1,202
Views
5
CrossRef citations to date
0
Altmetric
Agronomy & Crop Ecology

Factors related water and dry matter during pre- and post- heading in four millet species under severe water deficit

ORCID Icon &
Pages 28-38 | Received 20 Mar 2019, Accepted 31 Oct 2019, Published online: 24 Dec 2019

References

  • Albacete, A., Martinez-Andujar, C., & Perez-Alfocea, F. (2014). Hormonal and metabolic regulation of source–Sink relations under salinity and drought: From plant survival to crop yield stability. Biotechnology Advances, 32, 12–30.
  • Baltensperger, D. D. (1996). Foxtail and proso millet. In J. Janick (Ed.), Progress in new crops (pp. 182–190). Alexandria, VA: ASHS Press.
  • Bandyopadhyay, T., Muthamilarasan, M., & Prasad, M. (2017). Millets for next generation climate-smart agriculture. Frontiers in Plant Science, 8, 1266.
  • Berg, A., Noblet-Ducoudre, N., Sultan, B., Lengaigne, M., & Guimberteau, M. (2013). Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agricultural and Forest Meteorology, 170, 89–102.
  • Bernier, J., Serraj, R., Kumar, A., Venuprasad, R., Impa, S., Veeresh Gowda, R. P., … Atlin, G. (2009). The large-effect drought-resistance QTL qtl12.1 increase water uptake in upland rice. Field Crops Research, 110, 139–146.
  • Bingham, J. I., Blake, J., Foulikes, M. J., & Spink, J. (2007). Is barley yield in the UK sink limited? I. Post-anthesis radiation interception, radiation-use efficiency and source–Sink balance. Field Crops Research, 101, 198–211.
  • Blum, A. (1998). Improving wheat grain filling under stress by stem reserve mobilization. Euphytica, 100, 77–83.
  • Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56, 1159–1168.
  • Blum, A., Mayer, J., & Golan, C. (1988). The effect of grain number per ear (sink size) on source activity and its water-relations in wheat. Journal of Experimental Botany, 39, 106–114.
  • Boyer, J. S., & Westgate, M. E. (2004). Grain yields with limited water. Journal of Experimental Botany, 55, 2385–2394.
  • Cai, Q., Zhang, Y., Sun, Z., Zheng, J., Bai, W., Zhang, Y., & Zhang, L. (2017). Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize. Biogeosciences, 14, 3851–3858.
  • Carmo-Silva, A. E., Francisco, A., Powers, S. J., Keys, A. J., Ascensão, L., Parry, M. A. J., & Arrabaça, M. C. (2009). Grasses of different C4 subtypes reveal leaf traits related to drought tolerance in their natural habitats: Changes in structure, water potential, and amino acid content. American Journal of Botany, 96, 1222–1235.
  • Chaves, M. M. (1991). Effect of water stress on carbon assimilation. Journal of Experimental Botany, 42, 1–16.
  • Condon, A. G., Richards, R. A., Rebetzke, G. J., & Farquhar, G. D. (2002). Improving intrinsic water-use efficiency and crop yield. Crop Science, 42, 122–131.
  • Condon, A. G., Richards, R. A., Rebetzke, G. J., & Farquhar, G. D. (2004). Breeding for high water-use efficiency. Journal of Experimental Botany, 55, 2447–2460.
  • Dai, H. P., Jia, G. L., Lu, C., Wei, A. Z., Feng, B. L., & Zhang, S. W. (2011). Studies of synergism between root system and leaves senescence in broomcorn millet (Panicum miliaceum L.). Journal of Food Agriculture and Environment, 9, 177–180.
  • Dai, H. P., Shan, C. J., Wei, A. Z., Yang, T., Sa, W. Q., & Feng, B. L. (2012). Leaf senescence and photosynthesis in foxtail millet [Setaria italica (L.) P. Beauv] varieties exposed to drought conditions. Australian Journal of Crop Science, 6, 232–237.
  • Ding, Z. S., Huang, S. H., Zhou, B. Y., Sun, X. F., & Zhao, M. (2013). Over-expression of phosphoenolpyruvate carboxylase cDNA from C4 millet (Setaria italica) increases rice photosynthesis and yield under upland condition but not in wetland fields. Plant Biotechnology Reports, 7, 155–163.
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.
  • Farquhar, G. D., Hubick, K. T., Condon, A. G., & Richards, R. A. (1989). Carbon isotope fractionation and plant water-use efficiency. In P. W. Rundel, J. R. Ehleringer, & K. A. Nagy (Eds.), Stable isotopes in ecological research (pp. 21–40). New York, NY: Springer.
  • Feng, Z. J., He, G. H., Zheng, W. J., Lu, P. P., Chen, M., Gong, Y. M., & Xu, Z. S. (2015). Foxtail millet NF-Y families: Genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses. Frontiers in Plant Science, 6, 1142.
  • Fernandez, G. C. J. (1992, August 13–18). Effective selection criteria for assessing stress tolerance. In C. G. Kuo, editor, Proceedings of the international symposium on adaptation of food crops to temperature and water stress (pp. 257–270), Taiwan. Shanhua, Tainan: Asian Vegetable Research and Development Center Publication.
  • Fisher, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. C. Grain yield responses. Australian Journal of Agricultural Research, 29, 897–912.
  • Fu, J., Huang, Z., Wang, Z., Yang, J., & Zhang, J. (2011). Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Research, 123, 170–182.
  • Hsiao, T. C. (1973). Plant responses to stress. Annual Review of Plant Physiology, 24, 519–570.
  • Karyudi, D., & Fletcher, R. J. (2002). Osmoregulative capacity in birdseed millet under conditions of water stress. I. variation in Setaria italica and Panicum miliaceum. Euphytica, 125, 337–348.
  • Karyudi, R. J. F., & Fletcher, R. J. (2003). Osmoregulation in birdseed millet under conditions of water stress Ⅱ. variation in F3 lines of Setaria italica and its relationship to plant morphology and yield. Euphytica, 132, 191–197.
  • Kato, T., & Takeda, K. (1996). Associations among characters related to yield sink capacity in space-planted rice. Crop Science, 36, 1135–1139.
  • Kimata, M., Ashok, E. G., & Seetharam, A. (2000). Domestication, cultivation and utilization of two small millets, Brachiria ramosa and Setaria glauca (Poaceae), in South India. Economic Botany, 54, 217–227.
  • Kole, C., Muthamilarasan, M., Henry, R., Edwards, D., Sharma, R., Abberton, M., & Prasad, M. (2015). Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects. Frontiers in Plant Science, 6, 563.
  • Lata, C., & Prasad, M. (2012). Foxtail millet, a model crop for genetic, genomic studies in bioenergy grasses. Critical Reviews in Biotechnology, 33, 328–343.
  • Liu, T. Y., Ye, N., Song, T., Cao, Y., Gao, B., Zhang, D., & Zhang, J. (2019). Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress. Journal of Integrative Plant Biology, 61, 449–462.
  • Lyon, D. J., Burgener, P. A., DeBoer, K. L., Harveson, R. M., Hein, G. L., Hergert, G. W., & Vigil, M. F. (2008). Producing and marketing proso millet in the great plains. Publication # EC137. Lincoln, NE: University of Nebraska Cooperative Extension Service.
  • Matsuura, A., Tsuji, W., An, P., Inanaga, S., & Murata, K. (2012). Effect of pre- and post-heading water deficit on growth and grain yield of four millets. Plant Production Science, 15, 323–331.
  • Meng, L. S., & Yao, S. Q. (2015). Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the trans repression of YODA (YDA). Plant Biotechnology Journal, 13, 893–902.
  • Nagore, M. L., Maggiora, A. D., Andrade, F. H., & Echarte, L. (2017). Water use efficiency for grain yield in an old and two more recent maize hybrids. Field Crops Research, 214, 185–193.
  • Nematpour, A., Eshghizadeh, H. R., & Zahedi, M. (2019). Drought-tolerance mechanisms in foxtail millet (Setaria italica) and proso millet (Panicum miliaceum) under different nitrogen supply and sowing dates. Crop Pasture Science, 70, 442–452.
  • Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S., & O’Toole, J. C. (2002). Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowland. 3. Plant factors contributing to drought resistance. Field Crops Research, 73, 181–200.
  • Parida, A., Das, A. B., & Dam, P. (2002). NaCI stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology, 45, 28–36.
  • Passioura, J. B. (2006). Increasing crop productivity when water is scarce - From breeding to field management. Agricultural Water Management, 80, 176–196.
  • Rajput, S. G., Santra, D. K., & Schnable, J. (2016). Mapping QTLs for morphoagronomic traits in proso millet (Panicum miliaceum, L.). Molecular Breeding, 36, 1–18.
  • Reynolds, M., & Tuberosa, R. (2008). Translational research impacting on crop productivity in drought-prone environments. Current Opinion in Plant Biology, 11, 171–179.
  • Richards, R. A., Rebetzke, G. J., Condon, A. G., & van Herwaarden, A. F. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 42, 111–121.
  • Ruggiero, A., Punzo, P., Landi, S., Costa, A., Oosten, M. J., & Grillo, S. (2017). Improving plant water use efficiency through molecular genetics. Horticulture, 3, 31.
  • Schnyder, H. (1993). The role of carbohydrate strong and redistribution in the source–Sink relations of wheat and barley during grain filling—A review. New Phytologist, 123, 233–245.
  • Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98, 222–229.
  • Tanaka, A., & Fujita, K. (1971). Studies on the nutrio-physiology of the corn plant (Part 7): Analysis of dry matter production from the source–Sink concept. Japanese Society of Soil Science and Plant Nutrition, 42, 152–156. (In Japanese.).
  • Tang, S., Li, L., Wang, Y., Chen, Q., Zhang, W., Jia, G., & Diao, X. (2017). Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Scientific Reports, 7, 10009.
  • Thapa, S., Reddy, S. K., Fuentealba, M. P., Xue, Q., Rudd, J. C., Jessup, K. E., & Liu, S. (2018). Physiological responses to water stress and yield of winter wheat cultivars differing in drought tolerance. Journal of Agronomy and Crop Science, 204, 347–358.
  • Tsuchida, Y., Negoro, K., & Hishiike, M. (2011). Effect of initiation timing of drought stress on carbohydrate content and vegetative growth in Japanese apricot (Prunus mume Sieb. et Zucc.) ‘Nanko’. Journal of the Japanese Society for Horticultural Science, 80, 19–25.
  • Vadez, V., Kholová, J., Yadav, R. S., & Hash, T. H. (2013). Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R. Br.) are critical for grain yield under terminal drought. Plant and Soil, 371, 447–462.
  • Vadez, V., Kholova, J., Medina, S., Kakkera, A., & Anderberg, H. (2014). Transpiration efficiency: New insights into an old story. Journal of Experimental Botany, 65, 6141–6153.
  • Wang, P., Wang, H., Wang, Y., Ren, F., & Liu, W. (2018). Analysis of bHLH genes from foxtail millet (Setaria italica) and their potential relevance to drought stress. PLoS One, 13(11), e0207344.
  • Wardlaw, I. F. (1990). The control of carbon partitioning in plants. New Phytologist, 116, 341–381.
  • Wen, X. X., Zhang, D. Q., Liao, Y. C., Jia, Z. K., & Ji, S. Q. (2012). Effect of water-collecting and retaining techniques on photosynthetic rates, yield, and water use efficiency of millet grown in a semiarid region. Journal of Integrative Agriculture, 11, 1119–1128.
  • Xu, B., Li, F., Shan, L., Ma, Y., Ichizen, N., & Huang, J. (2006). Gas exchange, biomass partition, and water relationships of three grass seedlings under water stress. Weed Biology Management, 6, 79–88.
  • Xu, Y.-F., Ookawa, T., & Ishihara, K. (1997). Analysis of the dry matter production process and yield formation of the high-yielding rice cultivar Takanari, from 1991 to 1994. Japanese Journal of Crop Science, 66, 42–50. (In Japanese with English abstract.).
  • Zegada-Lizarazu, W., & Iijima, M. (2005). Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species. Plant Production Science, 8, 454–460.
  • Zhang, P. P., Feng, B. L., Wang, P. K., Dai, H. P., Song, H., Gao, X. L., Gao, J., … Chai, Y. (2012). Leaf senescence and activities of antioxidant enzymes in different broomcorn millet (Panicum miliaceum L.) cultivars under simulated drought condition. Journal of Food, Agriculture & Environment, 10, 438–444.