Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 13, 2006 - Issue 4
280
Views
31
CrossRef citations to date
0
Altmetric
Original

The early stages of amyloid formation: Biophysical and structural characterization of human calcitonin pre-fibrillar assemblies

&
Pages 216-225 | Published online: 06 Jul 2009

References

  • Haass C, De Strooper B. The presenilins in Alzheimer's disease proteolysis holds the key. Science 1999; 286: 916–919
  • Selkoe D J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 1999; 399: A23–A31
  • Teplow D B. Structural and kinetic features of amyloid beta protein fibrillogenesis. Amyloid 1998; 5: 121–142
  • Giasson B I, Uryu K, Trojanowski J Q, Lee VM-Y. Mutant and wild type human α-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 1999; 274: 7619–7622
  • Narhi L, Wood S J, Steavenson S, Jiang Y, Wu G M, Anafi D, Kaufman S A, Martin F, Sitney K, Denis P, Louis J C, Wypych J, Biere A L, Citron M. Both familial Parkinson's disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 1999; 274: 9843–9846
  • Goedert M. Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and α-synucleinopathies. Philos Trans R Soc Lond B Biol Sci 1999; 354: 1101–1118
  • Ross C A. Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases?. Neuron 1997; 19: 1147–1150
  • Perutz M F. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem Sci 1999; 24: 58–63
  • Clark A, Charge S B, Badman M K, MacArthur D A, de Koning E J. Islet amyloid polypeptide: actions and role in the pathogenesis of diabetes. Biochem Soc Trans 1996; 24: 594–599
  • Jarrett J T, Lansbury P T, Jr. Review: Seeding ‘one-dimensional crystallization’ of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie?. Cell 1993; 73: 1055–1058
  • Harper J D, Lansbury P T, Jr. Models of amyloid seeding in Alzheimer's disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 1997; 66: 385–407
  • Lomakin A, Chung D S, Benedek G B, Kirschner D A, Teplow D B. On the nucleation and growth of amyloid beta-protein fibrils: Detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 1996; 93: 1125–1129
  • Kayed R, Bernhagen J, Greenfield N, Sweimeh K, Brunner H, Voelter W, Kapurniotu A. Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J Mol Biol 1999; 287: 781–796
  • Gazit E. The ‘correctly-folded’ state of proteins: Is it a metastable state?. Angew Chem Int Ed Engl 2002; 11: 257–259
  • Padrick S B, Miranker A D. Islet amyloid: Phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis. Biochemistry 2002; 41: 4694–4703
  • Oosawa F, Asakura S. Thermodynamics of the polymerization of protein. Academic Press, New York 1975; 47–55
  • Hofrichter J, Ross P D, Eaton W A. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci USA 1974; 71: 4864–4868
  • Ferrone F A, Hofrichter J, Sunshine H R, Eaton W A. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys J 1980; 32: 361–380
  • Ferrone F A, Hofrichter J, Eaton W A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol 1985; 183: 611–631
  • Arvinte T, Cudd A, Drake A F. The structure and mechanism of formation of human calcitonin fibrils. J Biol Chem 1993; 268: 6415–6422
  • Librizzi F, Rischel C. The kinetic behavior of insulin fibrillation is determined by heterogeneous nucleation pathways. Protein Sci 2005; 14: 3129–3134
  • Sletten K, Westermark P, Natvig J B. Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med 1976; 143: 993–998
  • Silver M M, Hearn S A, Lines L D, Troster M. Calcitonin and chromogranin A localization in medullary carcinoma of the thyroid by immunoelectron microscopy. J Histochem Cytochem 1988; 36: 1031–1036
  • Silverman S L. Calcitonin. Am J Med Sci 1997; 313: 13–16
  • Zaidi M, Inzerillo A M, Moonga B S, Bevis P J, Huang C L. Review: Forty years of calcitonin–where are we now?. A tribute to the work of Iain Macintyre, FRS Bone 2002; 30: 655–663
  • Rymer D L, Good T A. The role of G protein activation in the toxicity of amyloidogenic Aβ-(1–40), Aβ-(25–35), and bovine calcitonin. J Biol Chem 2001; 276: 2523–2530
  • Munoz-Torres M, Alonso G, Raya M P. Review: Calcitonin therapy in osteoporosis. Treat Endocrinol 2004; 3: 117–132
  • Peichl P, Griesmacher A, Kumpan W, Schedl R, Prosquil E, Broll H. Clinical outcome of salmon calcitonin nasal spray treatment in postmenopausal women after total hip arthroplasty. Gerontology 2005; 51: 242–252
  • Feletti C, Bonomini V. Effect of calcitonin on bone lesions in chronic dialysis patients. Nephron 1979; 24: 85–88
  • Yamamoto Y, Nakamuta H, Koida M, Seyler J K, Orlowski R C. Calcitonin-induced anorexia in rats: a structure-activity study by intraventricular injections. Jpn J Pharmacol 1982; 32: 1013–1017
  • Del Prete E, Schade B, Riediger T, Lutz T A, Scharrer E. Effects of amylin and salmon calcitonin on feeding and drinking behavior in pygmy goats. Physiol Behav 2002; 75: 593–599
  • Levy F, Muff R, Dotti-Sigrist S, Dambacher M A, Fischer J A. Formation of neutralizing antibodies during intranasal synthetic salmon calcitonin treatment of Paget's disease. J Clin Endocrinol Metab 1988; 67: 541–545
  • Muff R, Dambacher M A, Fischer J A. Formation of neutralizing antibodies during intranasal synthetic salmon calcitonin treatment of postmenopausal osteoporosis. Osteoporos Int 1991; 1: 72–75
  • Grauer A, Ziegler R, Raue F. Review: Clinical significance of antibodies against calcitonin. Exp Clin Endocrinol Diabetes 1995; 103: 345–351
  • Rodriguez A, Trujillo M J, Herrero T, Baeza M L, de Barrio M. Allergy to calcitonin. Allergy 2001; 56: 801
  • Fowler S B, Poon S, Muff R, Chiti F, Dobson C M, Zurdo J. Rational design of aggregation-resistant bioactive peptides: Reengineering human calcitonin. Proc Natl Acad Sci USA 2005; 102: 10105–10110
  • Walsh D M, Lomakin A, Benedek G B, Condron M M, Teplow D B. Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 1997; 272: 22364–22372
  • Conway K A, Harper J D, Lansbury P T. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 1998; 4: 1318–1320
  • Lashuel H A, Lai Z, Kelly J W. Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation. Biochemistry 1998; 37: 17851–17864
  • Goldsbury C, Kistler J, Aebi U, Arvinte T, Cooper G J. Watching amyloid fibrils grow by time-lapse atomic force microscopy. J Mol Biol 1999; 285: 33–39
  • Porat Y, Kolusheva S, Jelinek R, Gazit E. The human islet amyloid polypeptide forms transient membrane-active prefibrillar assemblies. Biochemistry 2003; 42: 10971–10977
  • Srinivasan R, Marchant R E, Zagorski M G. ABri peptide associated with familial British dementia forms annular and ring-like protofibrillar structures. Amyloid 2004; 11: 10–13
  • Polverino P de Laureto, Taddei N, Frare E, Capanni C, Costantini S, Zurdo J, Chiti F, Dobson C M, Fontana A. Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. J Mol Biol 2003; 334: 129–141
  • Zhang S, Iwata K, Lachenmann M J, Peng J W, Li S, Stimson E R, Lu Y, Felix A M, Maggio J E, Lee J P. The Alzheimer's peptide a beta adopts a collapsed coil structure in water. J Struct Biol 2000; 130: 130–141
  • Cruz L, Urbanc B, Borreguero J M, Lazo N D, Teplow D B, Stanley H E. Solvent and mutation effects on the nucleation of amyloid {beta}-protein folding. Proc Natl Acad Sci USA 2005; 102: 18258–18263
  • Bitan G, Lomakin A, Teplow D B. Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 2001; 276: 35176–35184
  • Lashuel H A, Petre B M, Wall J, Simon M, Nowak R J, Walz T, Lansbury P T, Jr. Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 2002; 322: 1089–1102
  • Lashuel H A, Hartley D M, Petre B M, Wall J S, Simon M N, Walz T, Lansbury P T, Jr. Mixtures of wild-type and a pathogenic (E22G) form of Abeta40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 2003; 332: 795–808
  • Hartley D M, Walsh D M, Ye C P, Diehl T, Vasquez S, Vassilev P M, Teplow D B, Selkoe D J. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 1999; 19: 8876–8884
  • Moreira P I, Santos M S, Moreno A, Oliveira C. Amyloid beta-peptide promotes permeability transition pore in brain mitochondria. Biosci Rep 2001; 21: 789–800
  • Nilsberth C, Westlind-Danielsson A, Eckman C B, Condron M M, Axelman K, Forsell C, Stenh C, Luthman J, Teplow D B, Younkin S G, Naslund J, Lannfelt L. The ‘Arctic’ APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat Neurosci 2001; 4: 887–893
  • Volles M J, Lansbury P T, Jr. Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 2002; 41: 4595–4602
  • Kayed R, Head E, Thompson J L, McIntire T M, Milton S C, Cotman C W, Glabe C G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003; 300: 486–489
  • Lambert M P, Barlow A K, Chromy B A, Edwards C, Freed R, Liosatos M, Morgan T E, Rozovsky I, Trommer B, Viola K L, Wals P, Zhang C, Finch C E, Krafft G A, Klein W L. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 1998; 95: 6448–6453
  • El-Agnaf O M, Nagala S, Patel B P, Austen B M. Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 2001; 310: 157–168
  • Walsh D M, Klyubin I, Fadeeva J V, Rowan M J, Selkoe D J. Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Nature 2002; 30: 552–557
  • Kim H J, Chae S C, Lee D K, Chromy B, Lee S C, Park Y C, Klein W L, Krafft G A, Hong S T. Selective neuronal degeneration induced by soluble oligomeric amyloid beta protein. FASEB J 2003; 17: 118–120
  • Kayed R, Head E, Thompson J L, McIntire T M, Milton S C, Cotman C W, Glabe C G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003; 300: 486–489
  • Cleary J P, Walsh D M, Hofmeister J J, Shankar G M, Kuskowski M A, Selkoe D J, Ashe K H. Natural oligomers of the amyloid protein specifically disrupt cognitive function. Nat Neurosci 2004; 8: 79–84
  • Bitan G, Fradinger E A, Spring S M, Teplow D B. Neurotoxic protein oligomers: What you see is not always what you get. Amyloid 2005; 12: 88–95
  • Lesne S, Koh M T, Kotilinek L, Kayed R, Glabe C G, Yang A, Gallagher M, Ashe K H. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006; 440: 352–357
  • Gazit E, La Rocca P, Sansom M S, Shai Y. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an ‘umbrella-like’ structure of the pore. Proc Natl Acad Sci USA 1998; 95: 12289–12294
  • Makin O S, Atkins E, Sikorski P, Johansson J, Serpell L C. Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 2005; 102: 315–320
  • Nelson R, Sawaya M R, Balbirnie M, Madsen A O, Riekel C, Grothe R, Eisenberg D. Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005; 435: 773–778
  • Naito A, Kamihira M, Inoue R, Saito H. Structural diversity of amyloid fibril formed in human calcitonin as revealed by site-directed 13C solid-state NMR spectroscopy. Magn Reson Chem 2004; 42: 247–257
  • Andreotti G, Motta A. Modulating calcitonin fibrillogenesis: an antiparallel alpha-helical dimer inhibits fibrillation of salmon calcitonin. J Biol Chem 2004; 279: 6364–6370
  • Gilead S, Gazit E. Inhibition of amyloid fibril formation by peptide analogues modified with alpha-aminoisobutyric acid. Angew Chem Int Edit 2004; 43: 4041–4044
  • Porat Y, Mazor Y, Efrat S, Gazit E. Inhibition of islet amyloid polypeptide fibril formation: A potential role for hetero-aromatic interactions. Biochemistry 2004; 43: 14454–14462
  • Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 2006; 67: 27–37
  • Cohen T, Frydman-Marom A, Rechter M, Gazit E. Inhibition of Amyloid Fibril Formation and Cytotoxicity by Hydroxy-Indole Derivatives. Biochemistry 2006; 45: 4727–4735

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.