Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 13, 2006 - Issue 4
552
Views
115
CrossRef citations to date
0
Altmetric
Original

Structure, function and amyloidogenic propensity of apolipoprotein A-I

, , , , , & , MD, Ph.D. show all
Pages 191-205 | Published online: 06 Jul 2009

References

  • Westermark P, Benson M D, Buxbaum J N, Cohen A S, Frangione B, Ikeda S, Masters C L, Merlini G, Saraiva M J, Sipe J D. Amyloid: Toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid J Protein Folding Disord 2005; 12: 1–4
  • Gallo G, Wisniewski T, Choimiura N H, Ghiso J, Frangione B. Potential role of apolipoprotein-E in fibrillogenesis. Am J Pathol 1994; 145: 526–530
  • Hatters D M, Lawrence L J, Howlett G J. Sub-micellar phospholipid accelerates amyloid formation by apolipoprotein C-II. FEBS Lett 2001; 494: 220–224
  • Rocken C, Shakespeare A. Pathology, diagnosis and pathogenesis of AA amyloidosis. Virchows Arch 2002; 440: 111–122
  • Benson M D. Ostertag revisited: the inherited systemic amyloidoses without neuropathy. Amyloid J Protein Folding Disord 2005; 12: 75–87
  • Gregorini G, Izzi C, Obici L, Tardanico R, Rocken C, Viola B F, Capistrano M, Donadei S, Biasi L, Scalvini T, Merlini G, Scolari F. Renal apolipoprotein A-I amyloidosis: a rare and usually ignored cause of hereditary tubulointerstitial nephritis. J Am Soc Nephrol 2005; 16: 3680–3686
  • Obici L, Bellotti V, Mangione P, Stoppini M, Arbustini E, Verga L, Zorzoli I, Anesi E, Zanotti G, Campana C, Vigano M, Merlini G. The new apolipoprotein A-I variant Leu174Ser causes hereditary cardiac amyloidosis, and the amyloid fibrils are constituted by the 93-residue N-terminal polypeptide. Am J Pathol 1999; 155: 695–702
  • Hamidi L Asl, Liepnieks J J, Hamidi K Asl, Uemichi T, Moulin G, Desjoyaux E, Loire R, Delpech M, Grateau G, Benson M D. Hereditary amyloid cardiomyopathy caused by a variant apolipoprotein A1. Am J Pathol 1999; 154: 221–227
  • de Sousa M M, Vital C, Ostler D, Fernandes R, Pouget-Abadie J, Carles D, Saraiva M J. Apolipoprotein AI and transthyretin as components of amyloid fibrils in a kindred with apoAI Leu178His amyloidosis. Am J Pathol 2000; 156: 1911–1917
  • Schrepferman C G, Lester D R, Sandlow J I. Testicular amyloid deposition as a cause of secondary azoospermia. Urology 2000; 55: 145–146
  • Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. New Engl J Med 2003; 349: 583–596
  • Elimova E, Kisilevsky R, Szarek W A, Ancsin J B. Amyloidogenesis recapitulated in cell culture: a peptide inhibitor provides direct evidence for the role of heparan sulfate and suggests a new treatment strategy. FASEB J 2004; 18: 1749–1751
  • Fielding C J, Fielding P E. Molecular physiology of reverse cholesterol transport. J Lipid Res 1995; 36: 211–228
  • Ikewaki K, Rader D J, Schaefer J R, Fairwell T, Zech L A, Brewer H B, Jr. Evaluation of apoA-I kinetics in humans using simultaneous endogenous stable isotope and exogenous radiotracer methods. J Lipid Res 1993; 34: 2207–2215
  • Pagani F, Sidoli A, Giudici G A, Barenghi L, Vergani C, Baralle F E. Human apolipoprotein A-I gene promoter polymorphism: association with hyperalphalipoproteinemia. J Lipid Res 1990; 31: 1371–1377
  • Barre D E, Guerra R, Verstraete R, Wang Z, Grundy S M, Cohen J C. Genetic analysis of a polymorphism in the human apolipoprotein A-I gene promoter: effect on plasma HDL-cholesterol levels. J Lipid Res 1994; 35: 1292–1296
  • Brinton E A. Oral estrogen replacement therapy in postmenopausal women selectively raises levels and production rates of lipoprotein AI and lowers hepatic lipase activity without lowering catabolic rate. Arterioscler Thromb Vasc Biol 1996; 16: 431–440
  • Zhang X, Jiao J J, Bhavnani B, Tam S P. Regulation of human apolipoprotein A-I gene expression by equine estrogens. J Lipid Res 2001; 42: 1789–1880
  • Harnish D C, Evans M J, Scichitano M S, Bhat R A, Karathanasis S K. Estrogen regulation of the apolipoprotein Al promoter through transcription factor sharing. J Biol Chem 1998; 273: 9270–9278
  • Wehmeier K, Beers A, Haas M J, Wong N C, Steinmeyer A, Zugel U, Mooradian A D. Inhibition of apolipoprotein AI gene expression by 1,25-dihydroxyvitamin D3. Biochim Biophys Acta 2005; 1737: 16–26
  • Mooradian A D, Haas M J, Wadud K. Ascorbic acid and alpha-tocopherol down-regulate apolipoprotein A-I gene expression in HepG2 and Caco-2 cell lines. Metabolism 2006; 55: 159–167
  • Law S W, Brewer H B, Jr. Nucleotide sequence and the encoded amino acids of human apolipoprotein A-I mRNA. Proc Natl Acad Sci USA 1984; 81: 66–70
  • Scanu A M, Byrne R E, Edelstein C. Proteolytic events affecting plasma apolipoproteins at the co- and post-translational levels and after maturation. J Lipid Res 1984; 25: 1593–1602
  • Batal R, Tremblay M, Krimbou L, Mamer O, Davignon J, Genest J, Jr, Cohn J S. Familial HDL deficiency characterized by hypercatabolism of mature apoA-I but not proapoA-I. Arterioscler Thromb Vasc Biol 1998; 18: 655–664
  • Chisholm J W, Burleson E R, Shelness G S, Parks J S. ApoA-I secretion from HepG2 cells: evidence for the secretion of both lipid-poor apoA-I and intracellularly assembled nascent HDL. J Lipid Res 2002; 43: 36–44
  • Kiss R S, McManus D C, Franklin V, Tan W L, McKenzie A, Chimini G, Marcel Y L. The lipidation by hepatocytes of human apolipoprotein A-I occurs by both ABCA1-dependent and –independent pathways. J Biol Chem 2003; 278: 10119–10127
  • Hamilton R L, Moorehouse A, Havel R J. Isolation and properties of nascent lipoproteins from highly purified rat hepatocytic Golgi fractions. J Lipid Res 1991; 32: 529–543
  • Tsujita M, Wu C A, Abe-Dohmae S, Usui S, Okazaki M, Yokoyama S. On the hepatic mechanism of HDL assembly by the ABCA1/apoA-I pathway. J Lipid Res 2005; 46: 154–162
  • Schaefer E J, Jenkins L L, Brewer H B, Jr. Human chylomicron apolipoprotein metabolism. Biochem Biophys Res Commun 1978; 80: 405–412
  • Jonas A. Lecithin cholesterol acyltransferase. Biochim Biophys Acta 2000; 1529: 245–256
  • Sorci-Thomas M G, Thomas M J. The effects of altered apolipoprotein A-I structure on plasma HDL concentration. Trends Cardiovasc Med 2002; 12: 121–128
  • de Beer M C, Durbin D M, Cai L, Jonas A, de Beer F C, van der Westhuyzen D R. Apolipoprotein A-I conformation markedly influences HDL interaction with scavenger receptor BI. J Lipid Res 2001; 42: 309–313
  • Trigatti B L, Krieger M, Rigotti A. Influence of the HDL receptor SR-BI on lipoprotein metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23: 1732–1738
  • Rye K A, Barter P J. Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol 2004; 24: 421–428
  • Lawn R M, Wade D P, Couse T L, Wilcox J N. Localization of human ATP-binding cassette transporter 1 (ABC1) in normal and atherosclerotic tissues. Arterioscler Thromb Vasc Biol 2001; 21: 378–385
  • Eckhardt E R, Cai L, Sun B, Webb N R, van der Westhuyzen D R. High density lipoprotein uptake by scavenger receptor SR-BII. J Biol Chem 2004; 279: 14372–14381
  • Martinez L O, Jacquet S, Esteve J P, Rolland C, Cabezon E, Champagne E, Pineau T, Georgeaud V, Walker J E, Terce F, Collet X, Perret B, Barbaras R. Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 2003; 421: 75–79
  • Glass C K, Pittman R C, Keller G A, Steinberg D. Tissue sites of degradation of apolipoprotein A-I in the rat. J Biol Chem 1983; 258: 7161–7167
  • Moestrup S K, Kozyraki R. Cubilin, a high-density lipoprotein receptor. Curr Opin Lipidol 2000; 11: 133–140
  • Kozyraki R, Fyfe J, Kristiansen M, Gerdes C, Jacobsen C, Cui S, Christensen E I, Aminoff M, de la Chapelle A, Krahe R, Verroust P J, Moestrup S K. The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein. Nat Med 1999; 5: 656–661
  • Braschi S, Neville T A, Vohl M C, Sparks D L. Apolipoprotein A-I charge and conformation regulate the clearance of reconstituted high density lipoprotein in vivo. J Lipid Res 1999; 40: 522–532
  • Calabresi L, Meng Q H, Castro G R, Marcel Y L. Apolipoprotein A-I conformation in discoidal particles: evidence for alternate structures. Biochemistry 1993; 32: 6477–6484
  • Segrest J P, De Loof H, Dohlman J G, Brouillette C G, Anantharamaiah G M. Amphipathic helix motif: classes and properties. Proteins 1990; 8: 103–117
  • Borhani D W, Rogers D P, Engler J A, Brouillette C G. Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci USA 1997; 94: 12291–12296
  • Ajees A A, Anantharamaiah G M, Mishra V K, Hussain M M, Murthy H M. Crystal structure of human apolipoprotein A-I: insights into its protective effect against cardiovascular diseases. Proc Natl Acad Sci USA 2006; 103: 2126–2131
  • Wang G, Sparrow J T, Cushley R J. The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy. Biochemistry 1997; 36: 13657–13666
  • Bhat S, Sorci-Thomas M G, Alexander E T, Samuel M P, Thomas M J. Intermolecular contact between globular N-terminal fold and C-terminal domain of ApoA-I stabilizes its lipid-bound conformation: studies employing chemical cross-linking and mass spectrometry. J Biol Chem 2005; 280: 33015–33025
  • Brouillette C G, Anantharamaiah G M, Engler J A, Borhani D W. Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim Biophys Acta 2001; 1531: 4–46
  • Gross E, Peng D Q, Hazen S L, Smith J D. A novel folding intermediate state for apolipoprotein A-I: role of the amino and carboxy termini. Biophys J 2006; 90: 1362–1370
  • Gursky O, Atkinson D. Thermal unfolding of human high-density apolipoprotein A-1: implications for a lipid-free molten globular state. Proc Natl Acad Sci USA 1996; 93: 2991–2995
  • Marcel Y L, Kiss R S. Structure-function relationships of apolipoprotein A-I: a flexible protein with dynamic lipid associations. Curr Opin Lipidol 2003; 14: 151–157
  • Scott B R, McManus D C, Franklin V, McKenzie A G, Neville T, Sparks D L, Marcel Y L. The N-terminal globular domain and the first class A amphipathic helix of apolipoprotein A-I are important for lecithin:cholesterol acyltransferase activation and the maturation of high density lipoprotein in vivo. J Biol Chem 2001; 276: 48716–48724
  • Burgess J W, Frank P G, Franklin V, Liang P, McManus D C, Desforges M, Rassart E, Marcel Y L. Deletion of the C-terminal domain of apolipoprotein A-I impairs cell surface binding and lipid efflux in macrophage. Biochemistry 1999; 38: 14525–14533
  • Van den B Berg, Wain R, Dobson C M, Ellis R J. Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. EMBO J 2000; 19: 3870–3875
  • Bhat S, Zabalawi M, Willingham M C, Shelness G S, Thomas M J, Sorci-Thomas M G. Quality control in the apoA-I secretory pathway: deletion of apoA-I helix 6 leads to the formation of cytosolic phospholipid inclusions. J Lipid Res 2004; 45: 1207–1220
  • von Eckardstein A, Funke H, walter M, Altland K, Benninghoven A, Assman G. Structural analysis of human apolipoproteinA-I variants. J Biol Chem 1990; 265: 8610–8617
  • Frank P G, Marcel Y L. Apolipoprotein A-I: structure-function relatioship. J Lipid Res 2000; 41: 853–872
  • Wiesgraber K H, Bersot T P, Mahley R W, Franceschini G, Sirtori C R. A-I Milano apoprotein. Isolation and characterization of a cysteine-containing variant of the A-I apoprotein from human high density lipoprotein. J Clin Invest 1980; 66: 901–907
  • Sorci-Thomas M G, Thomas M, Curtiss L, Landrum M. Single repeat deletion in apoA-I blocks cholesterol esterification and results in rapid catabolism of Δ6 and wild-type apoA-I in transgenic mice. J Biol Chem 2000; 275: 12156–12163
  • Nichols W C, Dwulet F E, Liepnieks J, Benson M D. Variant apolipoprotein AI as a major constituent of a human hereditary amyloid. Biochem Biophys Res Commun 1988; 156: 762–768
  • Soutar A K, Hawkins P N, Vigushin D M, Tennent G A, Booth S E, Hutton T, Nguyen O, Totty N F, Feest T G, Hsuan J J, Pepys M. Apolipoprotein AI mutation Arg-60 causes autosomal dominant amyloidosis. Proc Natl Acad Sci USA 1992; 89: 7389–7393
  • Booth D R, Tan S Y, Booth S E, Hsuan J J, Totty N F, Nguyen O, Hutton T, Vigushin D M, Tennent G A, Hutchinson W L, Thompson N, Soutar A K, Hawkins P N, Pepys M. A new apolipoprotein Al variant, Trp50Arg, causes hereditary amyloidosis. QJM 1995; 88: 695–702
  • Booth D R, Tan S Y, Booth S E, Tennent G A, Hutchinson W L, Hsuan J J, Totty N F, Truong O, Soutar A K, Hawkins P N, Bruguera M, Caballeria J, Sole M, Campistol J M, Pepys M B. Hereditary hepatic and systemic amyloidosis caused by a new deletion/insertion mutation in the apolipoprotein AI gene. J Clin Invest 1996; 97: 2714–2721
  • Persey M R, Booth D R, Booth S E, van Zyl-Smit R, Adams B K, Fattaar A B, Tennent G A, Hawkins P N, Pepys M B. Hereditary nephropathic systemic amyloidosis caused by a novel variant apolipoprotein A-I. Kidney Int 1998; 53: 276–281
  • Pepys M B, Tennent G A, Booth D R, Bellotti V, Lovat L B, Tan S Y, Persey M R, Hutchinson W L, Booth S E, Madhoo S, Soutar A K, Hawkins P N, Van Zyl-Smit R, Campistol J M, Fraser P E, Radford S E, Robinson C V, Sunde M, Serpell L C, Blake C C. Molecular mechanisms of fibrillogenesis and the protective role of amyloid P component: two possible avenues for therapy. Ciba Found Symp 1996; 199: 73–81
  • Obici L, Palladini G, Giorgetti S, Bellotti V, Gregorini G, Arbustini E, Verga L, Marciano S, Donadei S, Perfetti V, Calabresi L, Bergonzi C, Scolari F, Merlini G. Liver biopsy discloses a new apolipoprotein A-I hereditary amyloidosis in several unrelated Italian families. Gastroenterology 2004; 126: 1416–1422
  • Coriu D, Dispenzieri A, Stevens F J, Murphy C L, Wang S, Weiss D T, Solomon A. Hepatic amyloidosis resulting from deposition of the apolipoprotein A-I variant Leu75Pro. Amyloid J Protein Folding Disord 2003; 10: 215–223
  • Murphy C L, Wang S, Weaver K, Gertz M A, Weiss D T, Solomon A. Renal apolipoprotein A-I amyloidosis associated with a novel mutant Leu64Pro. Am J Kidney Dis 2004; 44: 1103–1109
  • Hamidi K Asl, Liepnieks J J, Nakamura M, Parker F, Benson M D. A novel apolipoprotein A-1 variant, Arg173Pro, associated with cardiac and cutaneous amyloidosis. Biochem Biophys Res Commun 1999; 257: 584–588
  • Lachmann H J, Booth D R, Booth S E, Bybee A, Gilbertson J A, Gillmore J D, Pepys M B, Hawkins P N. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. New Engl J Med 2002; 346: 1786–1791
  • Chou P Y, Fasman G D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 1978; 47: 145–148
  • Mangione P, Sunde M, Giorgetti S, Stoppini M, Esposito G, Gianelli L, Obici L, Asti L, Andreola A, Viglino P, Merlini G, Bellotti V. Amyloid fibrils derived from the apolipoprotein A1 Leu174Ser variant contain elements of ordered helical structure. Protein Sci 2001; 10: 187–199
  • Relini A, Rolandi R, Bolognesi M, Aboudan M, Merlini G, Bellotti V, Gliozzi A. Ultrastructural organization of ex vivo amyloid fibrils formed by the apolipoprotein A-I Leu174Ser variant: an atomic force microscopy study. Biochim Biophys Acta 2004; 1690: 33–41
  • Serpell L C, Sunde M, Benson M D, Tennent G A, Pepys M B, Fraser P E. The protofilament substructure of amyloid fibrils. J Mol Biol 2000; 300: 1033–1039
  • Ji Y, Jonas A. Properties of an N-terminal proteolytic fragment of apolipoprotein AI in solution and in reconstituted high density lipoproteins. J Biol Chem 1995; 270: 11290–11297
  • Roberts L M, Ray M J, Shih T W, Hayden H, Reader M M, Brouillette C G. Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and oxidized lipid-free and lipid-bound human apo A-I. Biochemistry 1997; 36: 7615–7624
  • Rogers D P, Roberts L M, Lebowitz J, Engler J A, Brouillette C G. Structural analysis of apolipoprotein A-I: effects of amino- and carboxy-terminal deletions on the lipid-free structure. Biochemistry 1998; 37: 945–955
  • Eberini I, Calabresi L, Wait R, Tedeschi G, Pirillo A, Puglisi L, Sirtori C R, Gianazza E. Macrophage metalloproteinases degrade high-density lipoprotein-associated apolipoprotein A-I at both the N- and C-termini. Biochem J 2002; 362: 627–634
  • McManus D C, Scott B R, Franklin V, Sparks D L, Marcel Y L. Proteolytic degradation and impaired secretion of an apolipoprotein A-I mutant associated with dominantly inherited hypoalphalipoproteinemia. J Biol Chem 2001; 276: 21292–21302
  • Miettinen H E, Jauhiainen M, Gylling H, Ehnholm S, Palomaki A, Miettinen T A, Kontula K. Apolipoprotein A-IFIN (Leu159→Arg) mutation affects lecithin cholesterol acyltransferase activation and subclass distribution of HDL but not cholesterol efflux from fibroblasts. Arterioscler Thromb Vasc Biol 1997; 17: 3021–3032
  • Bellotti V, Obici L, Kisilevsky R, Merlini G. Anatomic and clinical clues to in vivo mechanisms of amyloidogenesis. Amyloid proteins. The beta sheet conformation and disease, J D Sipe. Wiley-VCH, Weinheim 2005; 2–48
  • Andreola A, Bellotti V, Giorgetti S, Mangione P, Obici L, Stoppini M, Torres J, Monzani E, Merlini G, Sunde M. Conformational switching and fibrillogenesis in the amyloidogenic fragment of apolipoprotein A-I. J Biol Chem 2003; 278: 2444–2451
  • Westermark P, Mucchiano G, Marthin T, Johnson K H, Sletten K. Apolipoprotein A1-derived amyloid in human aortic atherosclerotic plaques. Am J Pathol 1995; 147: 1186–1192
  • Mucchiano G I, Haggqvist B, Sletten K, Westermark P. Apolipoprotein A-1-derived amyloid in atherosclerotic plaques of the human aorta. J Pathol 2001; 193: 270–275
  • Amarzguioui M, Mucchiano G, Haggqvist B, Westermark P, Kavlie A, Sletten K, Prydz H. Extensive intimal apolipoprotein A1-derived amyloid deposits in a patient with an apolipoprotein A1 mutation. Biochem Biophys Res Commun 1998; 242: 534–539
  • Mucchiano G I, Jonasson L, Haggqvist B, Einarsson E, Westermark P. Apolipoprotein A-I-derived amyloid in atherosclerosis. Its association with plasma levels of apolipoprotein A-I and cholesterol. Am J Clin Pathol 2001; 115: 298–303
  • Johnson K H, Sletten K, Hayden D W, O'Brien T D, Roertgen K E, Westermark P. Pulmonary vascular amyloidosis in aged dogs. A new form of spontaneously occurring amyloidosis derived from apolipoprotein A-I. Am J Pathol 1992; 141: 1013–1019
  • Rader D J, Gregg R E, Meng M S, Schaefer J R, Zech L A, Benson M D, Brewer H B, Jr. In vivo metabolism of a mutant apolipoprotein, apoA-I Iowa, associated with hypoalphalipoproteinemia and hereditary systemic amyloidosis. J Lipid Res 1992; 33: 755–763
  • Genschel J, Haas R, Propsting M J, Schmidt H H. Apolipoprotein A-I induced amyloidosis. FEBS Lett 1998; 430: 145–149
  • Almeida M R, Gales L, Damas A M, Cardoso I, Saraiva M J. Small transthyretin (TTR) ligands as possible therapeutic agents in TTR amyloidoses. Curr Drug Targets CNS Neurol Disord 2005; 5: 587–596

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.