640
Views
3
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Changes in protein thiols in response to salt stress in embryogenic suspension cultures of Dactylis glomerata L.

, , &
Pages 616-621 | Received 20 Mar 2014, Accepted 19 Jun 2014, Published online: 22 Oct 2014

References

  • Ahmad P, Prasad MNV. Abiotic stress responses in plants: metabolism, productivity and sustainability. New York (NY): Springer Science Business Media; 2012.
  • Tounekti T, Vadel A, Oñate M, Khemira H, Munné-Bosch S. Salt-induced oxidative stress in rosemary plants: damage or protection? Environ Exp Bot. 2011;71:298–305.
  • Chi Y, Cheng Y, Vanitha J, Kumar N, Ramamoorthy R, Ramachandran S, Jiang SY. Expansion mechanisms and functional divergence of the glutathione S-transferase family in sorghum and other higher plants DNA Res. 2011;18:1–16.
  • Colville L, Kranner I. Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul. 2010;62:241–255.
  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J. The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol. 2009;150:1394–1410.
  • Schenk RU, Hildebrandt AC. Medium and techniques for induction and growth of onocotyledonous and dicotyledonous plant cell cultures. Can J Bot. 1972;50:199–204.
  • Odjakova M, Somleva M, Tchorbadjieva M, Nikolaev N. Salt induced changes in embryogenic callus development of Dactylis glomerata L. Comptes Rendu Acad Bull Sci. 1992;45:107–110.
  • Aitken A, Learmonth M. Estimation of disulfide bonds using Ellman's reagent. In: Walker JM, editor. The protein protocols handbook. 2nd edition. Totowa (NJ): Humana Press; 2002. p. 595–596.
  • McDonagh B. Diagonal electrophoresis for the detection of protein disulfides. Methods Mol Biol. 2012;869:309–315.
  • Zaffagnini M, Bedhomme M, Marchand C, Couturier J, Gao X, Rouhier N, Trost P, Lemaire S. Glutaredoxin S12: unique properties for redox signaling. Antiox Redox Signal. 2012;16:17–32.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685.
  • Arner ESJ, Zhong L, Holmgren A. Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Methods Enzymol. 1999;300:226–239.
  • Meyer Y, Belin C, Delorme-Hinoux V, Reichheld J, Riondet C. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antiox Redox Signal. 2012;17:1124–1160.
  • Dani V, Simon J, Duranti M, Croy D. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics. 2005;5:737–745.
  • Zagorchev L, Seal CE, Kranner I, Odjakova M. Redox state of low-molecular-weight thiols and disulphides during somatic embryogenesis of salt-treated suspension cultures of Dactylis glomerata L. Free Radic Res. 2012;46:656–664.
  • Messens J, Rouhier N, Collet J. Redox homeostasis. In: Jakob U, Reichmann D., editors. Oxidative stress and redox regulation. Dordrecht (Netherlands): Springer; 2013. p. 59–84.
  • Lushchak VJ. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids [Internet]. 2012; 736837. Available from: http://www.hindawi.com/journals/jaa/2012/736837/
  • Coppo L, Ghezzi P. Thiol regulation of pro-inflammatory cytokines and innate immunity: protein S-thiolation as a novel molecular mechanism. Biochem Soc Trans. 2011;39:1268–1272.
  • Birtić S, Colville L, Pritchard W, Pearce R, Kranner I. Mathematically combined half-cell reduction potentials of low-molecular-weight thiols as markers of seed ageing. Free Radic Res. 2011;45:1093–1102.
  • Jacques S, Ghesquiere B, Van Breusegem F, Gevaert K. Plant proteins under oxidative attack. Proteomics. 2013;13:932–940.
  • Bykova N, Rampitsch C. Modulating protein function through reversible oxidation: redox-mediated processes in plants revealed through proteomics. Proteomics. 2013;13:579–596.
  • Kranner I, Birtić S, Anderson K, Pritchard H. Glutathione half-cell reduction potential: A universal stress marker and modulator of programmed cell death? Free Radic Biol Med. 2006;40:2155–2165.
  • Martí M, Florez-Sarasa I, Camejo D, Ribas-Carbó M, Lázaro J, Sevilla F, Jiménez A. Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. J Exp Bot. 2011;62:3863–3874.
  • Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik P. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep. 2012;39:115–121.
  • Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F. Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot. 2011;62:545–555.
  • Meux E, Prosper P, Ngadin A, Didierjean C, Morel M, Dumarçay S, Lamant T, Jacquot J, Favier F, Gelhaye E. Glutathione transferases of Phanerochaete chrysosporium: s-glutathionyl-p-hydroquinone reductase belongs to a new structural class. J Biol Chem. 2011;3:54–59.
  • Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci. 2009;34:68–72.
  • Ogawa K. Glutathione-associated regulation of plant growth and stress responses. Antiox Redox Signal. 2005;7:973–981.
  • Hernández I, Cela J, Alegre L, Munné-Bosch S. Antioxidant defenses against drought stress. In: Aroca R, editor. Plant responses to drought stress. Berlin: Springer; 2012. p. 231–258.
  • Sundaram S, Rathinasabapathi B. Transgenic expression of fern Pteris vittata glutaredoxin PvGrx5 in Arabidopsis thaliana increases plant tolerance to high temperature stress and reduces oxidative damage to proteins. Planta. 2010;231:361–369.