71
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lire le passé forestier dans un bourbier : histoire écologique et dynamique contemporaine d’une population marginale nordique d’érable rouge (Acer rubrum)

, , , ORCID Icon & ORCID Icon
Received 18 Apr 2023, Accepted 10 Oct 2023, Published online: 15 Nov 2023

References

  • Abrams MD. 1998. The red maple paradox. Bioscience. 48(5):355–364. doi: 10.2307/1313374.
  • Alderman DR Jr, Bumgardner MS, Baumgras JE. 2005. An assessment of the red maple resource in the northeastern United States. North J Appl For. 22(3):181–189. doi: 10.1093/njaf/22.3.181.
  • Ali AA, Asselin H, Larouche AC, Bergeron Y, Carcaillet C, Richard PJH. 2008. Changes in fire regime explain the Holocene rise and fall of Abies balsamea in the coniferous forests of western Québec, Canada. Holocene. 18(5):693–793. doi: 10.1177/0959683608091780.
  • Ali AA, Blarquez O, Girardin MP, Hély C, Tinquaut F, El Guellab A, Valsecchi V, Terrier A, Bremond L, Genries A, et al. 2012. Control of the multimillennial wildfire size in boreal north America by spring climatic conditions. Proc Natl Acad Sci. 109(51):20966–20970. doi:10.1073/pnas.1203467109.
  • Anderson TW. 1995. Forest changes in the Great Lakes region at 5-7 ka BP. Géogr Phys Quat. 49(1):99–116. doi: 10.7202/033032ar.
  • Antonovics J, McKane AJ, Newman TJ. 2006. Spatiotemporal dynamics in marginal populations. Am Nat. 167(1):16–27. doi: 10.1086/498539.
  • Asselin H, Payette S. 2005. Late Holocene deforestation of a tree line site: estimation of pre-fire vegetation composition and black spruce cover using soil charcoal. Ecography. 28(6):801–805. doi: 10.1111/j.2005.0906-7590.04216.x.
  • Bajolle L, Larocque‐Tobler I, Gandouin E, Lavoie M, Bergeron Y, Ali AA. 2018. Major postglacial summer temperature changes in the central coniferous boreal forest of Quebec (Canada) inferred using chironomid assemblages. J Quat Sci. 33(4):409–420. doi: 10.1002/jqs.3022.
  • Barnes BV. 2009. Tree response to ecosystem change at the landscape level in eastern north America. Forstarchiv. 80(3):76–89.
  • Bauhus J, Paré D, Côté L. 1998. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem. 30(8–9):1077–1089. doi: 10.1016/S0038-0717(97)00213-7.
  • Bergeron Y, Gauthier S, Flannigan M, Kafka V. 2004. Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Quebec. Ecology. 85(7):1916–1932. doi: 10.1890/02-0716.
  • Birks HH. 2001. Plant macrofossils. Ch. 4. In: Smol J, Birks H Last W, editors Tracking environmental change using lake sediments. Volume 3: terrestrial, algal, and siliceous indicators. Dordrecht: Kluwer Academic Publishers; pp. 49–74.
  • Birks HJB. 2019. Contributions of quaternary botany to modern ecology and biogeography. Plant Ecol Divers. 12(3–4):189–385. doi: 10.1080/17550874.2019.1646831.
  • Birks HH, Birks HJB. 2000. Future uses of pollen analysis must include plant macrofossils. J Biogeogr. 27(1):31–35. doi: 10.1046/j.1365-2699.2000.00375.x.
  • Bjune AE, Ohlson M, Birks HJB, Bradshaw RHW. 2009. The development and local stand-scale dynamics of a Picea abies forest in southeastern Norway. Holocene. 19(7):1073–1082. doi: 10.1177/0959683609341004.
  • Blaauw M, Christen JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6(3):457–474. doi: 10.1214/ba/1339616472.
  • Blarquez O, Carcaillet C, Bremond L, Mourier B, Radakovitch O. 2010. Trees in the subalpine belt since 11 700 cal. BP: origin, expansion and alteration of the modern forest. Holocene. 20(1):139–146. doi: 10.1177/0959683609348857.
  • Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. 2013. Climate change and the past, present, and future of biotic interactions. Sci. 341(6145):499–504. doi: 10.1126/science.1237184.
  • Boisvert‐Marsh L, de Blois S. 2021. Unravelling potential northward migration pathways for tree species under climate change. J Biogeogr. 48(5):1088–1100. doi: 10.1111/jbi.14060.
  • Boisvert-Marsh LC, Périé C, de Blois S. 2014. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere. 5(7):1–33. doi: 10.1890/ES14-00111.1.
  • Boucher Y, Arseneault D, Sirois L. 2006. Logging-induced change (1930-2002) of a preindustrial landscape at the northern range limit of northern hardwoods, eastern Canada. Can J For Res. 36(2):505–517. doi: 10.1139/x05-252.
  • Boucher Y, Arseneault D, Sirois L, Blais L. 2009. Logging pattern and landscape changes over the last century at the boreal and deciduous forest transition in eastern Canada. Landsc Ecol. 24(2):171–184. doi: 10.1007/s10980-008-9294-8.
  • Boulanger Y, Pascual Puigdevall J. 2021. Boreal forests will be more severely affected by projected anthropogenic climate forcing than mixedwood and northern hardwood forests in eastern Canada. Landsc Ecol. 36(6):1725–1740. doi: 10.1007/s10980-021-01241-7.
  • Bradley RL, Fyles JW. 1995. Growth of paper birch (Betula papyrifera) seedlings increases soil available C and microbial acquisition of soil-nutrients. Soil Biol Biochem. 27(12):1565–1571. doi: 10.1016/0038-0717(95)00089-W.
  • Bradshaw RHW. 2013. Pollen methods and studies | stand-scale palynology. In: Elias S Mock C, editors Encyclopedia of quaternary science. Amsterdam: Elsevier; pp. 846–853.
  • Brice MH, Vissault S, Vieira W, Gravel D, Legendre P, Fortin MJ. 2020. Moderate disturbances accelerate forest transition dynamics under climate change in the temperate–boreal ecotone of eastern north America. Glob Change Biol. 26(8):4418–4435. doi: 10.1111/gcb.15143.
  • Bussières C, Mondou Laperrière PY, Grondin P, Lavoie M, de Lafontaine G. 2023. Data from: Lire le passé forestier dans un bourbier : histoire écologique et dynamique contemporaine d’une population marginale nordique d’érable rouge (Acer rubrum) [Dataset]. doi: 10.6084/m9.figshare.24306535.v3.
  • Carcaillet C, Bergeron Y, Richard PJH, Fréchette B, Gauthier S, Prairie YT. 2001. Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime? J Ecol. 89(6):930–946. doi: 10.1111/j.1365-2745.2001.00614.x.
  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD. 2011. Rapid range shifts of species associated with high levels of climate warming. Sci. 333(6045):1024–1026. doi: 10.1126/science.1206432.
  • Colpron-Tremblay J, Lavoie M. 2010. Long-term stand-scale dynamics of a boreal mixed forest in Québec, Canada. Rev Palaeobot Palynol. 161(1–2):43–58. doi: 10.1016/j.revpalbo.2010.03.003.
  • Corlett RT, Westcott DA. 2013. Will plant movements keep up with climate change? Trends Ecol Evol. 28(8):482–488. doi: 10.1016/j.tree.2013.04.003.
  • Couillard PL, Bouchard M, Laflamme J, Hébert F. 2022. Zonage des régimes de feux du Québec méridional. Mémoire de recherche 189. Québec (QC): Gouvernement du Québec, Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestière.
  • Couillard P-L, Payette S, Lavoie M, Frégeau M. 2018. Macrocharcoal-based chronosequences reveal shifting dominance of conifer boreal forests under changing fire regime. Ecosystems. 21(6):1183–1195. doi: 10.1007/s10021-017-0211-3.
  • Crema E, Bevan A. 2021. Inference from large sets of radiocarbon dates: software and methods. Radiocarbon. 63(1):23–39. doi: 10.1017/RDC.2020.95.
  • Davis MB, Shaw RG. 2001. Range shifts and adaptive responses to quaternary climate change. Sci. 292(5517):673–679. doi: 10.1126/science.292.5517.673.
  • de Lafontaine G, Amasifuen Guerra CA, Ducousso A, Petit RJ. 2014. Cryptic no more: soil macrofossils uncover pleistocene forest microrefugia within a periglacial desert. New Phytol. 204(3):715–729. doi: 10.1111/nph.12833.
  • de Lafontaine G, Asselin H. 2011. Soil charcoal stability over the Holocene across boreal northeastern north America. Quat Res. 76(2):196–200. doi: 10.1016/j.yqres.2011.06.006.
  • de Lafontaine G, Couillard PL, Payette S. 2011. Permineralization process promotes preservation of Holocene macrofossil charcoal in soils. J Quat Sci. 26(6):571–575. doi: 10.1002/jqs.1529.
  • de Lafontaine G, Napier JD, Petit RJ, Hu FS. 2018. Invoking adaptation to decipher the genetic legacy of past climate change. Ecology. 99(7):1530–1546. doi: 10.1002/ecy.2382.
  • de Lafontaine G, Payette S. 2010. The origin and dynamics of subalpine white spruce and balsam fir stands in boreal eastern North America. Ecosystems. 13(6):932–947. doi: 10.1007/s10021-010-9366-x.
  • de Lafontaine G, Payette S. 2011. Shifting zonal patterns of the southern boreal forest in eastern Canada associated with changing fire regime during the Holocene. Quat Sci Rev. 30(7–8):867–875. doi: 10.1016/j.quascirev.2011.01.002.
  • de Lafontaine G, Payette S. 2012. Long-term fire and forest history of subalpine balsam fir (Abies balsamea) and white spruce (Picea glauca) stands in eastern Canada inferred from soil charcoal analysis. Holocene. 22(2):191–201. doi: 10.1177/0959683611414931.
  • Dumont L, Minchev TS, Mondou Laperrière PY, Grondin P, de Lafontaine G. Submitted. Décalage temporel dans l’établissement des érables en forêt boréale révélé par une population marginale à la limite nordique de l’érable à sucre.
  • Engelmark O, Bergeron Y, Flannigan MD. 2000. Age structure of eastern white pine, Pinus strobus L., at its northern distribution limit in Quebec. Can Field-Nat. 114(4):601–604.
  • Farina A. 2009. Ecology, cognition and landscape: linking natural and social systems. Berlin: Springer.
  • Ferro I, Morrone JJ. 2014. Biogeographical transition zones: a search for conceptual synthesis. Biol J Linn Soc Lond. 113(1):1–12. doi: 10.1111/bij.12333.
  • Feurdean A, Bhagwat SA, Willis KJ, Birks HJB, Lischke H, Hickler T, Nogues-Bravo D. 2013. Tree migration-rates: narrowing the gap between inferred post-glacial rates and projected rates. PloS One. 8(8):e71797. doi: 10.1371/journal.pone.0071797.
  • Fréchette B, Richard PJH, Lavoie M, Grondin P, Larouche AC. 2018. Histoire postglaciaire de la végétation et du climat des pessières et des sapinières de l’ouest du Québec. Mémoire de recherche 179. Québec (QC): Gouvernement du Québec, Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestière.
  • Fuller JL, Foster DR, McLachlan JS, Drake N. 1998. Impact of human activity on regional forest composition and dynamics in central New England. Ecosystems. 1(1):76–95. doi: 10.1007/s100219900007.
  • Gavin DG, Fitzpatrick MC, Gugger PF, Heath KD, Rodríguez-Sánchez F, Dobrowski SZ, Hampe A, Hu FS, Ashcroft MB, Bartlein PJ, et al. 2014. Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol. 204(1):37–54. doi:10.1111/nph.12929.
  • Giesecke T, Brewer S, Finsinger W, Leydet M, Bradshaw RHW. 2017. Patterns and dynamics of European vegetation change over the last 15,000 years. J Biogeogr. 44(7):1441–1456. doi: 10.1111/jbi.12974.
  • Goldblum D, Rigg LS. 2010. The deciduous forest–boreal forest ecotone. Geogr Compass. 4(7):701–717. doi: 10.1111/j.1749-8198.2010.00342.x.
  • Gosz JR. 1993. Ecotone hierarchies. Ecol Appl. 3(3):369–376. doi: 10.2307/1941905.
  • Hoadley RB. 1990. Identifying wood: accurate results with simple tools. Newtown (CT): The Taunton Press.
  • Horn JC. 1980. Short-term changes in vegetation after clearcutting in the southern Appalachians. Castanea. 45(2):88–96.
  • IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull ns. 10(3):219–332.
  • Jules AN, Asselin H, Bergeron Y, Ali AA. 2018. Are marginal balsam fir and eastern white cedar stands relics from once more extensive populations in north-eastern north America? Holocene. 28(10):1672–1679. doi: 10.1177/0959683618782601.
  • Kaufman DS, Broadman E. 2023. Revisiting the Holocene global temperature conundrum. Nature. 614(7948):425–435. doi: 10.1038/s41586-022-05536-w.
  • Kawecki TJ. 2008. Adaptation to marginal habitats. Annu Rev Ecol Evol Syst. 39(1):321–342. doi: 10.1146/annurev.ecolsys.38.091206.095622.
  • Lafleur B, Paré D, Munson AD, Bergeron Y. 2010. Response of northeastern north American forests to climate change: will soil conditions constrain tree species migration? Environ Rev. 18(NA):279–289. doi: 10.1139/A10-013.
  • Laganière J, Paré D, Bradley RL. 2009. Linking the abundance of aspen with soil faunal communities and rates of belowground processes within single stands of mixed aspen–black spruce. Appl Soil Ecol. 41(1):19–28. doi: 10.1016/j.apsoil.2008.08.005.
  • Laganière J, Paré D, Bradley RL. 2010. How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions. Can J For Res. 40(3):465–475. doi: 10.1139/X09-208.
  • Larochelle É, Lavoie M, Grondin P, Couillard PL. 2018. Vegetation and climate history of Quebec’s mixed boreal forest suggests greater abundance of temperate species during the early-and mid-Holocene. Botany. 96(7):437–448. doi: 10.1139/cjb-2017-0182.
  • Larocque I, Bergeron Y, Campbell I, Bradshaw RHW. 2003. Fire-induced decrease in forest cover on a small rock outcrop in the Abitibi region of Québec, Canada. Écoscience. 10(4):515–524. doi: 10.1080/11956860.2003.11682800.
  • Légaré S, Paré D, Bergeron Y. 2005. Influence of aspen on forest floor properties in black spruce-dominated stands. Plant Soil. 275(1–2):207–220. doi: 10.1007/s11104-005-1482-6.
  • Lenoir J, Bertrand R, Comte L, Bourgeaud L, Hattab T, Murienne J, Grenouillet G. 2020. Species better track climate warming in the oceans than on land. Nat Ecol Evol. 4(8):1044–1059. doi: 10.1038/s41559-020-1198-2.
  • Liu KB. 1990. Holocene paleoecology of the boreal forest and Great Lakes–St. Lawrence forest in northern Ontario. Ecol Monogr. 60(2):179–212. doi: 10.2307/1943044.
  • Marquis DA. 1975. Seed storage and germination under northern hardwood forests. Can J For Res. 5(3):478–484. doi: 10.1139/x75-065.
  • McKenney DW, Pedlar JH, Lawrence K, Campbell K, Hutchinson MF. 2007. Potential impacts of climate change on the distribution of north American trees. Bioscience. 57(11):939–948. doi: 10.1641/B571106.
  • McLachlan JS, Clark JS, Manos PS. 2005. Molecular indicators of tree migration capacity under rapid climate change. Ecology. 86(8):2088–2098. doi: 10.1890/04-1036.
  • Mondou Laperrière PY, Minchev TS, Grondin P, Lavoie M, de Lafontaine G. Submitted. Marginal population dynamics at the leading edge of a temperate species in the boreal-temperate ecotone.
  • Morin-Rivat J, de Lafontaine G 2019. Clé d’identification des conifères arborescents de la forêt boréale d’Amérique du Nord [ Unpublished internal document]. Rimouski (QC): Chaire de recherche du Canada en biologie intégrative de la flore nordique, Université du Québec à Rimouski.
  • Morneau C, Couillard PL, Arsenault J. 2022. Cartes de répartition et d’abondance des arbres du Québec (version préliminaire) [Map]. Québec (QC): Gouvernement du Québec, Ministère des Ressources naturelles et des Forêts, Direction des inventaires forestiers.
  • Morneau C, Grondin P, Couillard PL, Laflamme J. 2023. La végétation du Québec. Partie 1. In: Ministère des Ressources Naturelles et des Forêts, editor. Petite flore forestière du Québec. 3rd ed. Québec (QC): Les Publications du Québec; p. 16–36.
  • Nadeau CP, Urban MC. 2019. Eco‐evolution on the edge during climate change. Ecography. 42(7):1280–1297. doi: 10.1111/ecog.04404.
  • Nowacki GJ, Abrams MD. 2015. Is climate an important driver of post-European vegetation change in the eastern United States? Glob Change Biol. 21(1):314–334. doi: 10.1111/gcb.12663.
  • Ohlson M, Tryterud E. 2000. Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. Holocene. 10(4):519–525. doi: 10.1191/095968300667442551.
  • Overballe-Petersen MV, Bradshaw RHW. 2011. The selection of small forest hollows for pollen analysis in boreal and temperate forest regions. Palynology. 35(1):146–153. doi: 10.1080/01916122.2011.558173.
  • Paillard J, Richard PJH, Blarquez O, Grondin P, Bergeron Y. 2023. Postglacial establishment and expansion of marginal populations of sugar maple in western Québec, Canada: palynological detection and interactions with fire, climate and successional processes. Holocene. 33(10):1237–1256. doi: 10.1177/09596836231183065.
  • Pató ZA, Standovár T, Gałka M, Jakab G, Molnár M, Szmorad F, Magyari E. 2020. Exposure matters: forest dynamics reveal an early Holocene conifer refugium on a north facing slope in central Europe. Holocene. 30(12):1833–1848. doi: 10.1177/0959683620950452.
  • Paul V, Bergeron Y, Tremblay F. 2014. Does climate control the northern range limit of eastern white cedar (Thuja occidentalis L.)? Plant Ecol. 215(2):181–194. doi: 10.1007/s11258-013-0288-5.
  • Payette S, Frégeau M, Couillard PL, Laflamme J. 2023. The post-fire shift of temperate white pine-birch forest to boreal balsam fir forest in eastern Canada: climate-fire implications. Botany. 101(9):366–376. doi: 10.1139/cjb-2023-0036.
  • Périé C, de Blois S, Lambert MC, Casajus N. 2014. Effets anticipés des changements climatiques sur l’habitat des espèces arborescentes au Québec. Mémoire de recherche 173. Québec (QC): Gouvernement du Québec, Ministère des Ressources naturelles, Direction de la recherche forestière.
  • R Core Team. 2022. R: a language and environment for statistical computing [software]. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Rehm EM, Olivas P, Stroud J, Feeley KJ. 2015. Losing your edge: climate change and the conservation value of range‐edge populations. Ecol Evol. 5(19):4315–4326. doi: 10.1002/ece3.1645.
  • Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Bronk Ramsey C, Butzin M, Cheng H, Lawrence Edwards R, Friedrich M, et al. 2020. The IntCal20 northern hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon. 62(4):725–757. doi:10.1017/RDC.2020.41.
  • Richard PJH. 1993. Origine et dynamique postglaciaire de la forêt mixte au Québec. Rev Palaeobot Palynol. 79(1–2):31–68. doi: 10.1016/0034-6667(93)90037-U.
  • Richard PJH, Fréchette B, Grondin P, Lavoie M. 2020. Histoire postglaciaire de la végétation de la forêt boréale du Québec et du Labrador. Nat Can. 144(1):63–76. doi: 10.7202/1070086ar.
  • Richter HG, Grosser D, Heinz I, Gasson PE, IAWA Committee. 2004. IAWA list of microscopic features for softwood identification. IAWA J. 25(1):1–70. doi: 10.1163/22941932-90000349.
  • Ritchie JC. 1987. Postglacial vegetation of Canada. Cambridge (UK): Cambridge University Press.
  • Robichaud A, Ehrman JM, Mood B, Laroque CP 2012. Description and wood identification of native coniferous tree species in the maritimes from dendroarchaeological material. MAD Lab Report 2012-17. Sackville (NB): Mount Allison Dendrochronology Lab.
  • Saucier JP, Grondin P, Robitaille A, Bergeron JF. 2003. Zones de végétation et domaines bioclimatiques du Québec [Map]. Québec (QC): Gouvernement du Québec, Ministère des Ressources naturelles, de la Faune et des Parcs.
  • Saucier JP, Grondin P, Robitaille A, Gosselin J, Morneau C, Richard PJH, Brisson J, Sirois L, Leduc A, Morin H, et al. 2009. Écologie forestière. Ch. 4. In: Ordre d, es ingénieurs forestiers du Québec, editor. Manuel de foresterie. 2nd ed. Québec (QC): Éditions MultiMondes; pp. 165–316
  • Schoch W, Heller I, Schweingruber FH, Kienast F 2004. Microscopic wood anatomy of central European species [Website]: http://www.woodanatomy.ch.
  • Shafer SL, Bartlein PJ, Thompson RS. 2001. Potential changes in the distributions of western north America tree and shrub taxa under future climate scenarios. Ecosystems. 4(3):200–215. doi: 10.1007/s10021-001-0004-5.
  • Soubeyrand M, Gennaretti F, Blarquez O, Bergeron Y, Taylor AR, D’Orangeville L, Marchand P. 2023. Competitive interactions under current climate allow temperate tree species to grow and survive in boreal mixedwood forest. Ecography. 2023(5):e06525. doi: 10.1111/ecog.06525.
  • Steenberg JWN, Duinker PN, Bush PG. 2013. Modelling the effects of climate change and timber harvest on the forests of central Nova Scotia, Canada. Ann For Sci. 70(1):61–73. doi: 10.1007/s13595-012-0235-y.
  • Terasmae J, Anderson TW. 1970. Hypsithermal range extension of white pine (Pinus strobus L.) in Quebec, Canada. Can J Earth Sci. 7(2):406–413. doi: 10.1139/e70-035.
  • Tremblay MF, Bergeron Y, Lalonde D, Mauffette Y. 2002. The potential effects of sexual reproduction and seedling recruitment on the maintenance of red maple (Acer rubrum L.) populations at the northern limit of the species range. J Biogeogr. 29(3):365–373. doi: 10.1046/j.1365-2699.2002.00665.x.
  • Uprety Y, Asselin H, Bergeron Y, Mazerolle MJ. 2014. White pine (Pinus strobus L.) regeneration dynamics at the species’ northern limit of continuous distribution. New For. 45(1):131–147. doi: 10.1007/s11056-013-9396-2.
  • Vernet JL, Ogereau P, Figuideral I, Machado Yanes C, Uzquiano P. 2002. Guide d’identification des charbons de bois préhistoriques et récents Sud-Ouest de l’Europe: France, Péninsule ibérique, et îles Canaries. Paris: CNRS Éditions.
  • Walters RS, Yawney HW. 1990. Acer rubrum L. Red maple. In: Burns R Honkala B. editors. Technical coordinators. Silvics of North America: 2. Hardwoods. Agriculture handbook 654. Washington DC: US Department of Agriculture, Forest Service; pp. 60–69
  • Zhang Y, Bergeron Y, Zhao XH, Drobyshev I. 2015. Stand history is more important than climate in controlling red maple (Acer rubrum L.) growth at its northern distribution limit in western Quebec, Canada. J Plant Ecol. 8(4):368–379. doi: 10.1093/jpe/rtu029.
  • Zhu K, Woodall CW, Clark JS. 2012. Failure to migrate: lack of tree range expansion in response to climate change. Glob Change Biol. 18(3):1042–1052. doi: 10.1111/j.1365-2486.2011.02571.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.