6,876
Views
4
CrossRef citations to date
0
Altmetric
Review; Agriculture and Environmental Biotechnology

Application of the yeast one-hybrid technique to plant functional genomics studies

, , , &
Pages 1087-1092 | Received 23 Mar 2017, Accepted 08 Sep 2017, Published online: 14 Sep 2017

References

  • Kalidhasan N, Joshi D, Bhatt TK, et al. Identification of key genes involved in root development of tomato using expressed sequence tag analysis. Physiol Mol Biol Plants. 2015;21(4):491–503.
  • Delporte M, Legrand G, Hilbert JL, et al. Selection and validation of reference genes for quantitative real-time pcr analysis of gene expression in Cichorium intybus. Front Plant Sci. 2015 [cited 2017 Mar 23];6(651):651. DOI:10.3389/fpls.2015.00651
  • Hu Z, Parekh U, Maruta N, et al. Down-regulation of fusarium oxysporum endogenous genes by host-delivered RNA interference enhances disease resistance. Front Chem. 2015 [cited 2017 Mar 23];3:1. DOI:10.3389/fchem.2015.00001
  • Hyun Y, Kim J, Cho SW, et al. Site-directed mutagenesis in arabidopsis thaliana using dividing tissue-targeted rgen of the crispr/cas system to generate heritable null alleles. Planta. 2015;241(1):271–284.
  • Wang MM, Reed RR. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature. 1993;364(6433):121–126.
  • Brent R, Ptashne M. A eukaryotic transcriptional activator bearing the dna specificity of a prokaryotic repressor. Cell. 1985;43(3):729–736.
  • Pyvovarenko T, Lopato S. Isolation of plant transcription factors using a yeast one-hybrid system, Plant Methods. 2006;754(2):292–307.
  • Lopato S, Bazanova N, Morran S, et al. Isolation of plant transcription factors using a modified yeast one-hybrid system. Plant Methods. 2006 [cited 2017 Aug 31];2:3. DOI:10.1186/1746-4811-2-3
  • Reece-Hoyes JS, Marian WAJ. Yeast one-hybrid assays: a historical and technical perspective. Methods. 2012;57(4):441–447.
  • Yang PC, Zhou B. Construction of yeast one-hybrid library for screening of G-box binding proteins. Lett Biotech. 2012;23:532–536.
  • Liu QX, Guo CH, Bi YD, et al. Construction of fusion gene expression cDNA library of soybean root with yeast one-hybrid method. Soyb Sci. 2013;32:165–167.
  • Omidvar V, Abdullah SNA, Ebrahimi M, et al. Gene expression of the oil palm transcription factor EgAP2-1 during fruit ripening and in response to ethylene and ABA treatments. Biol Plant. 2013;57(4):646–654.
  • Lei Z, Yin CC, Li YL, et al. Cloning and analysis of anti-stress transcription factor gene HhDREB2 from Halimodendron halodendron Voss. J Agric Sci Tech China. 2014;16(4):71–78.
  • Wang X, Du B, Liu M, et al. Arabidopsis transcription factor WRKY33 is involved in drought by directly regulating the expression of CesA8. Am J Plant Sci. 2013;4(6A):21–27.
  • Jiang YQ, Deyholos MK. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol. 2009;69(1):91–105.
  • Zheng Z, Qamar SA, Chen Z, et al. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 2006;48(4):592–605.
  • Lippok B, Birkenbihl RP, Rivory G, et al. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe. 2007;20(4):420–429.
  • Kelemen Z, Sebastian A, Xu W, et al. Analysis of the DNA-binding activities of the Arabidopsis R2R3-MYB transcription factor family by one-hybrid experiments in yeast. Plos One. 2015 [cited 2017 Aug 31];10(10):e0141044. DOI:10.1371/journal.pone.0141044
  • Chen Z, Hong X. Zhang H. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J. 2005;43(2):273–283.
  • Wei G, Lei J, Gong W, et al. Clone, expression, DNA binding ability and analysis of transcription activation in vitro of gene QRAP2 in Arabidopsis. Chinese Sci Bull. 2005;50(17):1873–1878.
  • Gerber HP, Seipel K, Georgiev O. Transcriptional activation modulated by homopolymeric glutamine and proline stretches, Science. 1994;263(5148):808–811.
  • Al-Attala MN, Wang X, Abou-Attia MA. A novel TaMYB4 transcription factor involved in the defence response against Puccinia striifor mis f. sp. tritici and abiotic stresses. Plant Mol Biol. 2014;84(4):589–603.
  • Zhao T, Liu J, Li HY. Using hybrid transcription factors to study gene function in rice. Sci China Life Sci. 2015;58(11):1160–1162.
  • Zhang C, Liu J, Zhao T. A drought-inducible bZIP transcription factor OsABF1 delays reproductive timing in rice. Plant Physiol. 2016;171(1):334–343.
  • Amalraj A, Luang S, Kumar MY. Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification. Plant Biotechnol J. 2016;14(2):820–832.
  • Zhang L, Tian LH, Zhao JF, et al. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol. 2009;149(2):916–928.
  • Serra TS, Figueiredo DD, Cordeiro AM. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant mol biol. 2013;82(4):439–455.
  • Yong HC, Kim CY, Min CK, et al. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol. 2003;132(4):1961–1972.
  • Flavia B, Elizabeth C, Patricia D. The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J. 2009;59(3):359–374.
  • Ko S, Kamada H. Isolation of carrot basic leucine zipper transcription factor using yeast one-hybrid screening. Plant Mol Biol Rep. 2002;20(3):301–301.
  • Shiota H, Satoh R, Watabe K, et al. C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiol. 1998;39(11):1184–1193.
  • Hattori T, Terada T, Hamasuna S. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J. 1995;7(6):913–925.
  • Hobo T, Asada M, Kowyama Y. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J. 1999;19(6):679–689.
  • Breton G, Kay SA, Pruneda-Paz JL. Identification of Arabidopsis transcriptional regulators by yeast one-hybrid screens using a transcription factor ORFeome. Methods Mol Biol. 2016 [cited 2017 Mar 23];1398:107. DOI: 10.1007/978-1-4939-3356-3_10
  • Pruneda-Paz JL, Ghislain B, Nagel DH. A genome-scale resource for the functional characterization of Arabidopsis transcription factors. Cell Rep. 2014;8(2):622–632.
  • Li JJ, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. 1993;262(5141):1870–1874.
  • Yanai K. A modified yeast one-hybrid system for genome-wide identification of transcription factor binding sites. Methods Mol Biol. 2013;977(977):125–136.
  • Keiko TY, Yoshiko K, Takashi H. Identification and characterization of glucocorticoid receptor-binding sites in the human genome. J Recept Signal Transduct Res. 2010 [cited 2017 Mar 23];30(2):88–105. DOI:10.3109/10799891003614816
  • Vidal M, Brachmann RK, Fattaey A. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA–protein interactions. Proc Natl Acad Sci USA. 1996;93(19):10315–10320.