landazuri MO, Melero I. Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin Canc Res. 2012;18:1207–13.10.1158/1078-0432.CCR-11-1591
  • Senn HJ, Drings P, Glaus A. Kompedium onkologii [A compendium of oncology]. Wyd Lek PZWL. 1995.
  • Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Brit J Radiol. 1953;26:638–48.10.1259/0007-1285-26-312-638
  • Zhou SF, Wang LL, Di YM, Xue CC, Duan W, Li CG. Substrates and inhibitors of human multidrug resistance associated proteins and implications in drug development. Curr Med Chem. 2008;15:1981–2039.10.2174/092986708785132870
  • Wu CP, Hsieh CH, Wu YS. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol Pharm. 2011;8:1996–2011.10.1021/mp200261n
  • Roy U, Bulot C, Bentrup KH, Mondal D. Specific increase in MDR1 mediated drug-efflux in human brain endothelial cells following co-exposure to HIV-1 and saquinavir. Plos One. 2013;8(10):e75374.
  • Donmez CY, Kuhnweeraphong N, Parveen Z, Schmid D, Artaker M, Ecker GF. Pore-exposed tyrosine residues of P-glycoprotein are important hydrogen-bonding partners for drugs. Mol Pharm. 2014;85:420–8.10.1124/mol.113.088526
  • Dębska S, Owecka A, Czernek U, Szydłowska-Pazera K, Habib M, Potemski P. Transportery błonowe ABCC – budowa, funkcja i znaczenie w mechanizmach wytwarzania oporności wielolekowej w komórkach nowotworów złośliwych [Transmembrane transporters ABCC - structure, function and role in multidrug resistance of cancer cells]. PHiMD. 2011;65:552–61.
  • Kovalev AA, Tsvetaeva DA, Grudinskaja TV. Role of ABC-cassette transporters (MDR1, MRP1, BCRP) in the development of primary and acquired multipledrug resistance in patients with early and metastatic breast cancer. Exp Oncol. 2013;35:287–90.
  • Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci. 1998;95(26):15665–70.10.1073/pnas.95.26.15665
  • Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantroneresistant cells: demonstration of homology to ABC transport genes. Canc Res. Advances in Brief. 1999;59:8–13.
  • Gutmann H, Fricker G, Török M, Michael S, Beglinger Ch, Drewe J. Evidence for different ABC-transporters in caco-2 cells modulating drug uptake. Pharm Res. 1999;16(3):402–7.10.1023/A:1018825819249
  • Tobe SW, Noble-Topham SE, Andrulis IL, Hartwick RW, Skorecki KL, Warner E. Expression of the multiple drug resistance gene in human renal cell carcinoma depends on tumor histology, grade, and stage. Clin Canc Res. 1995;1(12):1611–5.
  • Lemos C, Jansen G, Peters GJ. Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. Br J Canc. 2008;98:857–62.10.1038/sj.bjc.6604213
  • Nooter K, Westerman AM, Flens MJ, Zaman GJ, Scheper RJ, van Wingerden KE, et al. Expression of the multidrug resistance-associated protein (MRP) gene in human cancers. Clin Canc Res. 1995;1(11):1301–10.
  • Seebacher N, Lane DJR, Richardson DR, Jansson PJ. Turning the gun on cancer: utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic Biol Med. 2016;96:432–45.10.1016/j.freeradbiomed.2016.04.201
  • Silva KL, Silva de Souza P, Nestal de Moraes G, Moellmann-Coelho A, Vasconcelos F, Ciuvalschi Maia R. XIAP and P-glycoprotein co-expression is related to imatinib resistance in chronic myeloid leukemia cells. Leukemia Res. 2013;37:1350–8.10.1016/j.leukres.2013.06.014
  • Harmsen S, Meijerman I, Maas-Bakker RF, Beijnen JH, Schellens JHM. PXR-mediated P-glycoprotein induction by small molecule tyrosine kinase inhibitors. Eur J Pharm Sci. 2013;48:644–9.10.1016/j.ejps.2012.12.019
  • Lemos C, Kathmann I, Giovannetti E, Calhau C, Jansen C, Peters GJ. Impact of cellular folate status and epidermal growth factor receptor expression on BCRP/ABCG2-mediated resistance to gefitinib and erlotinib. Br J Canc. 2009;100:1120–7.10.1038/sj.bjc.6604980
  • Navarro G, Sawant RR, Biswas S, Essex S, Tros de Ilarduya C, Torchilin VP. P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine. 2012;7:65–78.10.2217/nnm.11.93
  • Bradshaw-Pierce EL, Pitts TM, Tan AC, McPhillips K, West M, Gustafson DL. Tumor P-glycoprotein correlates with efficacy of PF-3758309 in in vitro and in vivo models of colorectal cancer. Front Pharmacol. 2013;4:22.doi: 10.3389/fphar.2013.00022.
  • Ahn M, Ghaemmagami S, Huang Y, Phuan PW, May BCH, Giles K. Pharmackokinetics of quinacrine efflux from mouse brain via the P-glycoprotein efflux transporter. Plos One. 2012;7(7):e39112.
  • Beck WT. Mechanisms of multidrug resistance in human tumor cells. The roles of P-glycoprotein, DNA topoisomerase II, and other factors. Cancer Treat Rev. 1990;17:11–20.10.1016/0305-7372(90)90011-4
  • Li X, Hu J, Wang B, Sheng L, Liu Z, Yang S. Inhibitory effects of herbal constituents on P-glycoprotein in vitro and in vivo: herb-drug interactions mediated via p-gp. Toxicol Appl Pharm. 2013;275:163–75.
  • Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI. Engineered design of mesopourous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. Am Chem Soc. 2010;4:4539–50.
  • Malmo J, Sandvig A, Varum KM, Strand SP. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood brain barrier: a siRNA chitosan approach. Plos One. 2013;8(1):e54182.
  • Kaczorowski S, Ochocka M, Kaczorowska M, Aleksandrowicz R, Matysiakl M, Karwacki M. Is P-glycoprotein a sufficient marker for multidrug resistance in vivo? immunohistochemical staining for P-glycoprotein in children and adult leukemia: correlation with clinical outcome. Lymphoma. 1995;20(1–2):143–52.10.3109/10428199509054766
  • Angelini A, Di Pietro R, Centurione L, Castellani ML, Conti P, Porreca E, et al. Inhibition of P-glycoprotein-mediated transport by s-adenosylmethionine and cynarin in multidrug-resistant human uterine sarcoma MES-SA/Dx5 cells. J Biol Regul Homeost Agents. 2011;26:495–504.
  • Visvader JE, Lindeman GJ. Cancer stem cells in solid tumors: accumulating evidences and unresolved questions. Nat Rev Canc. 2008;8:755–68.10.1038/nrc2499
  • Wieczorek K, Niewiarowska J. Nowotworowe komórki macierzyste. PH iMD. 2012;66:629–36.
  • Fang A, Nguyen TK, Leisheat K, Finko R, Kulp AN, Hotz S, et al. A tumorogenic subpopulation with stem cell properties in melanomas. J Canc Res. 2005;65:9328–9337.
  • Prabhu VV, Allen JE, Hong B, Zhang S, Cheng H, El-Deiry WS. Therapeutic targeting of the p53 pathway in cancer stem cells. Expert Opin Ther Targets. 2012;16:1161–74.10.1517/14728222.2012.726985
  • Blagosklonny MV. Target for cancer therapy: proliferating cells or stem cells. Leukemia. 2006;20:385–91.10.1038/sj.leu.2404075
  • Baccelli I, Trumpp A. The evolving concept of cancer and metastasis stem cell. J Cell Biol. 2012;198:281–93.10.1083/jcb.201202014
  • Schwarz-Cruz-y-Celis A, Mendelez-Zajgla J. Cancer stem cells. Revista de investigacion clinica. 2011;63:179–86.
  • Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481:85–9.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.10.1016/j.cell.2011.02.013
  • Happo L, Strasser A, Cory S. BH3-only proteins in apoptosis at a glance. J Cell Sci. 2012;125:1081–7.10.1242/jcs.090514
  • Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205:275–92.10.1002/(ISSN)1096-9896
  • Chonghaile TN, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A, Moore V. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 2011;334:1129–33.10.1126/science.1206727
  • Wong FY, Liem N, Xie C, Yan FL, Wong WC, Wang L, et al. Combination therapy with gossypol reveals synergism against gemcitabine resistance in cancer cells with highBCL-2 expression. Plos One. 2012;7(12):e50786.
  • Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Canc Res. 1995;55:4438–45.
  • Geng M, Wang L, Li P. Correlation between chemosensitivity to anticancer drugs and Bcl-2 expression in gastric cancer. Int J Clin Exp Pathol. 2013;6:2554–9.
  • Myashita T, Reed JC. Bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res. 1992;52:5407–11.
  • Siegel RM, Katsumata M, Miyashita T, Louie DC, Greene MI, Reed J. Inhibition of thymocyte apoptosis and negative antigenic selection in bcl-2 transgenic. Proc Natl Acad Sci USA. 1992;89:7003–7.10.1073/pnas.89.15.7003
  • Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon CH, et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood. 1993;81:3091–6.
  • Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene. 2008;27:2–19.10.1038/onc.2009.39
  • Tan TT, Degenhardt K, Nelson DA, Beaudoin B, Nieves-Neira W, Bouilet P, et al. Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Canc Cell. 2005;7:227–38.10.1016/j.ccr.2005.02.008
  • Jeffers JR, Parganas E, Lee Y, Yang CH, Wang JL, Brennan J. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Canc Cell. 2003;4:321–8.10.1016/S1535-6108(03)00244-7
  • Moore VDG, Letai A. BH3 profiling – measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Canc Lett. 2013;332:202–5.10.1016/j.canlet.2011.12.021
  • Labi V, Grespi F, Baumgartner F, Villuger A. Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell death Differ. 2008;15:977–87.10.1038/cdd.2008.37
  • Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B. Role of BAX in the apoptotic response to anticancer agents. Science. 2000;290:989–92.10.1126/science.290.5493.989
  • Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets. 2014;15:80–9.10.2174/1389450114666140106101412
  • Mathivanan S. Exosomes and shedding microvesicles are mediators of intracellular communications: how do they communicate with the target cells? Biotech Biomater. 2012;2:e110.
  • Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 2010;9:1085–1099.10.1074/mcp.M900381-MCP200
  • Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis and drug resistance: a comprehensive review. Canc Metastasis Rev. 2013;32:623–42.10.1007/s10555-013-9441-9
  • Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fai S. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 2008;15:80–8.10.1038/sj.cdd.4402237
  • Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids – the mix of hormones and biomarkers. Nature Reviews. Clin Oncol. 2011;8:467–77.
  • Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. Plos One. 2012;7:e30679.10.1371/journal.pone.0030679
  • Yang M, Chen J, Su F, Yu B, Su F, Lin L, et al. Microvesicles secreted by macrophages shuttle invasionpotentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10:117.doi: 10.1186/1476-4598-10-117.10.1186/1476-4598-10-117
  • King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.doi: 10.1186/1471-2407-12-421.10.1186/1471-2407-12-421
  • Shedden K, Xie TX, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Canc Res. 2003;63:4331–7.
  • Corcoran C, Rani S, O’Brien K, O’Neill A, Prencipe M, Sheikh R. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. Plos One. 2012;7(12):e50999.10.1371/journal.pone.0050999

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.